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Gresham Geomet~ Lec~re
9 October 1996

Games, Graphs, and Gaskets

Mazes are a common form of puzzle. The aim of this lecture is to show that the
same principles that can be used to solve mazes can dso be used to solve ‘logic~ mazes’ ---
mathematical problemsof many kinds.

One way to solvea maze is to look at a map and block off dl the dead ends. But
what if you don’t have a map? Well, you cm try the left-hand-on-wdl tick: when you
first enter the labyrinth --- or any maze, come to that --- you put your left hand on the wall,
and keep it there. That Warantees that eventu~y you’~ find your way back to the SW, but
not naessarily that you will fmd your way to the desired god in the maze. ~ou won’t get
10SLat least.) What happens is that you traverse one complete connected system of walls,
and if that system isn’t connected to the god, it gets you nowhere useful.

There is a more abstract formulation of the whole problem. The most important
thing about a maze is how the junctions connect up. The lengths of the passages don’t
affwt the path you take to get out, just how long it takes. So threading a maze is a
topological problem. We can represent the topological essentials by a graph: its nodes
correspond to the junctions in the mwe, its edges correspond to the tunnels. The problem
of getting out of a maze --- or of finding a particulw place within it --- thus become that of
trwersing a graph-from one node to another.

There is a key theorem that governs the possibility of doing this. Two no&s can
be joined by a continwm path if and only f they lie in the same connected component of
the graph. A connected component is the set of & nodes that can be reachd from a given
one by a continuous path. So what the therorem says is that two nodes can be joined by a
continuous path if and only if there exists a continuous path that joins them. This may
sound trivial, and it is, but it points to an important concept: connectivity. However, it’s
useless for solving the problem.

A more constructive approach is to devise a maze-threading algorithm. The word
comes from the arab mathematician Muhammad ibn Muss abu Abdrdlah al-~orezmi d-
Madjusi d-Qutrubilli. ‘A1-~orezd became ‘d-Gorid, then ‘algorism’, and finally
‘algorithm’. It’s used to describe a spectilc procedure, a computer program. The f~st
gened maze-threading algorithm was invented around 1892 by M. Tr&maux. It was
rediscovered nearly a century later by J.Hopcroft and R.Tarjan in the context of graph
theory, which is just the same as mazes, redly. ~ey named it Depth First Search or the
DFS dgoritim: it goes like this.

Depth First Search
This visits all nodes in the same connected component as the starting node: in

particular it can if desired be terminated when it hits a particular ‘finishing’node.
● Begin at any chosen node.
● Visit any adjacent node that has not yet kn visited.
● Repeat this as far as possible.
● H dl adjacent nodes have&n visted tieady, backtrack

through the squence of nodes that have been visted until you
find one that is adjacent to an unvisited node: then visit that one.

● Delete any tige that has been backtracked
● Repeat untfi you return to the starting node and there are no

unvisited nties adjacent to it.
● Then you have visited d nodes in the connected component of

the graph that contains the starting node.
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Depth First Search is especially appropriate for threading mazes, because it is
possible to program the tigorithm so that it can be carried out without having a map of the
maze. It involves only bcd rules at nodes, plus a record of nodes md edges akeady
used. You can aplore the graph and traverse it as you go. me name is fairly
appropriate: the idea is to give top priority to pushing deeper into the m=e. me algorithm
is quite efficient: the number of steps is at most twice the number of edges in the graph.

Wolf, Goat, Cabbage
Many puzdes are redly maze-threading problems in disguise: tie objective is to

thread a bgicd maze. For example, rwdl the famous old problem of a farmer who has to
cross a river. He has with him a wolf, a goat, and a cabbage. me hat can hold only tie
farmer plus one item of ‘produce’; but he can’t leave the wolf done with the goat, because
the goat WMget eaten, and he can’t leave the goat done with the cabbage, because the
cabbage til get eaten. What does he do? ~s pude is usually attributed to the mediaevrd
mathematicim ~cuin (735-804). It is certainly quite ancient, and appears in Ozanam’s
Rkcr&&m M~M-.qus et P@siqus of 1694.

me important thing is which side of the river each of the three items is on. We can
represent the position of a single item by the digits O and 1, using O to represent ttis side
of the river and 1 to represent the far side. ~us the configuration of dl three items is
represented by a triple (w,g,c) in three-dimensiond wolf-goat-cabbage space. For example
(w,g,c) = (1,0,1) represents w = 1, g = O, c = 1; that is, the wolf on the far side, the goat
on this side, and the cabbage on the far side.

How my cofilgurations are there? WeU, each coordinate w, g, or c can tie one
of the two values Oor 1. ~us there are 2x2x2 = 8 possibdities. What’smore, they have
a beautiful geometric structure: they are the eight vertices of a unit cube in wolf-goat-
cabbagespace (Fig. 1).

/
goat-axis

(0,1,1) (1,1,1)

I

cabbage-
axis

I

I

I

I
, (0,0,1)

I

I

I

(0,0,0) (1,0,0)

wolf-axis
Fig. 1 me solution. Find tie otier.

We may move ody a single item at a tim~ that is, we may Eaverse ordy the edges
of the cube. But some dges are forbidden. For example, the edge from (0,0,0) to
(1,0,0) corresponds toting the wolf across the river on its own. But this leaves goat md
cabbage unchaperoned, so we would shortly be greeted by a fat goat and no cabbage. k
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fact these gastronomic constraints rule out exacdy four edges, which are drawn in grey.
The rest, representing permissible moves,wfil be coloured black.

The problem thus geometizd komes: can we sm at (0,0,0) --- all items on thti
side --- and get to (1,1,1) --- all items on the other side --- passing only along green edges
of the cube? And of course the answer is ‘yes’. Indeed, from a topological viewpoint, we
can lay the edges out flat, md the solution stares us in the face. There are two solutions,
in fact, and only two ifwe avoid unnaes~ repetitions. They differ ody by a
wolf/cabbage symmetry operation.

How to Get Across With Your Produce htict

Solubn 1
(0,0,0)start
(0,1 ,0) Take goat over
(0,1 ,1) Return and) take cabbage over
(0,0, 1) Bring back goat
(1,0,1) Take wo~ over
(1,1, 1) (Return and) take goat over.

Solutin 2

(0,0,0)start
(0,1 ,0) Take goat over
(1,1 ,0) @etUrn and) take wolf over
(1,0,0) Bring back goat
(1,0,1) Take cabbage over
(1, 1,1) (Return and) take goat over.

Notice what we did to represent the puz~e geomerncWy. Each possible position in the
puz~e can be thought of as a node in a graph, and each move from one position to another
as an edge joining the corresponding nodes. You can dso use depth first search instead of
visual insp=tion. Here’s the gened procedure when you do not have a ‘map’ of the
graph, but can only construct it dge by edge as you go.

Using Depth First Sarch to Solve Puties.
Many puzdes involve the movement of people, animals, or objects born a given

position to a selected finishing position, subject to various ties. U the number of possible
positions is finite, then Depth First Search can be employti. It ties the foUowing fm

● Whenever you first come to a new position (including the
initial position at the start of the puzzle) fist W possible
positions that can be reached from it.

● From the starting position, make any move that leads to a
“new” position (one that has not yet occurred), at random.

● Repeat this as far as possible.
● If dl possible moves lead to “old” positions, backtrack

through the quence of moves that have been made unti you
fmd a position tim which it is possible to move to a “new”
position. Then make that move.

● Henceforth ignore any move that has been backtracked.
● Repeat until you either reach the desired position, or return to

the starting position with no moves available, in which case the
puzde is impossible.

We’ll apply this to the wo~-goat-cabbage puzzle. We represent the participants by
F = farmer, W = wolf, G = goat, C = cabbage, and positions by symbols such as ~G II
WC] where the symbol II(“Styx”) represents the river. Here farmer and goat are on the
left bank, WOMand cabbage on the right.



,,,

step

1
2

3

4

5

6

7

8

9
10

11

12

current
position

WCC II-]
WC IIFG]

WC II G]

~ II FGC]

WG II C]

[G II FWC]

~CG II W]

[C II FWG]

~CG II W]

[G II FWC]

rG II WC]

[ -II FWGC]

possible
moves

MC IIFG]
WCC II -]

~C II G]

NC II FG]
~ II FCC]

[C II WG]

~C II G]

~G II C]
w II FCC]

[G II FWC]

~G II C]

~CG II w

~G II WC]

[G II FWC]

[C II FWG]

WC II G]

~CG II w

w step 7

see step 6

[G II FWC]

[ -II FWGC]

4

move
made

WC II FG]

~C II G]

~ II FCC]

~G II C]

[G II FWC]

~CG II w

[C II FWG]

~G II WC]

[ -II FWGC]

comments

starting position
old position
forcedby dgonthm
old position
randomchoiceof avdable movm
other possible choice
old position
foti by algorithm
old position
ford by algorithm
old position
randomchoiu @d movebut it
shows how the algorithmcopes)
old position
fo~ by algorithm
old pOSitiOn}~kmk quti!

old position
bxtik to Skp 7

bmtik to SEP6
dtemative move from position 6
old position
ford by dgoritim
finish

The algorithm does not rquire the graph to be drawn in advance: instead sections are
explored as needed. The solution takes a “wrong turn” at step 6 but the dgorithrn
successfully corrects this by backtracking.

This is a powerful way to solve dl sorts of puz~es that involve moving objects
around. Just as for mazes, the rules of the algorithm are Iocd, and r~uire only a record
of past moves.

Another tradihond puzzle leads to a graph of considerable beauty. The Tower of
Hmi was marketed in 1883 by the great French recreational mathematician ~ouard
Lucas (under the pseudonym M.Claus). h 1884, in b Na~e, M. De Parville described it
in romantic tea:

In the great te~le at Benares, beneath the dome which

marks the centre of the world, rests a brass plate in which
are fixed three diamond needles, each a cubit high and as

thick as the body of a bee. On one of these needles, at the

creation, God placed sixty-four discs of pure gold, the

largest disc resting on the brass plate, and the others

getting smaller and smaller up to the top one. This is the

Tower of Bramah. My and night unceasingly the priests

transfer the discs from one diamond needle to another

according to the fixed and imtable laws of Bramah, which

require that the priest on duty must not move more than one

disc at a time and that he must place this disc on a needle

so that there is no smaller disc below it. When the

sixty-four discs shall have been thus transferred from the .

needle on which at the creation God placed them to one of

the other needles, tower, temple, and Brahmins alike will

crutile into dust, and with a thunderclap the world will

vanish.

-1
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The Tower of Hanoi is similar to the Tower of Brahma but with eight (or sometimes fewer)
discs. It is an old friend of recreational mathematicians, and it may seem that litde new can
be said about it. But, as we shd see, the graphical approach leads to a delightful surprise.

For definiteness, consider 3-disc Hawi, that is, the Tower of Hanoi with just three
discs (Fig. 2). To construct the graph, we must fwst find a way to represent all possible
positions, then work out the Iegd moves between them, and finally draw up the graph.
I’ll describe what I actually did, because to begin with it’s not obvious how to proceed ---
and then we’ll observe, with twenty-twenty hindsigh~ that there is a much cleverer
method.

1 2 3

1

2

3

Fig .2. 3-tic fioi

How can we represent a position? Number the three discs as 1,2,3, with 1 being
the smdest and 3 the largest. Number the nedes 1,2,3 from left to right. Suppose that
we know on which of the three nedes each disc is: for example disc 1 is on ne~e 2, disc
2 on nede 1, and disc 3 on neede 2. Then we have completely determined tie position,
because the rules imply that disc 3 must be tirwath disc 1. We can encode Wls
information in the sequence 212, the three digits in turn representing the nedes for discs
1, 2, and 3. Therefore each position in 3-disc Hanoi corresponds to a sequence of three
digits, each being 1,2, or 3.

It follows that there are precisely 3x3x3 =27 different positions in 3-disc Hanoi.
But what are the permitted moves?

The sdest disc on a given nede must be at the top. It thus corresponds to the
first appearance of the number of that nede in the sequence. M we move that disc, we
must move it to the top of the pile on some other nede, that is, we change the number so
that it komes thefirst appearance of some other number.

For example, in the position 212 above, suppose we wish to move disc 1. This is
on nde 2, and corresponds to the fwst occurrence of 2 in the sequence. Suppose we
change this first 2 to 1. Then this is (trivially!) the f~st occurrence of the digit 1; so the
move tim 212 to 112 is Iegd. So is 212 to 312 kause tie fwst occurrence of 3 is in the
fit place in the squence.

We may dso move disc 2, kause the fwst occurrence of the symbol 1 is in the
second place in the sequence. But we cannot change it to 2, because 2 tieady appears
eartier, in the fmt place. A change to 3 is, however, legrd. So we may change 212 to
232 @ut mt to 222).

Finrdly disc 3 cannot be movd, because the third digit in the sequence is a 2, and
this is mt the fwst occurrence of a 2.

To sum up: horn position 212 we can make legal moves to 112, 312, and 232, and
only these.

We can list dl 27 positions and W possible moves by following the above ties: the
result is:
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—-. . ------ .
‘l”he legal moves in 3-disc Hanoi

start here... finkh on

111 211
112 212
113 213
121 221
122 222
123 223
131 231
132 232
133 233
211 111
212 112 ‘
213 113
221 121
222 122
223 123
231 131
232 132
233 133
311 111
312 112
313 113
321 121
322 122
323 123
331 131
332 132
333, 133

any of

311
312
313
321
322
323
331
332
333
311
312
313
321
322
323
331
232
333
211
212
213
221
222
223
231
232
233

these...

113
112
131
132
133
121
122
123
231
232
233
223

221
211
212
213
321
322
323
311
312
313
332
331

All but three positions give exacfly three legal moves, but the other three positions give
ody two legrd moves. my?

me next task rquires care and accuracy, but titfle thought. maw 27 dots on a
pime of paper, label them with the 27 positions, and draw tines to represent the legal
moves. A bit of thought, rearranging the vertices and tiges to avoid overlaps, leads to
(Fig.3). -

Fig.3. Gmphof 3dw &oi.

Something that pretty can’t be coincidence!
But before we investigate why the graph has such a regular fore, let’s observe that
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it answers the ongind question. To transfer W three discs from nede 1 (position 111) to
needle 2 (position 222) we merely run down the left-hand edge, making the moves

111+211+231+331+332+132+ 122+222
Indeed, by consulting the graph, it is clear that we can get from any position to any other
--- and it is dso clear what the quickest route is.

Onto a deeper question: what is the explanation for the remarkable structure of
Fig.3?

The mph consists of three copies of a smaller graph, linked by three single edges
to forma triangle. But each smaller graph in turn has a similar triple structure. Why
does everything appear in threes, and why are the pieces linked in this manner?

If you work out the graph for 2-disc Hanoi you will find that it looks exacdy We
the top third of Fig.9 Even the labels on the vertices are tie same, except that the find 1 is
deletti. h fact it is easy to see this, witbut working out the graph again. You can play
2-disc Hanoi with three discs: just ignore disc 3. Suppose disc 3 stays on nede 1.
Then we are playing 3-disc Hanoi, but restricting attention to those 3-digit squences that
end in 1, such as 131 or 221. But these are precisely the sequences in the top third of the
figure. Similarly 3-disc Hanoi with disc 3 f~ed on nede 2 --- tiat is, disguised 2-disc
Hanoi --- corresponds to the lower left third, and 3-disc Hanoi with disc 3 fixed on nede
3 corresponds to the lower right third.

This explains why we see three copies of the 24SC Hanoi graph in the 3-disc
graph. And a littie further thought shows that these three stigraph are joined by just
three single edges in the full puzzle. To join up the subgraphs, we must move disc 3.
When can we do this? Ody when one nede is empty, one contains disc 3, and the other
contains M the remaining discs! men we can move disc 3 to the empty neede, creating
an empty nede where it came form, and leaving the other discs untouched. There me six
such positions, and the possible moves join them in pairs.

The same argument works for any number of discs. The mph for 4-disc Hanoi,
for example, consists of three copies of the 3-disc graph, finked at the comers Me a
triangle. Each subgraph describes 4-disc Hanoi with disc 4 fixed on one of the three
n~es; but such a game is just 3-disc Hanoi in disguise. And so on. We say that tie
Tower of Hanoi puzzle has a recursive structurq the solution to (n+l)-disc Hanoi is
determined by that for n-disc Hanoi according to a fixed rule. The recursive structure
explains why the graph for (n+ 1)-disc Hanoi can be built from that for n-disc Hmoi. The
triangular symmetry arises because the rules treat nedes 1,2, and 3 in exacfly the same
way. You can deduce the graph for 64-disc Bramah, or any other number of discs, by
repeatdy applying this rule to the graph for O-discHanoi, which is a single dot!

Two find observations.

1 As the number of discs becomes larger and larger, the graph becomes more and
more inrncate, looking more and more like the Sie~imki gaket (Fig. 4 overle@. This
shape is a fractd, having dettid structure on M scales. This is a striking and surprising
result, because the puzzle was invented rdmost a century before fractis were.

2 Pascal’s famous triangle of binornid coefficients

1

11211
1331

14641

is defined by the property that each number is the sum of the two above it to left and right.
If you colour odd numbers black and even numbers white, you get another Sierpinski
gasket shape.
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Fig.4. me Siqtiski GmkeL
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Gresham Geomet~ Lec~re
9 October 1996

Games, Graphs, and Gaskets

Mazes are a common fom of puzzle. The aim of this lecture is to show that the
same principles that can be used to solve mazes can dso be usd to solve ‘logical mazes’ ---
mathematical problems of many kinds.

One way to solve a maze is to look at a map and block off rdl the dead ends. But
what if you don’t have a map? Well, you can try the left-hand-on-wdl trick: when you
fwst enter the labyrinth ---or any maze, come to that --- you put your left hand on the wall,
and keep it there. That guarantees that eventu~y you’fl find your way back to the stti, but
not necessarily that you will fmd your way to the desired god in the maze. ~ou won’t get
10SLat least.) What happens is that you traverse one complete connected system of walls,
and if that system isn’t connected to the god, it gets you nowhere useful.

There is a more abstract formulation of the whole problem. The most important
thing about a maze is how the junctions connect up. The lengths of the passages don’t
affect the path you take to get out, just how long it takes. So threading a maze is a
topological problem. We can represent the topological essentials by a graph: its nodes
correspond to the junctions in the maze, its edges correspond to the tunnels. The problem
of getting out of a maze --- or of finding a particular place within it --- thus become that of
traersing a graph-horn one node to another.

There is a key theorem that governs the possibility of doing this. Two nodes can
be joined by a continmw path if and only if they lie in the same connected component of
the graph. A conmcted component is the set of ti nodes that can be reached from a given
one by a continuous path. So what the therorem says is that two nodes can be joined by a
continuous path if and only if there exists a continuous path that joins them. This may
sound trivial, and it is, but it points to an important concept: connectivity. However, it’s
useless for solving the problem.

A more constructive approach is to devise a maze-threading algorith. The word
comes from the arab mathematician Muhammad ibn Muss abu Abddlah al-~orezmi d-
Madjusi d-Qutrubilli. ‘A1-~orezmi’ became ‘d-Gonzmi’, then ‘algorism’, and finally
‘algorithm’. It’s used to describe a specific procedure, a computer program. The f~st
general maze-threading algorithm was invented around 1892 by M. Tr6maux. It was
rediscovered nearly a century later by J.Hopcroft and R.T~.an in the context of graph
theory, which is just the same as mazes, redly. They named it Depth First Search or the
DFS algorithm: it goes like this.

Depth First Search
This visits all nodes in the same connected component as the starting node: in

particular it can if desired be terminated when it hits a particular ‘finishing’node.
● Begin at any chosen node,
● Visit any tijacent node that has not yet been visited.
● Repeat this as far as possible.
● H dl adjacent nodes have been visted tieady, backtrack

through the sequence of nodes that have been visted until you
find one that is adjacent to an unvisited node: then visit that one.

● Delete any edge that has ken backtracked.
● Repeat untfl you return to the starting node and there are no

unvisited nodes adjacent to it.
● Then you have visited d nodes in the connected component of

the graph that containsthe stardng node.
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Depth First Search is especially appropriate for threading mazes, because it is
possible to program the algorithm so that it can be carrid out without having a map of the
maze. It involves only bcd rules at nodes, plus a record of nodes and edges akeady
used. You can aplore the graph and traverse it as you go. me name is fairly
appropriate: the idea is to give top priority to pushing deeper into the maze. The algorithm
is quite efficient: the number of steps is at most twice the number of edges in the graph.

Wolf, Goat, Cabbage
Many puzdes are redly maze-threading problems in disguise: the objective is to

thread a bgicd maze. For example, recall the famous old problem of a farmer who has to
cross a river. He has with him a wolf, a goat, and a cabbage. The boat can hold only the
farmer plus one item of ‘produce’; but he can’t leave the wolf done with the goat, because
the goat wiU get eaten, and he can’t leave the goat done with the cabbage, because the
cabbage wdl get eaten. What does he do? This puzzle is usually attributed to the mediaevd
mathematician Ncuin (735-804). It is certainly quite ancient, and appears in Ozanam’s
Rkcrkatiom Mattim.qus et Physiqus of 1694.

The important thing is which side of the river each of the three items is on. We can
represent the position of a single item by the digits O and 1, using O to represent this side
of the river and 1 to represent the far side. Thus the configuration of dl three items is
represented by a triple (w,g,c) in three-dimensiond wolf-goat-cabbage space. For example
(w,g,c) = (1,0,1) represents w = 1, g = O, c = 1; that is, the wolf on the far side, the goat
on this side, and the cabbage on the far side.

How many cotilgurations are there? WeU, each coordinate w, g, or c can t&e one
of the two values Oor 1. Thus there are 2x2x2 = 8 possibilities. What’s more, they have
a beautiful geometric structure: they are the eight vertices of a unit cube in wolf-goat-
cabbage space (Fig. 1).

/
goat-axis

(0,1,1) (1,1,1)

cabbage-
axis J-

1

I

I

I
(0,0,1)

I

---- ---

I

1

I

I

7

(1,0,1)

(0,0,0) (1,0,0)

*
wolf-axis

Fig. 1 One solution. Fhd tie otier.

We may move ody a single item at a time; that is, we may traverse only the @ges
of the cube. But some edges are forbidden. For example, the edge from (0,0,0) to
(1,0,0) corresponds toting the wolf across the river on its own. But tiis leaves goat and
cabbage unchaperonti, so we would shortly be greeted by a fat goat ~d no cabbage. h
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fact these gastronomic constraints rule out exactly four edges, which are drawn in grey.
me rest, representing permissible moves,will be coloured black.

The problem thus geomernzed becomes: can we start at (0,0,0) --- all items on this
side --- and get to (1,1,1) --- all items on the other side --- passing only along green dges
of the cube? And of course the answer is ‘yes’. Indeed, from a topological viewpoint, we
can lay the edges out flat, and the solution stares us in the face. There are two solutions,
in fact, and only two ifwe avoid unnecessary repetitions. They differ only by a
wolf/cabbage symmetry operation.

How to Get Across With Your Produce htact

Solution 1
(0,0,0)start
(0,1 ,0) Take goat over
(0,1, 1) @eturn and) take cabbage over
(0,0, 1) Bring back goat
(1,0, 1) Take WOUover
(1,1, 1) (Return and) take goat over.

Soluhn 2

(0,0,0)start
(0,1 ,0) Take goat over
(1,1 ,0) (Return and) take wolf over
(1,0,0) Bring back goat
(1,0, 1) Take cabbage over
(1,1, 1) (Return and) take goat over.

Notice what we did to represent the puzde geometrically. Each possible position in the
puzzle can be thought of as a node in a graph, and each move from one position to another
as an edge joining the corresponding nodes. You can dso use depth fwst search instead of
visual inspection. Here’s the general procedure when you do not have a ‘map’ of the
graph, but can only construct it edge by edge as you go.

Using Depth First Search to Solve Puzzles.
Mmy puzzles involve the movement of people, animals, or objects from a given

position to a selectd finishing position, subject to various ties. H the number of possible
positions is finite, then Depth First Search can be employd. It takes the foflowing fom

● Whenever you first come to a new position (including the
initial position at the start of the puzzle) fist W possible
positions that can be reached from it.

● From the starting position, make any move that leads to a
“new” position (one that has not yet occurred), at random.

● Repeat this as far as possible.
● If dl possible moves lead to “old” positions, backtrack

through the s~uence of moves that have been made untd you
fmd a position from which it is possible to move to a “new”
position. Then make that move.

● Henceforth ignore any move that has been backtrack.
● Repeat until you either reach the desired position, or return to

the starting position with no moves available, in which case the
puzde is impossible.

We’ll apply this to the woE-goat-cabbage puzzle. We represent the participants by
F = farmer, W = wolf, G = goat, C = cabbage, and positions by symbols such as FG II
WC] where the symbol II(“Styx”) represents the river. Here farmer and goat are on the
left bank, WOEand cabbage on the right.



step

1
2

3

4

5

6

7

8

9
10

11

12

current
position

WGC II -]

WC IIFGI

WC II G]

w II FGC]

~G II C]

[G II FWC]

~CG II W]

[C II FWG]

~CG II W]

[G II FWCI

~G IIWC]

[ -IIFWGC]

possible
moves

NC II FG]
WGC II -]

~C II G]

NC II FG]
v II FGC]

[C II FWG]

~C II G]

mG II C]
~ II FGC]

[G II FWC]

~G II C]

~CG II w

~G II WC]

[G II FWC]

[C II FWG]

~C II G]

~CG II w
- step 7

see step 6

[G II FWC]
[ -II FWGC]

4

move
made

WC II FG]

WC II G]

W II FGC]

mG II C]

[G II FWC]

mCG II M

[C II FWG]

~G II WC]

[ -II FWGC]

comments

starting position
old position
forcedby dgoritim
old position
randomchoiceof avtiable moves
other possible choice
old position
ford by rdgoritim
old position
forcedby dgoritim
old position
randomchoice @d movebut it
shows how the algorithmcopes)
old position
forcti by algorithm
old position }backtrack~Uti!
old position
baektraekto S&p 7
baetick to Skp 6

dtemative move from position6

old position
forcedby algorithm
finish

The algorithm does not rquire the graph to be drawn in advance: instead sections are
explored as needed. The solution takes a “wrong turn” at step 6 but the algorithm
successfully corrects this by backtracking.

.

This is a powerful way to solve dl sorts of puzzles that involve moving objects
around. Just as for mazes, the rules of the algorithm are local, and rquire only a record
of past moves.

Another tradition puzzle leads to a graph of considerable beauty. The Tower of
Hwi was marketed in 1883 by the great French recreational mathematician Edouard
Lucas (under the pseudonym M.Claus). In 1884, in h Nawe, M. De Parville described it
inromantic terms:

In the great temple at Benares, beneath the dome which

marks the centre of the world, rests a brass plate in which

are fixed three diamond needles, each a cubit high and as

thick as the body of a bee. On one of these needles, at the

creation, God placed sixty-four discs of pure gold, the

largest disc resting on the brass plate, and the others

getting smaller and smaller up to the top one. This is the

Tower of Bramah. Oay and night unceasingly the priests

transfer the discs from one diamond needle to another

according to the fixed and i-table laws of Bramah, which

require that the priest on duty must not move more than one

disc at a time and that he must place this disc on a needle

so that there is no smaller disc below it. When the

sixty-four discs shall have been thus transferred from the

needle on which at the creation God placed them to one of

the other needles, tower, taple, and Brahmins alike will

crumble into dust, and with a thunderclap the world will
vanish.
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The Tower of Hanoi is similar to the Tower of Brahma but with eight (or sometimes fewer)
discs. It is an old friend of recreational mathematicians, and it may seem that litde new can
be said about it. But, as we shti see, the graphical approach leads to a delightful surprise.

For definiteness, consider 3-disc Hami, that is, the Tower of Hanoi with just three
discs (Fig. 2). To construct the graph, we must fnst find a way to represent all possible
positions, then work out the legal moves between them, and finally draw up the graph.
I’ll describe what I actua~y did, because to begin with it’s not obvious how to proceed ---
and then we’ll observe, with twenty-twenty hindsight, that there is a much cleverer
method.

1 z 3

1

2

3

Fig .2. 3-tic Moi

How can we represent a position? Number the three discs as 1,2,3,
the smdest and 3 the iargest.Number the nedes 1,2.3 from left to ri~ht.

with 1 being
sUDDOSe that

we know on which of the-three nedes each disc is: for example disc 1 i: on ne~e 2, disc
2 on neede 1, and disc 3 on neede 2. Then we have completely determined the position,
because the rules imply that disc 3 must be utirwath disc 1. We can encode this
information in the squence 212, the three digits in turn representing the needes for discs
1, 2, and 3. Therefore each position in 3-disc Hanoi corresponds to a sequence of three
digits, each being 1,2, or 3.

It follows that there are precisely 3x3x3 = 27 different positions in 3-disc Hanoi.
But what are the permitted moves?

The sm~est disc on a given nede must be at the top. It thus corresponds to the
first appearance of the number of that ne~e in the sequence. Ewe move that disc, we
must move it to the top of the pile on some other nede, that is, we change the number so
that it becomes thefirst appearance of some other number.

For example, in the position 212 above, suppose we wish to move disc 1. This is
on nde 2, and corresponds to the f~st occurrence of 2 in the sequence. Suppose we
change this fust 2 to 1. Then this is (trivially!) the first occurrence of the digit 1; so the
move from 212 to 112 is legal. So is 212 to 312 kause the frost occurrence of 3 is in the
frostplace in the squence.

We may dso move disc 2, because the fwst occurrence of the symbol 1 is in the
second place in the sequence. But we cannot change it to 2, because 2 tieady appears
earher, in the frost place. A change to 3 is, however, legal. So we may change 212 to
232 (but wt to 222).

Finally disc 3 cannot be moved, because the third digit in the squence is a 2, and
this is mt the fust occurrence of a 2.

To sum up: from position 212 we can make Iegd moves to 112, 312, and 232, and
only these.

We can list dl 27 positions and dl possible moves by following the above ties: the
result is:
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‘l’he legal moves in 3-disc Hanoi

start here... finkh on

111 211
112 212
113 213
121 221
122 222
123 223
131 231
132 232
133 233
211 111
212 112
213 113
221 121
222 122
223 123
231 131
232 132
233 133
311 111
312 112
313 113
321 121
322 122
323 123
331 131
332 132
333 133

any of

311
312
313
321
322
323
331
332
333
311
312
313
321
322
323
331
232
333
211
212
213
221
222
223
231
232
233

these...

113
112
131
132
133
121
122
123
231
232
233
223

221
211
212
213
321
322
323
311
312
313
332
331

All but three positions give exactiy three legal moves, but the other three positions give
only two legal moves. my?

me next task rquires care and accuracy, but titde thought. Draw 27 dots on a
pieee of paper, label them with the 27 positidns, and draw lifies to represent the legal
moves. A bit of thought, rearranging the vertices and edges to avoid overlaps, leads to
(Fig.3).

Fig.3. Graphof 3-tix tioi.

Something that pretty can’t be coincidence!
But before we investigate why the graph has such a realm form, let’s observe that
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it answers the ongind question. To transfer W three discs from nede 1 (position
needle 2 (position 222) we merely run down the left-hand edge, making the moves

111+211+231+331+332+132+ 122+222

lll)to

Indeed, by consulting the graph, it is clear that we can get from any position to any other
--- and it is dso clear what the quickest route is.

Onto a deeper question: what is the explanation for the remarkable structure of
Fig.3?

The graph consists of three copies of a smaller graph, linked by three single edges
to form a mangle. But each smaller graph in turn has a similar triple structure. Why
does everything appear in threes, and why are the pieces linkd in this manner?

If you work out the graph for 2-disc Hanoi you will find that it looks exacdy Me
the top third of Fig.9 Even the labels on the vertices are the same, except that the find 1 is
deleted. h fact it is easy to see this, withut working out the graph again. You can play
2-disc Hanoi with three discs: just ignore disc 3. Suppose disc 3 stays on nede 1.
Then we are playing 3-disc Hanoi, but restricting attention to those 3-digit sequences that
end in 1, such as 131 or 221. But these are precisely the sequences in the top third of the
figure. Similarly 3-disc Hanoi with disc 3 fried on nede 2 --- that is, disguised 2-disc
Hanoi --- corresponds to the lower left third, and 3-disc Hanoi with disc 3 fixed on nede
3 corresponds to the lower right third.

This explains why we see three copies of the 2-disc Hanoi graph in the 3-disc
graph. And a Iitde further thought shows that these three stigraph are joind by just
three single edges in the full puzzle. To join up the subgraphs, we must move disc 3.
When can we do this? Ody when one nede is empty, one contains disc 3, and the other
contains ti the remaining discs! Then we can move disc 3 to the empty nee~e, creating
an empty nede where it came form, and leaving the other discs untouchd. There are six
such positions, and the possible moves join them in pairs.

The same argument works for any number of discs. The graph for 4-disc Hanoi,
for example, consists of three copies of the 3-disc graph, finked at the corners like a
triangle. Each subgraph describes 4-disc Hanoi with disc 4 fixd on one of the three
needes; but such a game is just 3-disc Hanoi in disguise. And so on. We say that the
Tower of Hanoi puzzle has a recursive structurq the solution to (n+l)-disc Hanoi is
determined by that for n-disc Hanoi according to a fixed rule. The recursive structure
explains why the graph for (n+l)-disc Hanoi can be built from that for n-disc Hanoi. The
triangular symmetry arises because the rules treat needes 1, 2, and 3 in exactiy the same
way. You can deduce the graph for 64-disc Bramah, or any other number of discs, by
repeat~y applying this rule to the graph for O-discHanoi, which is a single dot!

Two finrd observations.

1 As the number of discs becomes larger and larger, the graph becomes more and
more intricate, looking more and more like the Sierpimki gaket (Fig. 4 overle@. This
shape is a fiactal, having dettied sncture on ~ scrdes. This is a striking and surprising
result, because the puzzle was invented almost a century before fractis were.

2 Pascal’s famous triangle of binomial coefficients

1
11

121
1331

14641

is defined by the property that each number is the sum of the two above it to left and right.
If you colour odd numbers black and even numbers white, you get another Sierpinski
gasket shape.
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Fig. 4. The Sie~hski GaskeL
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