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Some time around

To resolve a cube

Fermat’s Final Fling

last &ys of the last theorem

1637 Pierre de Ferrnat made the most famous marginal note in the history of mathematics:

into the sum of two cubes, a fourth power into two fourth powers, or in general any power

higher than the second into two of the same kin~ is impossible; of which fact I have found a remarkable

proof. me margin is too sm~ to contain it.’ ~s statement came to be known as Ferti’sLostTheorem.

On Wtiesday 23 June 1993 hdrew Wiles announced a proof, which was widely acclaimed by

experts. Early in 1994 a number of difficulties emerged among them a subfle logical gap. By the autumn of

1994 some experts were estimating that it would take at least three years of hard work to complete the proof,

and others thought the gap might not be filled at dl. men, in October 1994, Wiles announced that he had

overcome this fiid stumbling block.

me lecture will describe the history of Fermat’s Last ~eorem from ancient Greece to the present

day, discuss Wiles’s methods, and examine the current status of his proof, No s~ialist knowledge will be

assumed.

Prelude
The Isaac Newton kstitute in Cambridge is a newly founded international research

centre for mathematics. In June 1993 it was running a conference on number theory.
The organizers could have had no conception of how their small meeting was going to
redraw the map of mathematics, but soon after the meeting started, rumours began to
circulate. Ref. Andrew Wiles, a quiet, rather diffident Englishman working at Mnceton
University, had announced a series of three lectures on the topic ‘Modular forms, elliptic
curves, and Grdois representations’. Only an insider could read between the lines. Wfies
seldom gave lectures; three in a row was unprecedented. And the target of his rather
technical researches was something far less esoteric and far more dramatic: nothing less
than Ferrnat’s Last Theorem.

Mathematics has a small number of notorious unsolved problems — problems
asked often centuries ago, but which the concerted efforts of the worlds mathematicians
have been unable either to prove or disprove. The puzzle posed by Fermat is somewhere
in the top three or four, and it is some 356 years old. Any mathematician would give his
eye teeth to be the one who solv~ it, but few ever try: the task is too daunting, the risk of
failure too great.

Wiles’s series of talks was scheduled for Monday 2 l-Wednesday 23 June, one
lecture per day. Early on he explained that he had solved a very special case of the so-
called Taniyama-Weil conjecture, a highbrow but very important assertion about ‘elliptic
curves’. One consequence of a more generrd case of the Taniyama-Weil conjecture — for
so called semistable elliptic curves — would be Ferrnat’s Last Theorem. How far had
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Wiles got?
The tension mounted as Wiles approached the third and final lecture, having

revealed absolutely nothing about just how far his work had progressed. According to
Karl Rubin of Ohio State University ‘The excitement was increasing each day.’ Then, on
the Wednesday, Wiles revealed what was Up his sleeve. He had found a clever way to take
his very special case of the Taniyama-Weil conjectme, md extend it to a proof of the
semistable case. Although the audience was well aware of the implication, Wiles quiedy
spelled it out. There was a sudden silence. Then the entire room burst into spontaneous
applause.

Fermat’s Last Theorem
What is Ferrnat’s Last Theorem, and why is it such a great prize? And who was

Fermat?
Pierre de Fermat was born in 1601. His father Dominique Fermat sold leather, his

mother Claire de Long was the daughter of a family of parliamentary lawyers. In 1631 he
married his mother’s cousin Louise de Long. In 1648 he became a King’s Councillor in
the local parliament of Toulouse, where he served for the rest of his tife, dying in 1665,
just two days after concluding a legal case. He never held an academic position of any
kind, and certainly not in mathematics. But mathematics was his passion. Eric Temple

Bell called him ‘the Prince of amateurs’. Most of today’s professionals would be happy
with hdf his ability.

Fermat workd in many fields of mathematics. He workd out many of the basic
ideas of crdculus, hdf a century before Isaac Newton and Gottfried Leibniz independently
sorted out the whole subject. He formulated tie Principle of hast Time, which says that
a ray of light takes the shortest path available; this was a forerunner of the variational
cdcdus, one of the most powerful tools of mathematical physics. But his most influential
ideas were in number theory, the study of ordinary whole numbers, or integers. It is an
area in which it is easy to observe patterns, and guess that they are generally valid, but
amazingly difficult to pin them down with a proper proof. A typical theorem of Fermat’s
is that any prime number that is one greater than a multiple of four is always a sum of two
integer squares. Anybody can check special cases — for example, 13 = 22+32. But
Fermat could not only dig such patterns out of the numericrd mire: he could potish them up
with a shiny proof.

Fermat didn’t invent number theory. Arguably that honour goes to Diophantus of
Alexandria. We know very little about him: he was probably Greek, and if an ancient
puzde is to be believd he died aged 84. He flourished &ound AD 250, and he wrote a
book called the Arithmetics. It was about what are now called Diophantine equations —
quations that must be solved in whole numbers. A typical problem from Diophantus is
Book HI, Problem 6:

find three numbers such that their sum.
and the sum of anv two. is a Derfect sauare.

(Awer at the cd.)
One problem to which Diophantus gave a completely general answer is that of

findin ‘Pythagorean triangles’: three integers x, y, z satisfying the ‘Pythagorean equation’
x2+y*= Z2. Thanks to Pythagoras’ Theorem, such triples of numbers are the lengths of
sides of a right triangle. Examples are 32+42 = 52 and 52+ 122 = 132. The general
solution was known in Euclid’s time, 500 years earlier — it wasn’t invented by
Diophantus.
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Fig.1 A Pythagorean triangle.

To solve the Pythagorean equation
ht X = k(u2-v2), y = 2kuv, Z = k(u2+v2).
k=l, u=2, v=l:then x=3, y=4, z=5.

X2+Y2= z2, pick any whole numbers k, u, v.
Then you’ve got a solution. For example let

tiletk= l,u=3, v=2, sothatx=5, y=
12, z = 13. This method generates all solutions.

Fermat owned a copy of the Arithmetics, which inspired many of his
investigations. He used to write down his conlcusions in the margin. Some time around
1637 he must have thinking about the Pythagorean equation, and he askd himself what
happens if instead of s uares you try cubes.

?
He presumably tried some numerical

experiments. Is 13 +2 a cube? No, it equals 9 — a square, but not a cube. He was
unable to find any solutions, except for ‘trivial’ ones like 03 + 13= 13. The same
happened when he trial fourth powers, fifth powers, and so on. k the margin of his copy
of the Aritktica he made the most famous note in the history of mathematics:

‘Toresolve a cu6e into the sum of two CU6U,a fourth power into two fourth
powers, or in gened any power h~her t~n the saud into two of the same
@d, is imp~sibk; of wtih fut I havefound a remarka6bpr~. % ma~in
is too sd to contain it.’

Fermat was stating that the Temat equation’ Xn+ yn = Znhas no whole number solutions.
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~is statement has come to be known as his ‘last fieorem’, ~cause for may years it was
the only assertion of his that had neither hen proved nor ~sproved by his successors.
Nobody could reconstruct Femat’s ‘remukable proof, and it seemed increasingly
doubtfti that he had ever possessed one.

Algebraic Numbers
At f~st progress was desperately slow. Fermat himself found a proof for fourth

powers, n =4, using a method that he calld ‘infinite descent’. He worked with a slighdy
more general equation, x4 + 4 = z2. (It is more general because my fourth power is a

2 ~ fom a PYtiagorem triangle, and two of its sides mesquare). me numbers x , y , z
squares. Using the standard formula for Pythagorean triangles, as stated in Diophantus,
Femat found that he could then construct another solution of the same quation with
sma~er numkrs. But it is not possible to have an infinite sequence of positive integers
that get smaller and smtier. ~erefore no solution to the equation can exist.

Fermat dso proved the theorem for cubes, n = 3. Independently, Leonhard
Euler, a Swiss math~matician and the most prolific who ever lived, provd the same two
cases. k 1828 Peter Lejeune-Dirichlet ddt with the case n = 5, and so did Adrien-Marie
Legendre in 1830. h 1839 Gabriel Larn6 atempted a proof for n =7, but he made some
err~s that were corrected by Henri Lebesgue in 1840.

In 1847 Lam6 claimed a proof for dl n. But Ernst Eduard Kurnmer pointed out a
mistake. It was a very interesting mistake, and in the long run it pointed the way to a
solution. But at the time it seemed an insuperable obstacle.

Ms basic strategy was to introduce algebraic nwbers — a more general class of
numbers. A simple example explains the idea. Suppose we have to solve the equation
y2+2 = X3 in integers. me left hand side can be written as a product of two factors, of a
rather curious kind:

y2+2 = (y+ p)(y -p).
Here ~ is a ‘complex’number, involving the squ~e r~t of a negative qu~tity; but the.
redly interesting po~t is that the factors are both of the same general form

a+b@
where a and b me ordinary integers. If you add or multiply numbers of this general form,
the result is of the same form (though with different values of a and b). So we have an
dtemative number system, containing a richer supply of numbers than just integers.

For ordinary integers, if a product of two numbers is a cube, and if the numbers
have no common factor, then each number is itself a cube. ~is follows from the
uniqueness of prime factorization, which says that every integer is a product of primes in
only one way. Assuming that such a result also holds good for our new class of
numbers a + b ~, it follows that 2+@ must be the cube of such a number. From
this a short algebraic calculation leads to the answer: the only solution to the original
quation is x = 3, y = *5.

Here are the detds, for those who want them.
As just observed, the equation y2+2 = x3 can be factorized using such numbers:

(y+ ~)(y - -)= X3. Suppose that all the usual properties of prime factors apply.
men the two factors on the left are relative~ prime: they have no prime factor in cotin.
Now comes the key step: if the product of two relatively prime numbers is a cube, as it is
here, then each separately must be a cube. So there must be integers a and b such that

y+ fi=(a+b@)3.
Expanding this and equating coefficients of@ we see that

1 = b(3a2-2b2).
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If a produce of two integers equals 1 then either both equal 1 or both equal -1. Therefore
b =*1 and 3a2-2b2 = 3a2-2 = Al. Obviously b = 1 and a =*1 are the only solutions.
Working backwards, we find that x = 3, y = H is the only possibility.

This kind of strategy focuses attention on a broader class of numbers, and asks
whether their arithmetical properties are analogous to ordinary whole numkrs. For the
particular class just introduced, the answer is ‘yes’.

Codd unique prime factorization fail? A simple example shows that, surprisingly,
it could. Consider the system of all whole numbers 1,5,9, 13,..., numbers of the form
4k+l. H you multiply any two such numbers together, you get another of the same form.
You can define ‘primes’ in this system — let’s call them p~mes to show that something
weird is going on — to be any number that cannot be obtained by multiplying two numbers
in the system. So now 9 is pryme — because although we can write 9 = 3x3, the
number 3 is not in the system under consideration. Indeed every number in the system
is a product of prymes.

But not in one way. The number 441 can be factorized in two different ways: 441
= 9x49= 21x21, and each of 9,21, and 49 is pryme. Now, it’s true that we can expaimn
this puliarity by broadening the class of numbers to include 3,7, 11, and so on: then the
two factorization are just different groupings of the single factorization 441 = 3x3x7x7.
But we can’t ~et uniaueness if we stav inside the chosen svste m. And once we
contemplate enlarging the number system to include algebrtic numbers, there is so much
freedom to choose that it is not at W clear what happens. With numbers of the form
a+ r -2, factorization is unique. But with numbers of the forma+ -it is not: 6 =
2x3 = (l+= l-p) and all four factors are prime. What’s different about ~
compared to P -5 ? It’s hard to tell just by 100king.

That’s what Lam6 got wrong when he tried a similar approach to the Ferrnat
equation. He worked with ‘cyclotomic integers’, numbers formed algebraically from a
complex nti root of 1, so that he could factorize Xn+yn into n distinct factors, which were
relatively prime and whose product was a perfect nfi power, namely Zn. Therefore,
assuming the usual properties of prime factors, each factor is an nti power. From there he
could fairly easily develop a proof that no solution existed.

But Kummer and others pointed out that for n = 23 the cyclotomic numbers don’t
have unique factorization.

Kummer asked why cyclotomic numbers could have more than one prime
factorization, and eventually he discovered that he could sort the whole thing out by
introducing a new kind of g@get altogether, which he called ideal ntiers. The basic
idea is sidar tot he way we extended the numbers of the form 4k+l to the odd numbers,
and resolved the paradox of nonunique factorization. Ideal numbers weren’t really
numbers, but sets of numbers: they provided some ‘extra’ prime factors to make
everything work out right. By 1847 Ku’mmer had used his theory of ideal numbers to
dispose of Fermat’s Last Theorem for dl n up to 100, except n = 37, 59, and 67. By
developing extra machinery, Kumrner and Ditirn Mirimanoff disposd of those cases too
in 1857. By the 1980s similar methods had provd dl cases n S 150,000.

The Mordell Conjecture
A new idea was needed. And that came by a rather different route.
Some Diophantine equations have infinitely many solutions — such as the

~thagorean equation. Some have none — the Ferrnat equation for 3< n S 150,000, if
we ignore trivial solutions. Some have finitely many — We y2+2 = x3. h the 1922 the
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English mathematician Leo Mordell was tving toworkout what distinguished these
possibilities, andhestarted toseeapossible pattern. Henoticed that ifyoulookatdl
solutions of such an equation in complex numbers — getting as general as possible, no
assumptions about whole numbe~ at ~ — hen hose solutions fo~ a topological surface.
The surface has a finite number of ‘holes’, like a donut or a pretzel. What struck him as
remarkable was that equations with itiltitely mmy whole num~r solutions always had no
holes, or just one, when solved in complex numbers. There seemd to be a connection
between the topology and the arithmetic.

This was wild stuff — nobody could see any way to get a solid connection between
two such different branches of mathematics. But Mordell was sufficiency convinced that
he publishd what is now called the Mordell conjecture, which says that equations that ~
give rise to surfaces with two or more holes have only finitely many integer solutions. The
number of holes in the surface corresponding to tie Fe~at quation is (n-l) (n-2)/2, and
for n 23 this is at least 2. So the Mordell conjecture fipties tiat if the Ferrnat quation
has any integer solutions at dl, then it must have otiy finitely my.

(Incidenttiy, if x, y, and z form a solution, then so do 2x, 2y, md 2z, or 3x, 3y,
and 3z, and so on. That’s infinitely many. To avoid this trivial difficulty, Mordell
consided ody solutions without any common factor.)

In 1962 Igor Shafarevich came up with a new, rather technical conjecture about
what happens to solutions of Diophantine equations when you take remainders on division
by a prime. In 1968 A.N.Parshin proved that the Shafarevich conjecture implies the
Mordell conjecture. Finally in 1983 the young German mathematician Gerd Fdtings
proved Parshin’s conjecture, therefore also Mordell’s. Which mems that Ferrnat’s Last
Theorem is nearly true: if for any n there are exceptions, there can be only finitely many of
them. His proof uses a version of Ferrnat’s method of infinite descent — but applied to
very abstract things cded abelian varieties.

Finitely many solutions is not the same as none. But it’s a big step to get a
potentially infinite number of solutions down to a finite number. You can do things with
finite numbers — try to find out how big they are, count things, and so forth. Faltings’s
proof of the Mordell conjecture was a huge step forward. Soon afterwards D.R.Heath-
Brown modified Fdtings’ approach to prove that the proportion of integers n for which
your conjectue is true approaches lW% as n becomes very large. Fermat’s Last Theorem
is ‘rdmost always’ true.

Elliptic Curves
A more specific, different idea was still lacking. That came from a very beautiful

theory that lies at the heart of the modem approach to Diophantine equations. It is the
theory of ‘elliptic cumes’. They are equations of the form y2 = ax3+bx2+cx+d — a
perfect square equal to a cubic polynomial. They are called ‘curves’ because every
equation defines a geometric curve.by way of coordinate geome~, and ‘elliptic’because of
a rather vague connection with the problem of finding a formula for the perimeter of an
ellipse.

One of the most striking properties of elliptic curves is that, given a few integer
solutions of the equation, you can (usually) combine them to get new solutions. More
accurately, this is true for rational solutions. There is a geometrical construction to build
new solutions out of old ones, as follows.

A typical straight line cuts an elliptic curve in three points. If the coordinates of
two of those points correspond to whole number solutions of the associated Diophanhne
quation, then so do the coordinates of the third point. To construct new solutions from
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old ones you just take two solutions, draw the line through the corresponding points, and
cdcdate the coordinates of the third point at which this line hits this curve.

Fig.1 Points on m eltiptic curve.

Elliptic curves were one of the things that stimulated MordeU to his conjecture,
because the surfaces associated with them have only one hole, or none in degenerate cases.
And over the years a very deep and powerful theory of e~iphc curves has been developed.
You could say they are the one area of Diophantine equations that people retiy understand
pretty we~.

The Taniyama Conjecture
Can we drop the word ‘almost’from Heath-Brown’s near miss?
The answer is ‘yes’, but its justification is highly twhnicd. Wiles’s proof of

Fermat’s bst Theorem is not the kind that can be written on the back of an envelope, and it
takes a red expert to understand it in any det~. However, the geneti oudine of the proof
is comprehensible, so ~m going to try to give you some of the flavour of this radicd
development in number theory. At the very least, it wi~ serve to drive home that whatever
Fermat had in mind when he claimed to have a proof, it couldn’t have been anything
remotely We Wiles’s argument.

The idea is to reformulate the problem so that the deep theory of ellipic curves can
be brought to bear. Elliptic curve theory has its own big unsolved problems, and the
biggest of dl is called the Taniyaw conjecture. hdeed it has various names, among them
the Taniyama-Shimura conjecture, the Taniyama-Weil conjecture, and the Taniyama-
Shimura-Wefl conjecture. The surfeit of names reflects the history of the topic, for in
1955 Yutaka Taniyama asked some questions which were generalised and made more
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precise by Goro Shimura and by Weil. So we have a choice: use a simple name, or a
historically accurate one. I’ve chosen to go for simplicity, so herafter it’s the TMiy~a
Conjecture — even though Taniyama asked something rather different.

We can grasp the general idea behind the Tmiy~a conjecture by thinking about
one verys ecid case.

%
There is an intimate relationship between the Pythagorean equation

a2+b2 = c , the unit circle, and the tigonometic functions ‘sine’ and ‘cosine’ (sin and
COS). To obtain this relationship, tite the pythagorem equation in tie ‘dehomogenisd
form (tiC)2 + (b/c)2 = 1. We can inte ret this as saying that the point x = tic, y = b/c ties

2 A = 1. me tieo~ of trigonometric functions thenon the unit circle, with quation x + y
provides a neat and simple way to represent the unit circle. The fundamental relation
between sines and cosines is

COS2A+ sin2A = 1,
which holds for any angle A. This implies that if we set x = cos A, y = sin A, then the
point with coordinates (x,y) lies on the unit circle. To sum up: solving the Pythagorean
equation in integers is quivdent to finding an angle A such that both cos A and sin A are
rational numbers (equal respectively to dc and b/c). Because the trigonometric functions
have dl sorts of pleasant properties, this idea is the basis of a redly fruitful theory of the
Pythagorean quation.

The Taniyama conjecture says, very roughly, that the same kind of game — but in
a more technical setting — can be played if the circle is replaced by any elliptic curve, but
using more sophisticated functions than rngonometric ones, the so-called ‘modular’
functions. Specifically, it states that eve~ elliptic curve can be parametised by suitable
moddar functions, just as sin and cos parametrise the ‘Pythagorean curve’, the unit circle.

Frey’s Elliptic Curve
Between 1970 and 1975 Yves Hellegouarch published a series of papers on a

connection between Fermat curves Xn+yn= Znand elliptic curves, and used them to deduce
theorems about elliptic curves from known partial results about Fermat’s Last Theorem.
Jean-Pierre Serre suggestd using the idea in the opposite direction, exploiting properties of
elliptic curves to prove results on Fermat’s Last Theorem. He found evidence suggesting
that this line of attack had the potential to crack the whole problem wide open, and slowly
the experts started to believe that Fermat’s Last Theorem was on the verge of yielding up
its secrets. But it was to be a long, technical struggle.

In 1985, in a lecture at the international mathematical research centre at
Oberwolfach, in the Black Forest area of Germany, Gerhard Frey made Serre’s suggestion
precise by introducing what is now called the Frey elliptic curve associated with a
presumptive solution of the Fermat equation. The form chosen for this curve goes back to
Hellegouarch, but Frey intended to use it in a different way. Suppose that there is a
nontrivial solution An + Bn = Cn of the Fermat equation. I’ve used capital letters A, B, C
to show we’re thinking of some specific solution in nonzero integers. For instance A
might be 777235, B might be 84153, and C 28994 — except that those number don’t
satisfy the Fermat equation. We choose this presumptive solution, and from that moment
on A, B, and C denote fixed (but unknown) integers. All we know about them is that
An + Bn = Cn for some n 23, although we can also do some preliminary tidying and
assume that A, B, and C have no common factor.

Now think about the specific (but unknown and possibly non-existent) elliptic
curve whose equation is

y2 = x(x+An)(x-Bn).
This is Frey’s elliptic curve, and it exists if and only if Fermat’s Last Theorem is wrong.
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So we want to prove that Frey’s curve cannot exist. The way to do this it to assume that it
does, and fight our way to some contradictory conclusion. It doesn’t matter what the
contradiction is.

Frey hacked away at his curve with the powerful general theory of e~iptic curves,
and discovered that if the Frey curve exists then it is a very curious beast indeed. So
curious, indeed, that it seems highly unlikely that such a beast can exist at au — which is
exacdy what we would like to prove. h 1986 Kenneth Ribet made Frey’s idea precise,
by proving that if the Taniyama conjecture is true then Frey’s elfiptic curve definitely cannot
exist. Specifically, Frey’s curve cannot be parametrised by modular functions. If the
Taniyama conjecture is true, Fermat’s Last Theorem follows.

This is a major, major link in the Fermat chain, for it tells us that Fermat’s Last
Theorem is not just an isolated curiosity. Instead, it lies at the heart of modern number
theory.

Andre w Wiles
As a child, Andrew Wiles had wanted to prove Fermat’s last Theorem. But when

he became a professional mathematician he decided that it was just an isolated, difficult
problem — nice to prove, but not redly i~ortant kyond its notoriety. Then he learned
of Ribet’s work, changed his view completely, and immediately decided to devote W of his
research effort to a proof.

He realised that you don’t need the full force of the Taniyarna conjecture to make
this approach work: you just need one particular special case of it, one that applies to a
class of elliptic curves known as ‘semistable’. Wiles broke the problem down into six
pieces, and piwe by piece he solved them, until finally ody one held out. men a lecture
by Barry Mazur on something tottiy different sparked an idea that gave him the find clue.
k a 2W-page paper he marshtied enough powerfd machinery to prove the sernistable case
of the Taniyama conjecture. This was enough for him to prove the following theorem.
Suppose that M and N are distinct nonzero relatively prime integers such that MN(M-m is
divisible by 16. Then the elliptic curve y2 = x(x+M)(x+N) can be parametrised by
modular functions. hdeed the condition on divisibility by 16 implies that this curve is
semistable, so the semistable Taniyama conjecture establishes the desired property.

Now apply Wiles’s theorem to Frey’s curve, by letting M = An, N = –Bn. Then
M-N = An + Bn = Cn, SOMN(M-N) = -AnBnCn, and we have to show this must be a
multiple of 16. But this is easy. At least one of A, B, C must be even — because if A
and B are both odd then Cn is a sum of two odd numbers, hence even, which implies that
C is even. A tactical move is now in orde~ at this stage of the argument we can make fife
much easier for ourselves by taking n 2 5, rather than n 2 3, because Euler’s proof
establishes Fermat’s Last Theorem for n = 3. Now we merely observe that the fifth or
higher power of an even number is divisible by 25 = 32, so -AnBnCn is a multiple of 32,
hence certainly a mtitiple of 16.

Therefore Frey’s curve satisfies the hypotheses of Wiles’s theorem, implying that it
can be parametrised by modular functions. But Frey has proved that it cm’t be!

This is the contradiction that we have been seeking dl along — but this time it is
signed, Scald, and delivered. The house of cards that we setup by assuming that there
exists a nontrivial solution to the Fermat equation for n 2 3 has collapsed in ruins.
Therefore no such solution can exist — so Ferrnat’s Last Theorem is tie.

h summary: Wiles’s strategy implies the semistable Taniyama conjecture, which
implies that Ribet’s argument proves that Frey’s elliptic curve doesn’t exist — and Fermat
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was right dl along.
Wiles had a huge battery of powerful techniques to work with, but it took him

seven years of hard effort to see how to fit the pieces together. He knew what strategy to
use, but like any gened fighting a major battle, he had to get his tactics tight too. And as
soon as he announced his proof, of course, there was a new question to ponder. Was it
right? It is so easy to make mistakes...

Wght from the sw a surprisin~y large number of expe~ were wilting to commit
themselves by saying, publicdly, that they believed the proof was correct. me strategy
made sense, they could see how the tactics were applied, hey bew what the sticky points
were and what ideas Wiles had invented to get over them. Mazur summed up the
consensus view: ‘It has the ring of truth’.

But did it?

Fermat’s Final Fling
Speculation was rife, but hard facts were thin on the ground. Unusually, Wfles

did not release a ‘preprint’, or informal version, of his proof. Given the amount of
interest, this was a reasonable move: coping with the Wely demand would have laid low a
forest or two. hstead he subrnittd his work to the worlds leading mathematical journal,
which sent it out to hti a dozen experts to be refereed. Meanwhfie, its hunger unsated, the
mathematical world’s communication lines hummed — technical details gleaned from
people who had been at the Newton kstitute when Wfles made his historic announcement,
comments, queries. Jokes, even. One widely circulated electronic mail message reported
a spoof newspaper article about the riotous behaviour that (allegedly) followed the
announcement of the proof.

‘Math hooligans are the worst, ‘ said a Chicago Police

Department spokesman. ‘But the city learned from the

Bieberbach riots. We were ready for them this time. ‘

When word hit Wednesday that Fermat’s Last Theorem had

fallen, a massive show of force from law enforcement at

universities all around the country headed off a repeat of

the festive looting sprees that have become the traditional

accompaniment to triumphant breakthroughs in higher

mathematics.

Mounted police throughout Hyde Park kept crowds of

delirious wizards at the University of Chicago from tipping

over cars on the midway as. they first did in 1976 when

Wolfgang Haken and Kenneth Appel cracked the long-vexing

Four-Color Problem. Incidents of textbook-throwing and

citizens being pulled from their cars were described by the

university’s math department as ‘isolated’ .

After a few weeks of such excitement, however, rumours of a mistake surfaced. On
Dmember 61993 Wfies circdati his own e-mail message:

—

In view of the speculation on the status of my work on the

Taniyama-Shimura conjecture and Fermat’s Last Theorem/ I

will give a brief account of the situation. During the

review process a number of”problems emerged, most of which
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have been resolved, but one in particular I have not yet

settled. The key reduction of (most cases of) the ,

Taniyama-Shimura conjecture to the calculation of the Selmer

group is correct’. However the final calculation of a

precise upper bound for the Selmer group in the semistable

case (of the symmetric square representation associated to a

modular form) ‘is not yet complete as it stands. I believe

that I will be able to finish this in the near future using

the ideas explained in my Cambridge lectures.

(Here Wiles’s Taniyama-Shimura conjecture’ is my Taniyama conjecture’ as explained
earlier.)

It is not unusual for minor tactical errors to emerge when a long and difficult
mathematicrd proof is subjectedto the very close scrutiny that inappropriate to amajor
breakthrough. The question then is: canthe errorsbe repaired, thegaps closed-oris
themistakefati?

Timepassed. Theprotisedrepairsdidnotmaterirdise.
AroundEaster 1994 many mathematicians received aremarkable messagein their

elmnnicmail:

There has been a really amazing development today on

Fermat’s Last Theorem. Noam Elkies has announced a

counterexample, so that FLT is not true at all! He spoke

about this at the Institute today.. The solution to Fermat

that he constructs” involves an incredibly large prime

exponent (larger than 1020 ), but it is constructive . . I

wasn’t able to get all of the details, which were quite

intricate. . .

Eventually itemerged that tiismessagehad originatedonApril lst.

The Final Fling Unflung
BytheAutumnof 1994 even manyexperts were becoming pessimistic, estimating

thatstitchingup the hole inWiles’sproof wouldtakeatleast threeyears,maybe longer—
if at roll. Fermat’s Last ~eoremseernedto be slipping away. Then, on260ctober
1994, Rubin circdated another e-mail message:

As of this morning, two manuscripts have been released:

Modular elliptic curves and Fermat’s Last Theorem, by

Andrew Wiles.

Ring theoretic properties of certain Hecke algebras,

by Richard Taylor and Andrew wiles.

The first one (long) announces a proof of, among other

things, Fermat’s Last Theorem~ relying on the second one

(short) for one crucial step.

Ag most of YOU know, the argument degcribed by Wile9

in hig Cambridge lectures turned out to have a serious gap,

namely the construction of an Euler system. After trying
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These

unguccegsfully to repair that construction~ Wiles went back

to a different approach, which he had tried earlier but

abandoned in favour of the Euler system idea. He was then

able to completq his proof, under the hypothesis that

certain Hecke algebras are local complete intersections.

This and the rest of the ideas described in Wiles’s

ca~ridge lectures are written UP in the first manuscript.
\

Jointly, Taylor and Wiles establish the necessary property

of the Hecke algebras in the second paper.

two papers had been refereed, approved, accepted, md published. The sagaof
Fermat’s LastTheorern has findlycometo anend.

Or, more accurately; to a new beginning. Already the proof is being simplified.
Wiles’s revised argument is shorter and simpler than the first incomplete attempt.
Fastings, it is said has already simplified parts ofit. More impoflantly, we now have
access toawhole heap ofpowerful new techniques —inparticulm the semistablecase of
tieTaniyamaconjecture — which wecan apply to other questions about elliptic curves and
anytiingwecan contrivetolink tothem.

Thereisanewpower attheheartofnumber theory.
So: did Fermatredly have aprwfl There really is no lfielihdthatFemat had

anything similarin mind to the proof that Wiles has given the world. Bigconcepturd
chunks were not known in Ferrnat’s day— among them elliptic curves and modular
functions. The technical machinerythatunderlies Wiles’s approach includesrathera lotof
rnodemdgebraic number theory mddgebraicgwme~. netwenheti cenmwviewoint
would have made no sense in the ninteenti century, let alone the seventeenth.

Which leaves two possibilities. Either Fermat was mistaken, or his idea was quite
different. Like virtually all mathematicians, my money is on the first. But sometimes,
deep in the night, I awake from strange dreams, and I wonder...

@Ian Stewart
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(Solution to Diophantusk Prdlem: 41, W, 320.)


