It from bit: the science of information

Richard Harvey
IT Livery Company Professor of Information Technology, Gresham College
Professor of Computer Science, School of Computing Sciences, University of East Anglia
\#richardwharvey

information | infa'meIf(ə)n |

noun [mass noun]
1 facts provided or learned about something or someone: a vital piece of information.
[count noun] Law a charge lodged with a magistrates' court: the tenant may lay an information against his landlord.
$\mathbf{2}$ what is conveyed or represented by a particular arrangement or sequence of things: genetically transmitted information.

Computing data as processed, stored, or transmitted by a computer
(in information theory) a mathematical quantity expressing the probability of occurrence of a particular sequence of symbols, impulses, etc., as against that of alternative sequences.
ORIGIN late Middle English (also in the sense 'formation of the mind, teaching'), via Old French from Latin informatio($n-$-), from the verb informare

information | infe'meIJ(ə)n |

noun [mass noun]
1 facts provided or learned about something or someone: a vital piece of information.
[count noun] Law a charge lodged with a magistrates' court: the tenant may lay an information against his landlord.
$\mathbf{2}$ what is conveyed or represented by a particular arrangement or sequence of things: genetically transmitted information.

Computing data as processed, stored, or transmitted by a computer
(in information theory) a mathematical quantity expressing the probability of occurrence of a particular sequence of symbols, impulses, etc., as against that of alternative sequences.
ORIGIN late Middle English (also in the sense 'formation of the mind, teaching'), via Old French from Latin informatio($n-$), from the verb informare

Shannon information

Shannon information

The Bell System Technical Journal

Introbuction

$T \mathrm{HE}$ recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensilied the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist' and Hartley ${ }^{2}$ on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information.
The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for cach possible selection, not just the one which will actually be chosen since this is unknown at the time of design.
If the number of messages in the set is finite then this number or any monotonic function of this number can be regarded as a measure of the information produced when one message is chosen from the set, all choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic function. Although this definition must be generalized considerably when we consider the influence of the statistics of the message and when we have a continuous range of messages, we will in all cases use an essentially logarithmic measure.
The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance
${ }^{1}$ Nypuist. H., "Certain Factors Affecting Telegraph Speed," Bell System Tecmicul Jouraul, dpril 192t, p. 32t; "Certain Topics in Telegraph Transmission Theory," A.I.E.E
 1928, p. 53,

A big idea from Claude Shannon

would produce "messages" consisting of a number of functions of three variables; (f) Various combinations also occur, for example in television with an associated audio channel.
2. A transmilter which operates on the message in some way to produce a signal suitable for transmission over the channel. In telephony this operation consists merely of changing sound pressure into a proportional electrical current. In telegraphy we have an encoding operation which produces a sequence of dots, dashes and spaces on the channel corresponding to the message. In a multiplex PCM system the different speech functions must be sampled, compressed, quantized and encoded, and finally interleaved

Encoding text

In economics, Gresham's law is a monetary principle stating that "bad money drives out good". For example, if there are two forms of commodity money in circulation, which are accepted by law as having similar face value, the more valuable commodity will gradually disappear from circulation.
The law was named in 1860 by Henry Dunning Macleod, after Sir Thomas Gresham (1519-1579), who was an English financier during the Tudor dynasty. However, there are numerous predecessors. The law had been state...

How to code this text?

A	0	1	0	0	0	0	0	1
B	0	1	0	0	0	0	1	0
C	0	1	0	0	0	0	1	1
D	0	1	0	0	0	1	0	0
E	0	1	0	0	0	1	0	1
F	0	1	0	0	0	1	1	0

500 characters $\times 8$ bits per character $=4000$ bits

But some letters are more common than others

If Youth, throughout all history, had had a champion to stand up for it; to show a doubting world that a child can think; and, possibly, do it practically; you wouldn't constantly run across folks today who claim that "a child don't know anything." A child's brain starts functioning at birth; and has, amongst its many infant convolutions, thousands of dormant atoms, into which God has put a mystic possibility for noticing an adult's act, and figuring out its purport. ...

So what about a different code?

Maybe we could use fewer bits for the most common letters?

A	1	0	0	0		$L_{A}=4$		
B	1	1	1	1	0	0	$L_{B}=6$	Average length of this code is
C	0	1	1	0	1		$L_{A}=5$	
D	0	0	0	0	0		$L_{A}=5$	$p_{A} L_{A}+p_{B} L_{B}+\ldots+p_{Z} L_{Z}$
E	1	1	0			$L_{A}=3$	$=4.2$ bits	
F	0	1	0	1	1	$L_{A}=5$		

Roughly half the size of ASCII

Information $I=-\log _{2} p$

So what's the best we could do?

Shannon Entropy
$H=-\sum_{n=1}^{N} p_{n} \log _{2} p_{n}=$ Average $\left(-\log _{2} \mathrm{p}\right)$

For our probabilities:
$\mathrm{H}=4.176$ bits per character.

Improbability = surprise $=$ information $=$ bits

Information (and surprise) is conditional

Given that I know X , how much extra information is needed to describe Y?

Information is conditional

Surprise is conditional

Surprise is conditional

Magic compression

A magic or universal compressor would be able to compress every file...

If such a thing existed then it would be able to compress files that themselves were compressed files

So the universal compressor does not exist!

Lossless compression

Video data

1080 lines $\times 1920$ columns $=2 \mathrm{M}$ pixels
2 M pixels $\times 3$ colours $\times 8$ bits $=49.8$ Mbits per frame
49.8 Mbits per frame $\times 25$ frames per second $=1.2$ Gbits per second

But DVB channels range from 5 Mbits per second to 50 Mbits per second.

Compression ratios of 250 to 25 needed.

Sound is not what meets the ear

I wonder if this is encoded for humans?

1415926535...

$$
\text { I = - } \log _{2}(1 / 10)=3.3 \text { bits per symbol }
$$

10 symbols $=33$ bits

14159265358979323846264338327 95028841971693993751058209749 44592307816406286208998628034 825342117067...

100 symbols $=330$ bits

14159265358979323846264338327950288419716939937510582097494459230781640628 62089986280348253421170679821480865132823066470938446095505822317253594081 28481117450284102701938521105559644622948954930381964428810975665933446128 47564823378678316527120190914564856692346034861045432664821339360726024914 12737245870066063155881748815209209628292540917153643678925903600113305305 48820466521384146951941511609433057270365759591953092186117381932611793105 11854807446237996274956735188575272489122793818301194912983367336244065664 30860213949463952247371907021798609437027705392171762931767523846748184676 69405132000568127145263560827785771342757789609173637178721468440901224953 43014654958537105079227968925892354201995611212902196086403441815981362977 47713099605187072113499999983729780499510597317328160963185950244594553469 08302642522308253344685035261931188171010003137838752886587533208381420617 17766914730359825349042875546873115956286388235378759375195778185778053217 1226...

1000 symbols $=3300$ bits

...and so on...

1 million symbols = 3.3 Mbits

...but...

1415926535...

are the first 10 digits of...

3.1415926535... $=\pi$

KOLMOGOROV INFORMATION

The length of the shortest program that can compute the object

V INFORMATION
the shortest program jute the object

160 character program for π :
int $a=10000, b, c=2800, d, e, f[2801], g$; $\operatorname{main}()\{$ for ($; b-c$; $) f[b++]=a / 5$;
for ($; d=0, g=c * 2$; $c-$
$=14$, printf("\%.4d", etd/a), e=d\%a) for($\mathrm{b}=\mathrm{c}$; $\mathrm{d}+=\mathrm{f}[\mathrm{b}]$ *a,
$\left.\left.\mathrm{f}[\mathrm{b}]=\mathrm{d} \%--\mathrm{g}, \mathrm{d} /=\mathrm{g}--,--\mathrm{b} ; \mathrm{d}^{*}=\mathrm{b}\right) ;\right\}$
π can be computed with a 160 character (1280 bit) program
so the information in π is < 1280 bits

KOLMOGOROV INFORMATION IS CONDITIONAL TOO

$K(x \mid y)$ is the size of the shortest program that computes x given y as input

A string is incompressible if $K(x)=$ Length (x)

INFORMATION = SIZE OF MACHINE THAT CREATES IT

THING

ALGORITHM \leftrightarrow CODE

OLD SCIENCE = WHAT IS THAT THING?

NEW SCIENCE = WHAT CREATES THAT THING?

Fig. 1. Leaf growth analysis. (A) Tissue deforms through growth. (B) Orthogonal organizing system which (C) retains its original arrangement or (D) deforms during growth. (E to I) Midline proximodistal growth rates for three replicates (orange, green, and blue), and 1D models (black and gray lines). Distances from lamina base correspond to those on the day indicated by an asterisk. (J) Areal growth rates (heat map) and (K) prin cipal directions of growth (black lines, where anisotropy $>10 \%$) at the end of each period. (L) Resultant shape, POL levels and specified growth orientations (arrows) for nondeforming and (M) deforming (organizer-
based) models. (N) Resultant shapes, areal growth rates, and directions of growth (black lines, where anisotropy $>5 \%$) for 2D nondeforming and (0) deforming (organizer-based) models. Heat map and staging as in (J). (P) 1D model regulatory network. (Q) 2D distribution of PGRAD (gray). (R) MID (blue) and LAM (magenta) distributions. (S) 2D model regulatory network. (T) Initial POL (cyan) distribution for nondeforming and (U) deforming models. PROXORG in green. (\mathbf{V} to \mathbf{X}) Enlargement of brown ellipses in (N) (K), and (0), respectively. (\mathbf{Y}, \mathbf{Z}, and $\mathbf{Z Z}$) Enlargement of green ellipses in $(\mathrm{N}),(\mathrm{K})$, and (O), respectively. Scale bars, $100 \mu \mathrm{~m}$.
"Generation of Leaf Shape Through Early Patterns of Growth and Tissue Polarity",

Erika E. Kuchen, Samantha Fox, Pierre Barbier de Reuille, Richard Kennaway, Sandra Bensmihen, Jerome Avondo, Grant M. Calder, Paul Southam, Sarah Robinson, Andrew Bangham, Enrico Coen, Science, 335, 2 March 2012

IT FROM BIT?

Unanswered questions

digital physics
philosophy

Moving onwards:

 speech ($27^{\text {th }}$ Nov) vision ($12^{\text {th }}$ Feb)learning (19 th March) text (16 $6^{\text {th }}$ April) creativity ($28^{\text {th }}$ May)

