# Some Macroeconomic Puzzles: Conjectural Refutations 

## The Equity Risk Premium: Puzzle?

Professor Jagjit S. Chadha
Mercers' School Memorial Professor of Commerce
© Gresham Lecture Series 2015-6


## Equity Premium: Puzzle?

- US\$5 invested in 1950 in short term T-Bill and re-invested by the end of 2014 would have given US $\$ 83$ and for equities, the same trade would yield US\$613
- The average annual return on short term bonds was $4.5 \%$ and on equities 9.1\%
- The standard deviation of short term bonds was $3.1 \%$ and for equities $16.8 \%$
- The difference in average returns measures the post-war market price of risk in the US
- It says that in order to bear the risk of holding equities investors require a high rate of return but does this risk premium price fairly the quantity and price of risk?
- Or is the premium excessive? And thereby providing a costly wedge for firms raising capital
- Or is the premium too low? And thereby acting as a disincentive to save.

"I can calculate the motions of the heavenly bodies, but not the madness of people."

- On April 20, he sold his shares in the South Sea Company at a 100 percent profit of £7000
- Later he bought a larger number of shares near the market top and he lost $£ 20,000$
- Never for the rest of his life could he bear to hear the name South Sea.


## The returns from UK investing

|  |  |  | Bond | $\mu_{R}$ | Equities2014 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | Newton | $£ 1$ | £18,6245 | 4.2\% | £3124 | 2.7\% |
| 1815 | Waterloo | £5 | £21,251 | 4.3\% | £16,293 | 4.2\% |
| 1901 | Edward VII | £5 | $£ 991$ | 4.8\% | $£ 553$ | .3\% |
| 51 | Churchill | $£ 10$ | $£ 512$ | 6.5\% | ¢ 846 | 7.3\% |
| 81 | $£ 50$ reiss | £ | £ | 5.9\% | £5 | 7.6 |

- It certainly helps to live a long time if you can save enough but the picture is slightly different.

Interest Rate and Equity Returns 1950-2014

```
INT
```


## No annual obs


'Safe Asset'

'Risky
Asset'


Standard Deviation (returns)




## Risk Aversion

$$
U\left(W_{t}\right)=\frac{W_{t}^{1-\gamma}}{1-\gamma}
$$

$$
\frac{C E_{t}^{1-\gamma}}{1-\gamma}=\frac{1}{2}\left(\frac{25,000^{1-\gamma}}{1-\gamma}\right)+\frac{1}{2}\left(\frac{55,000^{1-\gamma}}{1-\gamma}\right)
$$

CE

$$
\begin{array}{cc}
\gamma=0 & 40,000 \\
\gamma=2 & 34,375 \\
\gamma=5 & 29,421 \\
\gamma=10 & 26,999 \\
\gamma=20 & 25,929
\end{array}
$$

- By the time risk aversion gets very high, you would rather take the lower outcome than face the risk!


## Risk Aversion

$$
\begin{gathered}
U\left(W_{t}\right)=\frac{W_{t}^{1-\gamma}}{1-\gamma} \\
\frac{E_{t}+C E_{t}^{1-\gamma}}{1-\gamma}=\frac{1}{2}\left(\frac{E_{t}+25,000^{1-\gamma}}{1-\gamma}\right)+\frac{1}{2}\left(\frac{E_{t}+55,000^{1-\gamma}}{1-\gamma}\right) \\
E_{t}=20,000 \\
\gamma=0 \\
\gamma=2 \\
\gamma=5 \\
\gamma=10 \\
\gamma=20 \\
\gamma, 000 \\
\gamma, 250 \\
1,549 \\
26,672
\end{gathered}
$$

- With an endowment of $£ 20,000$, you would rather accept just over $£ 28 \mathrm{~K}$ rather than gamble on $£ 25 \mathrm{~K}$ vs $£ 55 \mathrm{~K}$ ! Improbable?

- Mild positive covariation - so risky


## Equity Premium

$$
\ln E\left\{R_{e}\right\}-\ln R_{f}=\gamma \sigma_{c, R_{e}}
$$

The excess return on equities is explained by the coefficient of relative aversion and the covariation of consumption growth with equity returns....or

$$
\ln E\left\{R_{e}\right\}-\ln R_{f}=\gamma \sigma_{R_{e}}^{2}
$$

if we believe that growth in consumption equals return on equity.

- UK excess return 1950-2014 was 3.4\%, with covariation of 0.003 this implies a coefficient of risk aversion of $12+$.


## Assets that Do Not Help Risk



These share prices are volatile (noisy) and do not help smooth consumption

## Assets that Help Risk



But if they can be stabilised we might value them more Greenspan put - cut rates when equity prices are low

## Explanations

- Not Stable or Innate

The risk premium may be an artifact of a particular time period or series of events

- Survivorship Bias

We might over estimate returns because we do not account for firms that disappear or go bankrupt

- Low T-Bill Rates

Are bond returns too low - affected by tax treatment?

- Utility Function or Risk Measurement

Perhaps the utility function does not deal with losses in the correct manner?

- Heterogenous Households

Richer households might be the ones holding equities and thus have face higher risk with respect to equity returns

- Disaster Premia

Perhaps equities give a large pay-out as a rewards for bearing the risk of occasional disasters?

50-year rolling window of excess equity returns over bond returns


- Not very stable excess returns - upward trend...?


## Exploring a Trading Strategy

- Invest $£ 100$ or $\$ 100$ every year in 1965 constant prices i.e. so we increase the amount saved in line with the RPI (UK) or CPI (US)
- Save every year for 40 years e.g. 1965 to 2004 or 1966 to 2005
- At the end of the 40 years examine your overall relative payoff if you invested in short term bonds or in the equity index
- Compare the two payoffs - as a way of evaluating the return from equities versus that from bonds or the profits from a long term 'bet'
- We can do this exercise for the US, UK, and for shorter horizons
- Does the equity strategy dominate the bond strategy?
- We also do the exercise for a mystery asset(!)


## 40 year, 1951-60, US



40 year, 1961-70, US
8
7
6
5
4
3
2
1
0
2000200120022003200420052006200720082009

## 40 year, 1951-60, UK



40 year, 1961-70, UK
Not quite so Lucky

40 year, 1951-60, UK + Mystery Asset


40 year, 1961-70, UK + Mystery Asset
7


2
1
0

What is the Mystery Asset?

1951-1960


1971-1980

$\begin{array}{llllllllll}1980 & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989\end{array}$

1991-2000



For shorter horizons e.g. when liquidity matters, equities and housing look risky and need a premium over bonds. Source: UK data.

## Concluding Remarks

(1) Investing in equities worries people - as the day-to-day variance is widely reported and can be measured easily
(2) Equity Premium results from risk aversion (preferences) and from the variance of returns (volatility) particularly w.r. consumption growth
(3) US postwar data seems to suggest a "free lunch" i.e. a high return relative the risk premium we might plausibly expect - Q: has this held back growth?
(9) UK data is less clear - with evidence of a less dominant return - Q: has this held back savings?
(5) There is considerable random variation in returns
(0) Some evidence that we have diversified to housing assets in the UK.

