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17 September 2013

Butterflies, Chaos and Fractals
Professor Raymond Flood
Welcome to the first of my lectures this academic year and thank you for coming along. This year I am taking as my theme some examples of using mathematics in various areas. Let me show you the lecture topics.

I will be saying a lot more soon about today’s lecture on Butterflies, Chaos and Fractals. It is a more modern take at describing change than in my lecture last year on the calculus. The second lecture on Public key cryptography looks at, among other things, an important application of number theory and factorization which was mentioned in my lecture last year on the primes and their properties.
The Christmas treat this year is on the important area of algebra concerned with investigating and measuring symmetry and some of its applications.
Then in January I will discuss topology which is concerned with those properties of geometrical objects that are preserved under continuous deformation of the object. In particular we will look at Euler’s remarkable result relating the number of faces, edges and vertices of a polyhedron.
February brings us to the challenge of describing random processes while the last lecture is on the process of the spread of infectious diseases and the insights that mathematics can provide, for example in understanding the impact of different vaccination strategies. 
This is a broad and interesting range of topics and I am very interested to hear what I have to say about them as I hope you will be.
But now back to today’s lecture.

In 1972 the meteorologist, Edward Lorenz, delivered a lecture with the title Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas?  In this he showed that dynamical systems can exhibit chaotic, seemingly random, behaviour.  Many scientists think that this ranks as one of the main scientific advances of the twentieth century together with relativity and quantum theory.  I am also going to talk about how the butterfly effect or sensitivity to initial conditions links chaos and the beautiful geometric objects, fractals.

Let me give an overview of the lecture:

We start with a non-trivial question - Is the solar system stable? This was a question posed by King Oscar II of Sweden at the end of the nineteenth century. Present day royal families seem to have more down to earth concerns. We will look at the important contributions of Henri Poincaré to King Oscar’s challenge.
The solar system is an example of a dynamical system and I will define two types of dynamical systems – discrete and continuous.

A major part of the lecture will be looking at a particular discrete dynamical equation, the logistic equation. This example has been very influential and using spread sheets we can do some experimental mathematics to illustrate:

Deterministic chaos 

Sensitivity to initial conditions and what I call the

Predictability horizon
Then I look at a continuous dynamical system formulated by Edward Lorenz and motivated by his work in weather forecasting. It is associated with what is now called the Lorenz attractor, a so called strange attractor – called this because it is a fractal.
Then we will look at the most famous fractal of all – the Mandelbrot set.

I will finish with a definition of fractal and fractal dimension.
Let me tell you now about Henri Poincaré and his role in King Oscar’s prize. Poincaré is viewed as one of the great geniuses of all time, being probably the last person to cover the entire range of mathematics. He virtually founded the theories of several complex variables and algebraic topology, and one of his conjectures in topology, known as the Poincaré conjecture, was solved only in this century. It is the only one of the Clay mathematical challenges to have been solved. He made outstanding contributions to differential equations and non-Euclidean geometry, and also worked on electricity, magnetism, quantum theory, hydrodynamics, elasticity, the special theory of relativity and the philosophy of science. As an active popularizer of his subject, he wrote popular works for non-mathematicians, stressing the importance of mathematics and science and discussing the psychology of mathematical discovery. Poincaré was born in Northern France, and displayed great ability and interest in mathematics from a young age. He came from a distinguished family, and his cousin, Raymond Poincaré, became President of the French Republic during the First World War. He died at the young age of 58. 

Oscar II, King of Sweden and Norway, was an enthusiastic patron of mathematics. To mark his 60th birthday in 1889, he offered a prize of 2500 Swedish crowns for a memoir on any of four given topics, one of which was on predicting the future motion of a system of bodies moving under mutual gravitational attraction: 
Given a system of arbitrarily many mass points that attract each according to Newton’s law, under the assumption that no two points ever collide, try to find a representation of the coordinates of each point as a series in a variable that is some known function of time and for all of whose values the series converges uniformly.
Newton had solved this problem for two bodies in his Mathematical Principles of Natural Philosophy published in 1687.

Newton used his laws of motion and his universal law of gravity, sometimes called the inverse square law to show that if we neglect the influence of other planets then each planet moves in an elliptical orbit around the sun.
 The general problem for more than two bodies is much more difficult and Poincaré responded to King Oscar’s challenge by attacking a special case of the problem when there are only three bodies,and one of them is assumed to have infinitely small mass: so it does not influence the motion of the other two but it is influenced by them. This is called the restricted three-body problem. He hoped that he would eventually be able to generalize his results to the general three-body problem, and then to more than three bodies. By considering approximations to the orbits, he was able to make considerable progress, developing valuable new techniques in analysis along the way. Although he could not solve the three-body problem in its entirety, he developed so much new mathematics in his attempts that he was awarded the prize.
However, while his paper was being prepared for publication, one of the editors queried it, unable to follow Poincare’s arguments. Poincaré realized that he had made a mistake: contrary to what he formerly thought, even a small change in the initial conditions can produce vastly different orbits. This meant that his approximations did not give him the results he had expected. But this led to something even more important. The orbits that Poincare discovered were what we now call chaotic: he had stumbled on the mathematics at the basis of modern-day chaos theory, where even with deterministic laws the resulting motion may be irregular and effectively unpredictable. 

In this slide we see some of the complexities of three-body motion: here is a typical trajectory of a dust particle as it orbits two fixed planets of equal mass. The start of the trajectory is in the middle of the image. The trajectory of the dust particle looks very random and chaotic but it is completely determined by its governing equations.

These three bodies moving under the force of gravitational attraction is an example of a dynamical system.

A dynamical system is a means of describing how one state of a system develops into another state of the system over the course of time.

Here are some examples of dynamical systems:

Swinging pendulum: either in a vacuum or slowed down by friction of the air

The movement back and forth of a ship at sea

The Solar system and the motion of the planets.

Particle accelerator such as that at Cern

Power networks like the National Grid

Fluid dynamics such the water flowing out of a tap

Chemical reactions

Population dynamics of insects

Stockmarkets and their variation.
Some are much more complicated than others but in all of them the state of the system can change over time. 

We are also going to see that even simple systems can exhibit very complex behaviour.

First let me define a dynamical system which I will break it into two situations.

A discrete dynamical system is one that evolves in jumps.

For example the system could be the amount of money in a savings account at the start of each year and the underlying dynamic is to add the interest once a year. So we are looking at the state of the system at discrete time points, year 1, year 2, year 3, etc.

This could be modelled by what is called a difference equation and written

S(n + 1) = S(n) + 0.1 × S(n)

Where S(n) means the amount of money in the account in year n and S(n + 1) is the amount of money in the account the next year i.e. in year n + 1. The number 0.1 is the interest rate, a totally unbelievable 10%!

The other type of dynamical system is continuous and is where the state of the system varies continuously with time and is usually given by a system of differential equations. For example for a swinging pendulum the angle of inclination, (, of the angle of the string supporting the pendulum bob from the vertical is:
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This is just Newton’s second law of motion – force equals mass times acceleration. The force is essentially the g over l times sin ( and the acceleration is the differential term.

Here g is the acceleration due to gravity and l is the length of the pendulum. Solving this differential equation means finding the value for  ( at all times t.

The important thing to note about both these types of dynamical system is that they are deterministic. If we know the exact value at which we start them off then all subsequent values are determined exactly.

For example, for our savings account example, if we know the sum of money put into the bank at year 1 then this determines how much is in the account in all subsequent years.
For the pendulum if we know exactly the angle at which we start of the motion then this determines the value of ( at all subsequent times.
This determinism was captured very dramatically by the 18th century mathematician: Pierre-Simon Laplace. He wrote:

An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes.
It is important to stress the point that Laplace made. The dynamical systems that I will be talking about are deterministic. If we know the present state exactly the future states are completely determined. But to know the present state exactly is a very tall order and indeed often practically impossible.
But there was a hope, and Poincaré initially took this view, that if we knew the present state approximately then we would be able to know future states approximately. But that does not always turn out to be case. Sometimes dynamical systems are incredible sensitive to their starting value and slightly different starting values can give very different subsequent behaviour. This sensitive dependence on initial conditions is the property that best characterizes chaotic dynamics, although there is no single definition that covers all uses of the term chaotic dynamics.

I want to illustrate this sensitivity to initial conditions and chaotic behaviour in the simplest case possible.  

It is a difference equation called the logistic equation. It could be used to model a breeding population in which the generations do not overlap.

xn + 1 = r xn (1 – xn)

Here xn is related to the population in the nth generation and xn + 1 related to the population in the next generation. It is best to think of xn as the size of the population in the nth generation divided by the maximum sustainable population and hence xn lies between 0 and 1.

The form of the right hand side of the equation reflects the fact that the population tends to increase when it is small and for it to decrease when it is large. 

This is a non-linear difference equation because if we multiply out the right-hand side we get:

 xn + 1 = r xn  – xn2
and there is the quadratic term xn2. It is this non-linearity that makes the logistic equation so interesting. 

r is a parameter that we can change and which could have some biological significance. It is usually called the reproductive rate. The behaviour of the solutions depends critically on the value of r and to get interesting behaviour we take r to lie in the region 0 [image: image4.png]


 r [image: image6.png]


 4.

On the right hand side of the slide we have graphs of 

f(x) = r x (1 – x)
for different values of the reproductive rate r.  The maximum is always at x = ½ and as r increases so does the height of the maximum. Much of the behaviour I will be showing you is also exhibited by many other families of one humped curves like these here. The straight line is just the line y = x.

I want to show you some of the different kinds of behaviour that the logistic equation can exhibit. These different behaviours are observed as we change the value of the parameter r.

Let us see what happens when we take r = 2 and start at x1 = 0.1. We can do the calculations by hand, or using a calculator or a spread sheet. I used a spread sheet which also meant that it was then quite easy to generate the associated graphs. So the equation is

xn + 1 = 2xn (1 – xn)

When x1 = 0.1 then x2  = 2 × 0.1 × (1 – 0.1)
                                     = 0.18
When x2 = 0.18 then x3  = 2 × 0.18 × (1 – 0.18)
                                     = 0.2952
When x3 = 0.2952 then x4  = 2 × 0.2952 × (1 – 0.2952)
                                     = 0.4161
x4 = 0.4161 then x5  = 0.4859
x5 = 0.4859 then x6  = 0.4996
x6 = 0.4996 then x7  = 0.4999
x7 = 0.4999 then x8  = 0.5
x8 = 0.5 then x9  = 0.5
Once it reaches the point 0.5 it stays there.

This is because when r = 2:

if xn  = 0.5 then xn + 1  = 2 x 0.5 × (1 – 0.5) = 0.5 so all subsequent values are also 0.5.
But 0.5 is also an attractor for the trajectories. No matter what our starting value we end at 0.5.

Here I have started the system at 0.23 on the left and 0.78 on the right and we see that the system quite quickly settles to the attractor 0.5. This is true for all starting values.

There is a graphical way of viewing the evolution of the logistic equation called a cobweb diagram which can be very helpful.

Start at a point on the horizontal axis, go vertically to the curve

Then across to the line y = x then vertically to the curve 

then across to the line then vertically to the curve

then across to the line and then vertically to the curve and so on.

The attractor is where the curve and the straight line intersect.

This works because going across to the line y = x is making the last output the new input.

This graphical approach can be very powerful in giving insight into what is going on.

When r = 2.5 then 0.6 is the attractor.  
It is a fixed point because if xn  = 0.6 then xn + 1  = 2.5 × 0.6 × (1 – 0.6) = 0.6.

Also all starting positions end up at it so it is also a point attractor.

As we increase the value of r we keep getting the attractor as the fixed point where the curve and the line meet but when we get to r = 3 this fixed point becomes unstable – values are not attracted to it – they are attracted to a pair of values and the system oscillates between them.

Here I have shown it with a staring value of 0.23 and then of 0.78.

If you wanted to examine this in more detail we would need to look at the fixed points of applying the logistic equation twice. If we did this we would see that there is an attractor of period 2 until r = 1 + [image: image8.png]=3.449
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At r slightly bigger than this at 3.5 the period two attractor becomes unstable and the attractor is a set of four points.
The system oscillates between these four values. We have an attractor of period 4. The slide shows again the system ending on it starting from 0.23 and 0.78.

Perhaps you might see a pattern:

Point attractor

Period 2 attractor

Period 4 attractor.

Yes the period 4 attractor becomes unstable as r increases and is replaced by a period 8 attractor.

This period doubling is a means for going from order to chaos. We saw that for r from 0 to 3 there is a point attractor.

For r from 3 to 1 + [image: image10.png]=3.449



 the attractor is of period 2
For r slightly above that the period doubles and the attractor is of period 4.

As r increases period doubling 8, 16, 32 … occurs at even more closely spaced values of r until at r = 3.57 the system is no longer periodic – it is called chaotic.

Let stress here that at this value of r the system we do not have any periodicity.

The system is no longer periodic it is chaotic and here I show on the left a trajectory for r = 3.57 and on the right a trajectory for another value of r, r = 4, which also gives chaos.

I think it is quite astounding that this simple difference equation gives rise to such complex behaviour. These trajectories, especially the one on the right looks completely random or stochastic and yet it has arisen for a completely determined system.

It never comes back to the same value twice.

We have been examining the behaviour of the logistic equation as a parameter varies. There is a way of showing our results on the one diagram.

This diagram is sometimes called a bifurcation diagram. The horizontal axis shows the values of the parameter r while the vertical axis shows the possible long-term values of x. 
If you stand on the horizontal axis at a particular value of r and look up you will see what the system settles down to the long run.
For example if you stand at 2.6 you see only a single point above you telling us that the system will settle to that value in the long run – it is slightly larger than 0.6. Now if you move to the right the single point above you bifurcates or divides in two at 3 and there is a period two solution for the following values of r until 3.449 when it bifurcates again to give you a period 4 solution. Then bifurcation happens more and more quickly to period 8 then period 16 then period 32 and so on until we reach what is called an accumulation point at 3.57 where there is no periodicity and we have chaotic dynamics. But as we move right note that we return to areas of regularity and in particular around 3.8284 where we have a period three solution. In fact there is a famous result in the subject which says that period three implies chaos.

I now want to turn to another characteristic of chaos which is the sensitivity to initial conditions or the butterfly effect.

I will again use spread sheets to give an idea of what can happen. We will take a value of r which gives chaotic behaviour.

Then I am going to compare the evolution of the system at neighbouring starting points. First at 0.25 and 0.251 and to compare them I am going to subtract their values and plot that.

There is fairly good agreement for about 5 generations and then they start to drift apart.

Well, let us make the starting points even closer say 0.25 but this time the other one is 0.2501.

When we look at the difference we see that we have agreement for say 13 generations.

In this the agreement is up to about 22 generations.

Now it is 26 generations. I will only do one more.

This seems to be about 32 generations.

I’ve summarised these results on this table.

The left column give different starting values and the right how many generations that starting value is in step with the reference one of 0.25. There is something striking about the two columns.
On the left the numbers are changing exponentially – we are using more and more decimal points and can think  of it as measuring the starting values ten times more accurately.
But the right hand column is changing linearly – there is essentially just an increase of agreement of 4 or 5 generations as we go down the column.

We can sum this up as follows:

A TEN fold increase in accuracy of starting values 

only gives

LINEAR increase in agreement of population sizes

I want to draw two consequences from this.
Because of the poor return on length of predictability as we increase our initial accuracy tenfold there is going to be a limit to how far ahead we can effectively predict a system when it is the chaotic region.
There is going to be a predictability horizon that we are not going to see beyond because we cannot measure our starting condition accurately enough.
In the case of weather forecasting it might mean that to obtain an extra days predictability we might have to measure everything, say, ten times more accurately or take ten times as many measurements.
On the other hand we can use the same observation to check how reliable our forecast is. This can be done by running the forecast with different sets of starting values from the ones observed and see how long the forecasts stay in agreement. This is called an ensemble forecast because we use an ensemble or collection of slightly different states to use as initial values for the forecast.
From this we can estimate the Lyapunov exponent which is a measure of the average speed with which infinitesimally close states separate and which is a quantity you might meet in further reading about the subject.

Well it is nearly time to leave the logistic equation but I want to quote Robert  May, a former President of the Royal Society who discussed it in a very influential article,  Simple mathematical models with very complicated dynamics in Nature in 1976.

Not only in research, but in the world of politics and economics, we would all be better off if more people realised that simple non-linear systems do not necessarily possess simple dynamical properties.

Let me now move on from discrete dynamical systems to continuous dynamical systems and in particular some of the work of Edward Lorenz.

Edward Lorenz was an American mathematician and meteorologist who is famous for his pioneering efforts in chaos theory. He was born in 1917 in West Hartford, Connecticut and died in 2008.
There is a very famous story told of how Lorenz discovered chaos. He was using a computer in 1961 to investigate models of the atmosphere which used differential equations. He was using the computer to calculate the way his variables describing the atmosphere changed with time. Having run the computer program he wanted to do it again but this time for longer. Quite reasonably, rather than start from the beginning he decided to start from half way through his previous results and inputted the data that had been calculated at the halfway point. Taking a break for a cup of coffee he found when he came back that the computer was producing different answers from the ones calculated before.  Apparently his first thought was that it was a hardware problem because the software program should give the same answer every time the same data was put in.  But he eventually discovered that the data he had used the second time had not been printed out to the same number of decimal places as it was stored in the computer. So when he typed it in the initial data was slightly different the second time – it differed, I believe, in the fourth decimal place. He then wanted to understand how a tiny change in the initial data, the starting point, could have such a major effect on the calculations. Lorenz had discovered chaos. 
Lorenz, as we have seen, was not the first person to discover chaos. Poincaré had discovered chaos in the 1880s when studying the 3-body problem.
The Lorenz system of three differential equations is a vastly simplified model of the atmosphere with only three variables and three parameters.  It attempts to model the behaviour of a fluid in a box which is being heated.  

The parameters can be given different values and when (= 10, ( = 28 and β = 8/3 we get chaotic behaviour shown by the Lorenz attractor which by chance also looks like a butterfly!
The picture is in three dimensions corresponding to the variables x, y and z. If we have values of x, y and z on the attractor then the subsequent trajectory will also remain on the attractor. Also trajectories starting from points near to the attractor are drawn to it.
Two points on the attractor that are near each other at one time will be far apart at later times but then can come back close to each other at later times. Also the motion of the system never repeats i.e. is non-periodic. It is an amazingly complex object showing how complicated dynamical systems can be.
The Lorenz attractor is an example of a strange attractor because it is a fractal object which we can think of at the moment as maintaining complexity as we zoom in but we will define a fractal more accurately later.

Here is just one of the many beautiful images on the web of the Lorenz attractor.

I now want to turn to probably the most famous fractal of them all – the Mandelbrot set.

This is fairly easy to describe but it was only with the arrival of powerfull computers that it was possible to create some of the images we can see on the web. This is because we have a rule that colours each point of the plane black or white but to decide which can demand a lot of calculation.
To describe the rule I want to introduce complex numbers. 

Each point in the plane can be associated with a complex number. What is important is how we add and multiply complex numbers.
Here we see how to add z and w graphically and how to multiply z and w graphically. Of, course it is possible to write down numerically how this is done, but all we need at the moment is to know that complex numbers, points on the plane, can be added and multiplied to give another complex number i.e. another point of the plane.
As a special case we can multiply a complex number by itself.
We are going to colour each point of the plane black or white. Let us hop to the next slide.

Pick a point, c, on the plane.

Start at the point c

Hop according to the rule square the point you are at and add c.

If you hop off to infinity 

colour the starting point c white 

otherwise 

colour it black

Slide: zn + 1 =  [image: image12.png]


  + c

What we are doing is iterating the difference equation:

zn + 1 =  [image: image14.png]


  + c

The black set is the Mandelbrot set. It will be particularly interesting to explore its boundary. Here we will meet again sensitivity to initial conditions with neighbouring points exhibiting different behaviours.

The next few images are from Peitgen and Richter The Beauty of Fractals.
Notice that we seem to have copies of the Mandelbrot set as we zoom in. This idea of self-similarity is frequently used as defining a fractal.

I have an animation to show it but first let me explain how we often see colour versions of the Mandelbrot set.

We know that any point coloured white eventually goes off to infinity. We Colour the white points depending how quickly the iteration starting of from there goes off to infinity. 

Now for the animation which is quite psychedelic!

Now to finish with something a little more sedate and give an idea of fractal dimension.

In a famous 1967 paper called How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension by Benoît Mandelbrot wrote:

Geographical curves are so involved in their detail that their lengths are often infinite or, rather, undefinable. However, many are statistically "self-similar," meaning that each portion can be considered a reduced-scale image of the whole. In that case, the degree of complication can be described by a quantity D that has many properties of a "dimension," though it is fractional; that is, it exceeds the value unity associated with the ordinary, rectifiable, curves.
Mandelbrot took the fract in fraction as the root of the word fractal.

The fractal dimension is a measure of how a shape fills space or how the result obtained changes with the scale with which you measure it.

If you measure a straight line by laying rulers along it then if you halve the length of the rulers you use you will need twice as many of them.
We use this scaling to arrive at the dimension of the line as 1.

If ruler is of length 200km need 11.5 of them = 2300 km    

If ruler is of length 100km need 28 of them = 2800km

If ruler is of length 50km need 70 of them = 3500 km
As the length of the measuring stick is scaled smaller and smaller, the total length of the coastline measured increases and the number of rulers needed is increasing by more than a factor of 2. This gives a fractal dimension more than 1 and Mandelbrot in his paper estimated that the West Coast of Britain had a fractal dimension of 1.25.

Mandelbrot took the fract in fraction as the root of the word fractal.

A Fractal has fractional dimension.

Construction of Koch curve. Start with an equilateral triangle. Take the middle third of each side away and build another equilateral triangle at the location where the side was removed.

Continue this ad infinitum

If you use rulers a third of the length you will need 4 times as many of them

The dimension is ln 4/ ln 3 ( 1.26

So to finish:
I have been talking about dynamical systems and the kind of chaotic behaviour they can show.
Of crucial importance in the lecture has been the butterfly effect or sensitivity to initial conditions and we have seen that sensitivity in discrete and continuous dynamical systems.
The butterfly effect also can link chaos and fractals.
I’ve made great use of spread sheets in the lecture to simulate the behaviour of the logistic equation and I strongly recommend you to try doing so yourself.
Thank you for coming and happy iterations as you hop home.
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