[image: image1.jpg]GKSHAM COLLEGE
)) LSZOW 7597 Q( Qo




22 January 2013
The Queen of Mathematics
Professor Raymond Flood
Thank you for coming to my first lecture of 2013 in the series on shaping modern mathematics. This lecture is about one of the core concepts in mathematics, namely numbers, in fact whole numbers or integers such as 1, 2, 3, 4, and so on.

The study of the properties of whole numbers is usually called number theory and it is a vast and fascinating field of mathematics. It was also sometimes called "higher arithmetic". Among the whole numbers or integers the primes are particularly important, and I will be defining and introducing the primes.
It turns out that there is great difficulty in proving even relatively simple results in number theory and this caused the great German mathematician, Carl Friedrich Gauss, to remark that "it is just this which gives the higher arithmetic that magical charm which has made it the favorite science of the greatest mathematicians, not to mention its inexhaustible wealth, wherein it so greatly surpasses other parts of mathematics." Gauss is often known as the "prince of mathematics," and he called mathematics the "queen of the sciences" and considered number theory the "queen of mathematics". It is from Gauss that I took the title of the lecture.
I will start by introducing and defining prime numbers and giving some examples. Then we will quickly see their importance as they are the building blocks from which all other whole numbers are constructed. This result is called the Fundamental Theorem of Arithmetic.
One of the most crucial questions about primes is:

How many primes are there?

And the answer to this question is given by one of the most beautiful proofs in all of mathematics. The proof was given in Euclid’s Elements which featured so prominently in my last talk on geometry.
The rest of the lecture is in three parts. 

First we will look at some approaches to finding or generating prime numbers.

Then we look at some properties of the primes that show how random and unpredictable they seem to be.

Finally we look at the primes in a different way and show how predictable they are and introduce what is called the Prime Number Theorem.
In discussing the Prime Number Theorem I will introduce one of the most intriguing and important functions in all of mathematics: the Riemann Zeta function.
This function lies at the heart of one of the most intriguing and difficult questions in mathematics: The Riemann Hypothesis.
The question is: Do all the solutions of a certain equation have a particular form? The full statement is:

Do all the non-trivial zeros of the Riemann Zeta function have real part 1/2?

Answering this question could win you a million dollars!

The million dollar prize is offered by the Clay Mathematics Institute, now based in Oxford, and the solution to the Riemann Hypothesis is one of seven problems that were originally posed. One of these seven problems, the Poincare conjecture, has now been solved. 
The Clay Mathematics Institute proposed the prizes because as they say on their website:

The Prizes were conceived to record some of the most difficult problems with which mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; to emphasize the importance of working towards a solution of the deepest, most difficult problems; and to recognize achievement in mathematics of historical magnitude.
If you want to find out more the web address is on the hand-out, available at the end of the lecture.
In the lecture I will end by showing you how the Riemann Hypothesis is related to prime numbers.

Now to start with what is a prime number.
Prime numbers are crucial to mathematics. Indeed they are crucial to modern commercial security systems because breaking large numbers into their constituent primes is essential to modern cryptography.

A prime number is a whole number greater than 1 whose only factors are itself and 1.

Examples: 2, 3, 5, 7, 11, 13, 17, 19, are prime 

But not 9 = 3 x 3 or 15 = 3 x 5.

Or this year’s date, 2013, which equals 3 x 11 x 61.

Note that 2 is the only even prime so next year’s date 2014 cannot be prime because it is even. The following year 2015 is divisible by 5. And, of course, the next year 2016 is divisible by 2. But 2017 is prime!

The primes are the building blocks from which all other whole numbers are constructed. This result is so important that it is called the Fundamental Theorem of Arithmetic. It states:

Every whole number can be written as a product of prime numbers in only one way apart from the order in which they are written.

30 = 2 x 3 x 5

So 30 is a product of three primes 2, 3, and 5 and no other collection primes can be multiplied together to give 30.

48 = 2 x 2 x 2 x 2 x 3

So every whole number is either prime or a product of primes and if it is a product of primes these primes of which it is composed are the only ones.

22,012,013  = 19 x 53 x 21859

This theorem is one of the reasons we exclude 1 from being a prime because otherwise we could write a number as a product of prime numbers in many different ways e.g.

15 = 3 x 5 = 3 x 5 x 1 = 3 x 5 x 1 x 1 and so on.

Here I have listed the primes up to 100 – there are 25 of them. But do the primes end as we keep on going up the integers, or do we keep finding new primes? 

In fact there are an infinite number of primes. The proof of this result is one of the most celebrated and famous in all of mathematics.
How could we go about proving it? The most obvious way, perhaps, is to try to find some formula that would generate the primes or at least enough of them to show that they go on forever, in other words, that there are an infinite number of them. This approach turns out to be very difficult and we shall look later in the lecture at some of the attempts to obtain a formula to generate prime numbers.
The successful approach used by Euclid in his Elements was based on proof by contradiction. 
In Book IX, Proposition 20 of the Elements Euclid proves that:

There are infinitely many primes.
We argue by contradiction and assume that the only primes are 

p1, p2, p3, ···, pn, and let

N = (p1p2 p3 ··· pn) + 1

This number is cleverly constructed. Because of the 1 that is added on none of the primes p1 or p2 or p3, ···, or pn divide N.

So N is not divisible by p1, p2, p3, ···, or pn 

SO EITHER 

N is a prime not in the list

OR 

N is made up of primes not in the list.

In either case there is another prime not in the original list and this gives the contradiction. 

In fact, both cases can arise

If we assume that the only primes are 2, 3, 5 and let

N = (2 x 3 x 5) + 1, then the answer is 31 and in this case we obtain a prime not in the original list.

If we assume that the only primes are 2, 3, 5, 7, 11, 13 and let

N = (2 x 3 x 5 x 7 x 11 x 13) + 1 

Then we obtain 30,031 which equals 59 x 509 , a product of two primes 59 and 509 which were not in the original list.

Here’s Euclid’s proof which is essentially the same, except that he uses only three primes, his numbers are represented by lengths and his numbers are measured by primes rather than divided by primes.

Anyway now that we know that the primes go on forever let us look at attempts to find or generate them. 

Possibly the oldest attempt dates from around the third century BC. It is named after the Greek, Eratosthenes, who also, by the way, estimated the circumference of the Earth. It is called the Sieve of Eratosthenes.
Let me illustrate this by finding all the primes up to 100. First list all the numbers up to 100 and delete the number 1.
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We then leave 2 but delete all its multiples.
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We now do the same for 3. Leave 3 but delete all its multiples.
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We now do the same for 5. Leave 5 but delete all its multiples.
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We now do the same, finally, for 7.  Leave 7 but delete all its multiples.
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We have now sifted out the non-primes and are only left with primes. The reason we can stop at seven is because we only have to cross out the multiples of the primes up to 10. This is because if a number less than 100 is made up of primes then one of those primes must be less than 10, for example 91 is 7 times 13, so is already eliminated when we cross out the multiples of 7.  We don’t need to do crossing out for the primes above 10, as all their multiples have already been crossed out. 

In general, we only need to look at primes up to the square root of the total number. Here 10 is the square root of 100. If we were trying to find the primes up to 10,000 we would only have to sieve out the multiples of primes up to 100 because 100 is the square root of 10,000.

But is there any more direct way of generating primes?

Leonhard Euler (1707–1783) was the most prolific mathematician of all time. He produced over eight hundred books and papers in a wide range of areas, from such ‘pure’ topics as number theory and the geometry of a circle, via mechanics, logarithms, infinite series and calculus, to such practical concerns as optics, astronomy and the stability of ships. He also introduced the symbols e for the exponential number, f for a function and i for [image: image8.png]
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In the words of the French mathematician Laplace: 

Read Euler, read Euler, he is the master of us all.

Look at the quadratic n2 + n + 41

This gives prime numbers on substituting the whole numbers 0,1 2, 3, 4,···for n up to n = 39.

The first few are:

When n = 0 it is 41

When n = 1 it is 43

When n = 2 it is 47

When n = 3 it is 53

But it fails for n = 40 as 402 + 40 + 41 = 1681 = 412 and clearly fails when n = 41 as 41 divides each of the terms.

Another attempt at generating primes was suggested by Pierre de Fermat.  

Pierre de Fermat (1601–1665) spent most of his life in Toulouse as a lawyer. He considered mathematics as a hobby, published little, and communicated with other scientists by letter. Fermat was the first important European number theorist since Greek times and resurrected the subject with some stunning results. His other main area of interest was analytic geometry, which he helped to introduce.

Fermat conjectured that if n is an integer, then the nth Fermat number
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 + 1 is prime. 

Let us calculate some examples

When n = 1 F1 = [image: image12.png]22



 + 1 = 5

When n = 2 F2 = [image: image14.png]22°



 + 1 = 17

When n = 3 F1 = [image: image16.png]22°



 + 1 = 257

When n = 4 F1 = [image: image18.png]22



 + 1 = 65537

Fermat was mistaken in assuming that his formula worked for subsequent values of n because

F5 = [image: image20.png]


 + 1 = 232 + 1 = 4,274,967,297

is divisible by 641. This was shown by Euler, a century after Fermat, and no other Fermat number has ever been found that is prime.

More successful in producing primes is the Mersenne formula named after Marin Mersenne.
Marin Mersenne, a Minimite friar who lived near Paris in the early 17th century, believed that scientific discoveries should be made available to all. With this aim, he carried out an extensive correspondence with most of the leading European scientists of his day, acting as a ‘clearing house’ for new scientific results. He also initiated regular meetings in Paris at which mathematicians could meet to discuss their latest findings; these meetings led in 1666 to the founding of the French Academy of Sciences by Louis XIV.

Mersenne prime is a prime of the form

2n – 1, that is one less than a power of 2.

The first few are 

22 – 1 = 3

23 – 1 = 7

25 – 1 = 31

27 – 1 = 127

But when n = 4 or 6 we get 24 – 1= 15 and 26 – 1 = 63, which, of course, are not primes.

In general the exponent or power n must itself be a prime for 2n – 1 to be prime.

However, although it is necessary for the exponent or power to be prime for 2n – 1 to be prime it is not sufficient. 

That is, not all prime n make 2n – 1 prime.

For example 211 – 1 = 2047 = 23 x 89

Searching for large Mersenne primes is very popular, and in fact the largest known primes are Mersenne primes. I believe the largest one is:  

243112609  - 1 which has nearly 10,000 billion digits! It is truly a large number. If you were to write it out on a strip of paper the paper would have to be about a million miles long. 

The importance of Mersenne primes is that they provide the best way of finding large prime numbers.

It is not known whether or not there are an infinite number of Mersenne primes.

But there is a most remarkable expression for generating primes. It not only generates primes it generates all of them.

Consider this polynomial in 26 variables, a, b, ···, z
The polynomial below has 26 variables a, b, ···, z. As these variables range over the positive integers, the polynomial yields both positive and negative values.  The positive ones are all prime and in fact we can obtain all prime numbers in this way!
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As a, b, c, ... , range over all the non-negative integers, this expression gives both positive and
negative values. But all the positive ones are prime numbers, and every prime number can be
obtained in this way.




Now let us look at what happens when we start adding or subtracting primes. This gives us some of the most intriguing, difficult but easily stated problems in mathematics.

For example, if we add together two primes, other than 2, we always obtain an even number. For example, 3 + 5 = 8, 7 + 11 = 18. This is because all primes apart from 2 are odd and if you add two odd numbers together the answer is always even.

But can we get all even numbers in this way? This question is known as the Goldbach conjecture.

Can every even number greater than 4 be written as the sum of 2 primes?

4 = 2 + 2; 6 = 3 + 3; 8 = 3 + 5; 10 = 5 + 5;

20 = 7 + 13; 200 = 7 + 193; 2040 = 1019 + 1021

The answer is not known. Although it has been checked up to 4 x 1018, that, of course,  is not good enough - we need a proof for all even numbers.  

The best result we have, I believe, is due to Jing Run Chen who proved in 1966 that

All sufficiently large even numbers are the sum of a prime and the product of at most two primes

2n = p1 + p2p3
So as long as n is sufficiently large there are primes p1, p2, and p3 giving 2n = p1 + p2p3
The Goldbach conjecture was concerned with adding primes together and we obtain another tantalising conjecture if we think about subtracting primes.

The only primes that are 1 apart are 2 and 3, because all the other primes are odd so must be 2 or more apart. But how many primes are 2 apart?

Twin primes are primes which are 2 apart.

As I said these are a pair of primes which differ by 2: Up to 100 we have eight pairs of twin primes:

(3, 5); (5, 7);(11, 13); (17, 19); (29, 31); (41, 43); (59, 61); (71, 73);

Here are some other prime pairs:

(107, 109); (2027, 2029);
(1,000,037, 1,000,039);

The question is: Are there infinitely many such pairs?

Up to 1016 there are 10,304,195,697,298 pairs i.e. over 10 thousand billion. But do they, like the primes, go on for ever? Nobody knows. But the belief is that the primes, like London buses can come in pairs.

But they don’t come in threes – unlike buses! A prime triple is a collection of three primes of the form n, n + 2, n + 4.

The only prime triple is (3, 5, 7). 

I’ll leave the proof as homework but the idea is to show that:

Whenever n is not 3 then one of the numbers n or n + 2 or n + 4 can be divided by 3. Hence one of them is not prime.

This is a question I used to ask at interview for students applying to university.

We have seen that primes occur forever, so as we walk through the integers we are always guaranteed to have a prime ahead of us. It is difficult to say where but there will be one ahead. Indeed it seems likely that there will be a twin pair ahead but it has not been proved that twin primes occur forever. 
On the other hand we can also find a run of numbers as long as we please on our walk where there are no primes. This is a neat little argument which makes use of the factorial function. The factorial of an integer is just the number multiplied by all the integers smaller than it.

For example

Factorial 3, written 3!, is 3 time 2 time 1 

And Factorial 4, written 4!,  is 4 times 3 times 2 times 1.

Let us use it to find a gap of length 2013, this year’s date.

Define, factorial 2014, written 

2014! = 2014 x 2013 x 2012 x 2011 x ··· x 4 x 3 x 2 x 1

Then the following run of numbers is of length 2013:

2014! + 2 divisible by 2

2014! + 3 divisible by 3

2014! + 4 divisible by 4

...

2014! + 2014 divisible by 2014

As a result none of this run of 2013 numbers is prime. We can mimic this trick to get runs as long as we please with no prime numbers.

So what can we say about the distribution of the prime numbers?

The number theorist, Don Zagier, at his inaugural Lecture at Bonn University in May 1975 said: 

There are two facts about the distribution of prime numbers of which I hope to convince you so overwhelmingly that they will be permanently engraved in your hearts. 

The first is that, despite their simple definition and role as the building blocks of the natural numbers, the prime numbers belong to the most arbitrary and ornery objects studied by mathematicians: they grow like weeds among the natural numbers, seeming to obey no other law than that of chance, and nobody can predict where the next one will sprout. 

But then he went on to say:

The second fact is even more astonishing, for it states just the opposite: that the prime numbers exhibit stunning regularity, that there are laws governing their behaviour, and that they obey these laws with almost military precision.

To talk about this second fact we need to change our point of view. Instead of looking at individual primes or a formula for primes we count how many primes there are up to each integer and see if there is any pattern in the results we obtain.

To do this I need to introduce the prime counting function. This is usually denoted by π(x) but the π has nothing to do with the number π that arises as the ratio of the circumference of a circle to its diameter.

We will denote by π(x) the numbers of primes up to x.

Some examples are:

π(10) = 4 as there are 4 primes up to 10: 2, 3, 5, 7

π(20) = 8 as there are 8 primes up to 20: 2, 3, 5, 7, 11, 13, 17, 19

π(100) = 25 as we saw when we used the Sieve of Eratosthenes.

Let me draw the graph of this function in the range from 2 up to 100.

Here we have the graph of the Prime counting function:  π(x) for x = 1, 2, 3, ···, 100.

Then π(x) begins at 0 and jumps by 1 at every prime number 2, 3, 5, 7 and so on. We can see that although there are oscillations π(x) grows quite regularly.  Now let us look at the graph of π(x) for x up to 50,000.

It is amazingly regular and Don Zagier says that “the smoothness which this curve climbs is one of the most astonishing facts in mathematics”.

Let’s see if we can find a formula for π(x), i.e. in the growth of the number of prime numbers.

Well, below 100 there are 25 primes so one quarter of the numbers.

Below 1000 there are 168 primes or about one sixth.

Below 10,000 there are 1229 primes or about one eighth.

In the table I’ve kept increasing x tenfold to 100,000 then to a million to 10 million to 100 million to a billion to 10 billion and, for each of them, listed the number of primes. Just imagine the hours of calculation that went into obtaining the numbers in this table!
The ratio of the number of primes, π(x), to x continues from x = 10,000 to be one tenth, to one twelfth, to one fifteenth, to one seventeenth, to one nineteenth to one twenty second.

Comparing the first and third columns we see that as x increases by a factor 10 the ratio x/π(x) increases by adding on about 2.3.
But this is just the way that logarithms behave. To base 10 the log of the number in the left hand column is just the same as its power of 10, so this gives us 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 which is column 4. 

The last column also just calculates logarithms but this time to another base, called e, giving what are called natural logarithms. Notice that the connection between the two logarithms is straightforward. The natural logarithm to the base e is 2.3 times the logarithm to the base 10.
There is now very close agreement between columns 3 and 5. The Prime Number Theorem is the result which says that this agreement gets better and better as x gets bigger and bigger.

Here I have copied out again columns 3 and 5. The Prime Number Theorem says that the ratio of these two columns gets closer and closer to 1 as x gets larger.

We can write this as:   [image: image23.png]Lng(x)/
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This can be rearranged to get:   [image: image25.png]m(x)
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This is sometimes written: π(x) ∼ [image: image27.png]log x



 where the symbol ∼ means that the ratio tends to 1 as x gets larger and larger.

Gauss conjectured this result at the age of 15 by studying tables of prime numbers in a book of logarithms. He compiled tables of logarithms during his life, once writing how he would “very often used an idle quarter of an hour to count through another chiliad (i.e. an interval of a thousand numbers)  here and there) until finally he had listed all the prime numbers up to three million and compared their distribution with the formula he had conjectured. I’m sure many of us spend an idle moment in the same way!

This theorem was not proved until 1896 when it was established independently by the French mathematician, Jacques Hadamard, and the Belgian mathematician, Charles-Jean de la Vallée Poussin.

The French mathematician Legendre made an improvement to the agreement between the two columns of [image: image29.png](x)



 and Log(x).  You can see that if you take 1 away from each term in the Log(x) column you get better agreement. In fact his calculations showed that subtracting 1.08366 would be even better.

This gives the result: π(x) ∼ [image: image31.png]log x — 1.08366



.

Gauss also recast his estimate in terms of an integral called the logarithmic integral or li(x)

This can be interpreted as roughly saying that the probability that a given integer N is prime is 1/log N.

My last section is going to introduce the Riemann Zeta function and its connection with prime numbers and explain the statement of the Riemann Hypothesis. Then you can start on your work to win a million dollars! 

I will begin with a remarkable observation of Euler but first of all remember the Fundamental Theorem of Arithmetic.

This says:

Every whole number can be written as a product of prime numbers in only one way apart from the order in which they are written.

It means that we use the primes as building blocks or atoms to build up all the whole numbers.

Euler considered the following series:
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This series is called the Harmonic series because of the relationship with overtones or harmonics in music. It consists of the reciprocals of all the positive integers.

What Euler noticed was the following relationship which follows from the fundamental theorem of arithmetic. It relates the harmonic series to the product of lots of other series with one for each prime. The first of these is the sum of the reciprocals of the powers of 2, the next the sum of the reciprocals of the powers of 3, then 5, 7, 11 etc. so on through all the primes. 
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To show the relationship:

Take any integer, perhaps 42. Then 

42 = 2 x 3 x 7

Then 42 arises as the product of the second term in each of first two series and the second term in the fourth series multiplied by the first term in all the other series (which is 1).

Let us pick out another integer, say 80.

We have 80 = 2 x 2 x 2 x 2 x 5

Then 80 is the fifth term in the first series multiplied by the second term in the third series and by the first in all the others.

We can then work out the sum of each of the series of the reciprocals of the powers of the primes.

Suppose S is the answer so:

S = 1 + [image: image137.png]
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Multiply both sides by x to get:

xS = x + 1 + [image: image153.png]
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which is 

xS = x + S

So S = [image: image169.png]
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We can show by a relatively easy argument that the harmonic series has an infinite sum - which can be used to provide another proof that there are an infinite number of primes.

Now I come to the definition of the Remann Zeta function. In fact, we have seen one example of it.

Its value at k is the sum of the reciprocals of the kth power of all the integers. When k = 1 we get:

And for k =2 

We have also seen how ζ(1) can be represented in terms of the primes. A similar result is true for ζ(2) 
ζ(2) = 1 + [image: image191.png]G
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Indeed the same is true for ζ(k) for all integers k.
ζ(k) = 1 + [image: image295.png]
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So we now have this function, the Riemann Zeta function, defined for positive integers and whose value at each integer is closely related to the primes. 

Riemann showed that the definition of the Zeta function can be extended not only to other real numbers but to almost all of the numbers in the complex plane. The complex plane consists of all numbers of the form a + bi where a and b are the x and y coordinates and i represents the square root of -1. This is not as mysterious as it might seem as when working with i in calculations whenever we meet i2 we replace it by -1.

The only point in the complex plane where the Riemann Zeta function is not defined is at 1 because, as I mentioned earlier, the value at 1 is the harmonic series and this is infinite.

Riemann’s great contribution was outlined in his only paper on number theory published in 1859 and it was to obtain an exact formula for the number of primes up to x, and this formula involved in a crucial way the zeros of the Zeta function. A zero of the Zeta function is a value of s such that ζ(s) = 0.

There are zeros of the Zeta function at the numbers -2, -4, -6, ···, which are called the trivial zeros and all the other zeros lie within a vertical strip between 0 and 1. This is called the critical strip.

The first few zeros in the critical strip are:
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 ± 30.4 i,  ···

 But these all have the form ½ plus something times i.

The Riemann hypothesis is that all the zeros in the critical strip have this form. In other words, do they all lie on the central vertical line?
In fact the first 10 thousand billion zeros do lie on this central line and it is generally believed that all the non-trivial zeros lie on the line. But no-one has been able to prove it after a century and a half.
Although the Riemann Hypothesis might seem very technical and indeed it is, it is exceptionally important in mathematics as its truth would give us much better results about prime numbers. This is not only important for mathematics but in e-commerce. In modern cryptography factorising large numbers into their constituent primes is crucial in modern security systems such as online shopping and online banking.
It also seems important in quantum physics where the spacing between the zeros of the Riemann Zeta function looks similar to the spacings between the energy levels of a quantum chaotic system.

As Marcus du Sautoy says at the end of his book on “The Music of the Primes”

The primes are central to the security of the modern electronic world, and their resonances with quantum physics may have something to tell us about the nature of the physical world.
Many people explore the primes in different ways but the mention of music made me want to let you hear this audio file of the music of the primes.
It was created by the number theorist, Jeffrey Stopple, using the Audio package in the application Mathematica.  

This audio has the contributions of the first 100 zeros of the Riemann Zeta function, added one at a time, in intervals of 0.2 seconds.
Each note has the same amplitude and frequency as the corresponding term in Riemann’s exact formula, each coming from a single zero of the zeta function. 

Finally all 100 zeros play together for ten seconds.

Ref: http://www.math.ucsb.edu/~stopple/explicit.html
To end, a reminder of my next lecture:
Are Averages Typical? 
On Tuesday 19 February 2013, here at the Museum of London.
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