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Turing’s Tiger

The zebra is striped that it may graze unnoticed on the plain,
the tiger that it may lurk undiscovered in the jungle; the
banded Caetodont and Pomacentrid fishes are further
bedizened to the hues of the coral-reefs in which they dwell.
The tawny lion is yellow as the desert sand; but the leopard
wears its dappled hide to blend, as it crouches on the branch,
with the sun-flecks peeping through the leaves.

DArcy Thompson, On Grotih and Form, Chapter XVI

Animals come in complicated shapes and patterns. They are often decorated with striking
colours, too, which may form geometric arrangements such as spots (leopard), stripes
(tiger, zebra), or dappling (giraffe).

How do such patterns arise?
We can try to take a hint from physics. The flow of a fluid is governd by the

‘Navier-Stokes’ quations, stated by Claude Navier in 1821 and reduced to simple physical
principles by Sir George Stokes in 1845. The regular patterns that form in a moving
fluid, such as whirlpools or ocean waves, are mathematical consequences of the Navier-
Stokes quations, and in this sense the quations explain the patterns. Are there equations
that stiarly explain the shapes and patterns of animals? Is there a ‘tiger quation’ whose
solutions are stripes? What might such an equation look like?

The first serious attack on this question was made by Alan Turing. Turing
showed that systems of chemicals, reacting together and diffusing through tissue, can
create patterns. He called these chemicals morphogens — shape-creators. He wrote
down ‘reaction-diffusion’ equations to describe morphogen dynamics, and he showed that
those quations lead to spontaneous pattern formation. When Turing fust publishd his
ideas, they were purely theoretical, but a good example of red-world Turing patterns’
soon came to the attention of chemists, the so-crdled BZ reaction. In that particular
reaction the patterns that arise are concentric rings and spirals, but reaction-diffusion
equations are capable of producing a huge range of different patterns, including stripes,
spots, dappting, and much else.

A bigger difficulty with the patterns that appear spontaneously in the BZ rextion is
that they move. We don’t see zebras with moving stripes, or leopards with moving
spots. However, Turing showed that his quations can produce both stationary patterns
and moving ones, depending on various numerical constants that arise in the chemical
reactions and dso on the rates at which the chemicals diffuse.

Whatever the precise mechanism of biological patiem formation tight be, it is not
simply that the pigments on the animal’s skin or in its fur react and diffuse. It has to k
some kind of multi-stage process. Moreover, it ties place h the embryo, not in the adult
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animal: even if the embryo does not exhibit clear patterns, they have to be present in some
cryptic form. Turing recognised this, and he saw the chemical structures in his quations
as a way to produce such ‘pre-pattems’, which would be laid down in an embryonic
organism at an early stage and would provide a kind of scaffolding for its subsequent
development — in the same manner that a builder first lays out the main shape of a house,
its drains md foundations, before building the walls.

To Turing, the key point was that his system produced the right kinds of pattern.
If pigments are deposited according to the peaks and troughs of parrdlel waves, you get
stripes; more complex systems of interfering waves produce spots; and so on. He also
realised that form, rather than pattern, can be controlled in a similar way, by growing
bumps and dents according to the chernicd prepattern.

In particular he showd that a circular ring of cells can form wavy patterns of
several kinds, which he compared to the structure of Hydra, a tiny creature that fives in
freshwater ponds and is a bit like a miniature sea-anemone. It has a bdgy cyfindricd body
with tentacles atone end. The tentacles are regdarly spacd, We the peaks and troughs of
Turing’s chemical waves. He even found that before tentacles develop, a suitable stain
will reveal chemical patches where the tentacles subsquentiy appear. This all loookd
quite promising, and biologists turned to concrete examples of apparent Turing patterns in
development.

Jim Murray studid the formation of dappling on giraffes and stripes in mbras and
big cats, enunciating the memorable theorem that ‘ananimal can have a spotted body md a
Srnpd W, but not a stripd body and a spotted tti. This is based on the general principle
that spots arise when stripes lose stability, and this normally happens only when the
surrounding space gets bigger. Maynard Smith showed that hairs on the fruit fly
Drosophila occur in a variety of Turing-like patterns whose genetic variants are also
Turing patterns. It is hard to explain this if patterns are arbitrary consequences of DNA
codes — why should nati selection prefer Turing patterns?

However, these initial successes turned to failure as other systems, such as feather
developmen~ fefl apart under scrutiny. men feathers are grown at different temperatures,
the observed quantitative changes in their patterns do not fit Turing’s equations. The
discovery of DNA and advances in genetics posed further problems for Turing’s theories.
The fruit fly Drosophila is one of the geneticist’s favourite experiment animals, because
it breed rapidy, can be kept easily in the laboratory, and exhibits a huge range of different
forms. An enomous amount is now known about fruit fly genetics, and it looks as if
Drosophila builds striped patterns in a manner that is quite different from Turing’s model.
Indeed, the evidence is that it implements genetic instruction to build the stripes one at a
time — quite unlike the reaction-diffusion pre-pattem mechanism, which lays down the
entire pre-pattern in one go.

Yet another problem with Turing’s theory of morphogens is that many apparent
Turing patterns in adults are laid down early in development, when the organisms’s shape
was quite different. The ‘eyes’on a peacocks tail look like BZ rings; but if they have a
chemical precursor it must be laid down when the feathers are tiny cylinders. The pre-
pattem mquird inside the cylinders doesn’t look at dl like a nice BZ ring. And to make
matters worse, experimental chemists were having trouble creating the static chemical
patterns qti by Turing’s theories. The &st they muld achieve was the mobile patterns
of reactions such as BZ. Now the essence of Turing’s approach is that the mathematics
drives the chemistry, which in turn drives the biology. Unfortunately, even the chemistry
wasn’t working. By the 1970s most biologists had got bored with finding Turing patterns
that weren’t, and had moved on. Instead, they concentrated on the DNA code, and its
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implementation.
Mathematicians were less worrid about the failures of Turing’s equations, because

they saw those equations as just one example chosen from an ~most infinite range of
possible equations with sitiar properties. They redisd that dl systems like Turing’s —
including more elaborate ‘mechano-chemicd’ equations describing the interaction of
chernicd changes and tissue growth — would produce the same general range of patterns.
The specifics of particular equations were unimportant what mattered was the common
features of the whole class of equations, which were the key to the general problem of
pattern-formation.

As the twentieth century draws to a close, Turing’s ideas are once more coming
back into vogue, but in a more subde guise. Mathematicians are introducing models that
are closer to red biology, but that exhibit tie same gened mechanism of pattern formation.
Brian Goodwin has studied models of development in which, as a creature develops, its
older parts become relatively fixti in form. If the creature begins with circdar symmetry,
then the initial stages of growth dso have circular symmetry; and that symmetry may
become ‘frozen in’ as the c~ature ages. Eventually the symmetry breaks, say via one of
Turing’s waves; and then the creature develops a number of qually spaced bulges that
grow into branches or tentacles or petals. So the symmetry of the creature changes as you
cast your eyes along the tissue horn old to new — just like Hydra. Goodwin’s equations
successfully describe one key step in the morphogenesis of Acetabu2aria, a single-celld
marine alga, which follows a similar pattern. The creature begins as a sphericrd egg,
which puts out a root-like structure and a stti. The stti grows, and produces a ring of
sma~ hairs, called a whorl. The tip continues growing from the centre of the whorl,
producing more whorls; then it develops a cappd smcture which gives it its common
name, mermaids cap. Goodwin’s quations relate the formation of the whorl to a broken
symmetry in the distribution of calcium within the organism, which in turn affects its local
growth rate and hence its shape.

One of the most striking investigations into the mathematical basis of natal pattern
is current work on seashells. D. M.Raup, C.Inert, and others have written down
mathematical equations for shell growth which successfully reproduce the fores found in
nature. Over many years Hans Meinhardt has made a study of the markings on shells,
showing that despite their great variety and intricacy they can nearly dl be producd by
Turing models. Shells grow along their edge, which is overlapped by the animal’s
‘mande’, which secretes new material for the shell and also pigment. The ‘olive shel~
Oliva po~hyria has a rounded, elongatd shape, decorated with apparendy random brown
triangles on a pale background. Astonishingly, not only can such irregulm patterns be
producd by Turing models, but in fact it is rather easy to create them. The effect is an
instance of mathematical ‘chaos’in spatial patterning.

Old theories never die... For years it had been assured that the big problem with
Turing’s thary was its tendency to produce moving patterns much more readily than
stationary ones. Obviously the patterns on living organisms ~n’t move... Big problem.

But...
Sometimes the patterns on organisms do move. They move rather slowly, which

is why we don’t generally notice, but they move. In fact, Turing’s model predicts that
they should move slowly. The organism that caused this latest change in thinking is a
small tropical marine fish, the angelfish Pomacanthus. Juveniles are about 2 cm long,
adults three to four times that length. Them are many different Pomacanthus species, and
they exhibit a variety of patterns. P. semicirculatus, for example, has cwd stripes that



4

run ‘vertically’ down the body, whereas P. imperator has ‘horizontal’ stripes that run the
length of its body. Over time, the stripes change their pattern. This is especi~ly clear
for P. semicirculatus, because the young fish have only thee stripes, but the adults have
twelve or more, so somehow the number of srnpes has to increase as the fish develops.
In fact, the changes occur in a rather curious manner. Start with a juvenile fish having
three stripes,and watch it grow. At fret, the stripes expand with the fish, becoming more
widely spacd: this is what you wotid exp=t if the pattern were laid down once and for M.
But at that stage, ~elatively suddenly, new stripes begin to appear between the original
ones, restoring the original size of spacing. At first they are thinner than the old stripes,
but they gradudly thicken. Wen the body length reaches about 8 cm, the process is
repeati a second time.

This sequence of changes has been mode~ed using reaction-diffusion quations by
Shigeru Kondo and Whito Asai. Their model involves just two chemicals, and assumes
that the underlying tissue consists of a row of cells, some of which duplicate every so
often. Their results reveal a natural pattern of stripes, which widen, without chmging
their number, until the tissue becomes sufficiently large, at which point the number of
waves doubles, with new stripes appearing be~een the old ones.

An even more dramatic scenario arises in the horizontal striping of P. imperator.
It dso developes additiond stripes as it grows, but various of the stripes ‘unzip’ and split
into two. This type of wave rearrangement is known to physicists by the term
‘dislocation’, and it is widely observed in a variety of systems. In particular, it occurs in
reaction-diffusion systems. To say that the stripe ‘unzips’ is a slight simplification,
because it suggests that a single stripe turns into two by developing a Y-shaped branch-
point. It can happen this way, but there are dso more complicated dislocations in which
srnpes.rearrange themselves by disconnecting and reconnecting, and Kondo and Asai saw
these too. They use the observd spacings of stripes in the fish to estimate the diffusion
rates for their hypothetical morphogens, and the restits are witiin tie range you’d expect if
each morphogen were some kind of protein molecule.

Changes occurring in stripe patterns in angelfish are thus consistent with
mathematical equations of Turing’s gened type, and — crucially — they are nof what you
would expect in patterns are simply laid down, cell by cell, by genetic switches. So it
looks as if something mathematical, accessing the laws of physics and chemistry, must be
going on in addition to genes switching each other on and off.

Early mathematical equations for development were too far removal from real
biology to provide accurate models. The current emphasis on DNA goes too far tie other
way: it explains the productions of proteins, but it does not adequately explain how the
proteins are assembld to form an organism, or — crucially — why nature so often prefers
mathematical patterns. To see the difference between the two approaches, and how both
fW short of reality, imagine a vehicle (corresponding to a developing organism) driving
tiugh a landscape (representing dl the possible forms that the organism might tie, with
valleys corresponding to common forms md peaks to highly unlikely ones). In models
like Turing’s, once you have set the vehicle rolling, it has to follow the contours of the
landscape. It can’t suddenly decide to change direction and head uphill if the ‘natural
dynamic is to continue straight ahead into the nearest valley. In contras~ the current view
of the role of DNA sees development as an arbitrary series of instruchons~ ‘turn left, then
straight ahead of a hundred metres, then turn right; stop for ten seconds; reverse five
metres; turn left...’ Any destination is possible given the right instructions, and no
particular destination is prefd

The true picture, however, must combine genetic ‘switching’ instructions and free-
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running mechano-chemical dynamics. If a car driving through a fixd landscape follows
an arbitrary series of instructions, it is very likely to drive into a lake or off the edge of a
cliff and it has little chance of reaching the top of a mountain. On the other hand, a car
with a driver has more fredom in selecting destinations than a free-running vehicle without
any controls. In the same manner, an organism cannot take up any form at all: its
morphology is constined by its dynamics the laws of physics and chemistry as well as
by its DNA instructions. But the DNA instructions can make arbitrary choicese between
several different U.nesof development that are consistent with the dynamical laws. The
new mathematical models are finally beginning to put these two aspwts of development
together. It is not DNA done, or dynamics done, that controls development. It is both,
interacting with each other, We a landscape that changes shape according to the traffic that
passes through it.

Further Reading

R. Tucker Abbott, Seashells of the World, Golden Press, New York 1985. [1 bought this
little paperback in the Houston Science Museum: it’s delightful. Colour
illustrations of hundreds of seashells.]

Brian Goodwin, How the Gopard Changed its Spots, Weidenfeld and Nicolson, London
1994. my development and evolution are dynamic phenomena, not just rampant
genes. Rquird reading from one of the worlds most original biologists.]

Stuart A. Kauffman, At Home in the Universe, Viking, New York 1995. [A more
personal view of self-organization and the search for laws of complexity.
Rquti reading from another of the worlds most original biologists.]

Hans Meinhardt, The Algorithmic Beaup of Sea Shells, Springer-Verlag, Berlin 1995.
[Profusely illustrated collection, in colour, of sea shell patterns and corresponding
mathematical models producd by reaction-diffusion. Go and buy it, now. Buy
ten, and give them to your friends — especially the ones who take pride in their
ignorance of mathematics.]

J.D.Murray, Mathematical Biology, Springer-Verlag, New York 1989. [A genuine
textbook, this one, with dl the formulas — but highly readable if you skip the
t=hnicd bits, with lots of pictures.]

Przemyslaw Prusinkiewicz and Aristid Lindenmayer, The Algorithmic Beauty of Plants,
Spnnger-Verlag, New York 1990. me mathematics of the plant world. Lots of
marve~ous tilustrations, many in colour.]

Ian Stewart and Martin Golubitsky, Fea@ul Sy~etry, Blackwell, Oxford 1992; Penguin,
Harmondsworth 1993. [A whole new way of looking at pattern, complexity, and
the generation of order in nature.]

D’Arty Wentworth Thompson, On Growth and Form (2 volumes), Cambridge University
Ress, Cambridge 1942. [The great classic, full of thoughtful insights and
thought-provoking examples.]

Art Wolfe and Barbara Sleeper, Wild Cats of the World, Crown, New York 1995. [A
glorious reminder that nature still has the dge on mathematics when it comes to
beautiful patterns and dynamic movement.]

Lewis Wolpert, Th Triumph of the Embryo, Oxford University Press, Oxford 1991. [A
leading biologist discusses the development of organisms.]
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Gresham College wu established in 1597 under the Will of the
Elimbethan financier Sir Thomas Gresham, who nominated the
Corporation of the City of London and the Worshipful
Company of Mercers to be his Trustees. They manage the
Estate through the Joint Grand Gresharn Committee. The
College has been maintained in various forms since the
foundation. The one contintig activity (excepting the period
1939-45) has been the ann~ appointment of seven
distinguished academics “sticiendy learned to reade the
lectures of divyntye, astronomy, musicke, and geometry”
(appointed by the Corporation), “meete to reade the lectures of
lawe, phissicke, and rethoricke”, (appointed by the Mercers’
Company). From the 16th century the Gresham Professors
have given free public lectures in the Ci~. A Mercers’ School
Memorial Chair of Commerce has been added to the seven
‘ancient’ Chairs.

The College was forrndly reconstituted as an independent
foundation in 1984. The Governing Body, with nominations
from the City Corporation, the Mercers’ Company, the
Gresham Professors and the City University, reports to the
Joint Grand Gresham Committee. Its objectives are to sponsor
innovative research and to supplement and ‘complement
existing facilities in higher education. It does not award
degrees and diplomas, rather it is an active collaborator with
institutions of higher education, learned societies and
professionrd bodies.

GresharnCollege, Barnard’sInn Hall, Holbom, LondonECIN 2HH
Tel no. 01718310575 Faxno. 01718315208


