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Gresham Geometry Lecture
9 October 1996

Games, Graphs, and Gaskets

Mazes are a common form of puzzle. The aim of this lecture is to show that the
same principles that can be used to solve mazes can also be used to solve 'logical mazes' ---
mathematical problems of many kinds.

One way to solve a maze is to look at a map and block off all the dead ends. But
what if you don't have a map? Well, you can try the left-hand-on-wall trick: when you
first enter the labyrinth --- or any maze, come to that --- you put your left hand on the wall,
and keep it there. That guarantees that eventually you'll find your way back to the start; but
not necessarily that you will find your way to the desired goal in the maze. (You won't get
lost, at least.) What happens is that you traverse one complete connected system of walls,
and if that system isn't connected to the goal, it gets you nowhere useful.

There is a more abstract formulation of the whole problem. The most important
thing about a maze is how the junctions connect up. The lengths of the passages don't
affect the path you take to get out, just how long it takes. So threading a maze is a
topological problem. We can represent the topological essentials by a graph: its nodes
correspond to the junctions in the maze, its edges correspond to the tunnels. The problem
of getting out of a maze --- or of finding a particular place within it --- thus become that of
traversing a graph_from one node to another.

There is a key theorem that governs the possibility of doing this. Two nodes can
be joined by a continuous path if and only if they lie in the same connected component of
the graph. A connected component is the set of all nodes that can be reached from a given
one by a continuous path. So what the therorem says is that two nodes can be joined by a
continuous path if and only if there exists a continuous path that joins them. This may
sound trivial, and it is, but it points to an important concept: connectivity. However, it's
useless for solving the problem.

A more constructive approach is to devise a maze-threading algorithm. The word
comes from the arab mathematician Muhammad ibn Musa abu Abdallah al-Khorezmi al-
Madjusi al-Qutrubilli. 'Al-Khorezmi' became 'al-Gorizmi', then 'algorism’, and finally
‘algorithm’.  It's used to describe a specific procedure, a computer program. The first
general maze-threading algorithm was invented around 1892 by M. Trémaux. It was
rediscovered nearly a century later by J.Hopcroft and R.Tarjan in the context of graph
theory, which is just the same as mazes, really. They named it Depth First Search or the
DFS algorithm: it goes like this.

Depth First Search
This visits all nodes in the same connected component as the starting node: in
particular it can if desired be terminated when it hits a particular 'finishing' node.

. Begin at any chosen node.
. Visit any adjacent node that has not yet been visited.
. Repeat this as far as possible.

If all adjacent nodes have been visted already, backtrack

through the sequence of nodes that have been visted until you

find one that is adjacent to an unvisited node: then visit that one.
. Delete any edge that has been backtracked.

. Repeat until you return to the starting node and there are no
unvisited nodes adjacent to it.
. Then you have visited all nodes in the connected component of

the graph that contains the starting node.



Depth First Search is especially appropriate for threading mazes, because it is
possible to program the algorithm so that it can be carried out without having a map of the
maze. It involves only local rules at nodes, plus a record of nodes and edges already
used. You can explore the graph and traverse it as you go. The name is fairly
appropriate: the idea is to give top priority to pushing deeper into the maze. The algorithm
is quite efficient: the number of steps is at most twice the number of edges in the graph.

Wolf, Goat, Cabbage

Many puzzles are really maze-threading problems in disguise: the objective is to
thread a logical maze. For example, recall the famous old problem of a farmer who has to
cross a river. He has with him a wolf, a goat, and a cabbage. The boat can hold only the
farmer plus one item of 'produce’; but he can't leave the wolf alone with the goat, because
the goat will get eaten, and he can't leave the goat alone with the cabbage, because the
cabbage will get eaten. What does he do? This puzzle is usually attributed to the mediaeval
mathematician Alcuin (735-804). It is certainly quite ancient, and appears in Ozanam's
Récréations Mathématiques et Physiques of 1694.

The important thing is which side of the river each of the three items is on. We can
represent the position of a single item by the digits 0 and 1, using O to represent this side
of the river and 1 to represent the far side. Thus the configuration of all three items is
represented by a triple (w,g,c) in three-dimensional wolf-goat-cabbage space. For example
(w,8,¢) = (1,0,1) represents w = 1, g = 0, ¢ = 1; that is, the wolf on the far side, the goat
on this side, and the cabbage on the far side.

How many configurations are there? Well, each coordinate w, g, or ¢ can take one
of the two values 0 or 1. Thus there are 2x2x2 = 8 possibilities. What's more, they have
a beautiful geometric structure: they are the eight vertices of a unit cube in wolf-goat-
cabbage space (Fig.1).
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Fig.1 One solution. Find the other.

We may move only a single item at a time; that is, we may traverse only the edges
of the cube. But some edges are forbidden.  For example, the edge from (0,0,0) to
(1,0,0) corresponds to taking the wolf across the river on its own. But this leaves goat and
cabbage unchaperoned, so we would shortly be greeted by a fat goat and no cabbage. In



fact these gastronomic constraints rule out exactly four edges, which are drawn in grey.
The rest, representing permissible moves,will be coloured black.

The problem thus geometrized becomes: can we start at (0,0,0) --- all items on this
side --- and get to (1,1,1) --- all items on the other side --- passing only along green edges
of the cube? And of course the answer is 'yes'. Indeed, from a topological viewpoint, we
can lay the edges out flat, and the solution stares us in the face. There are two solutions,
in fact, and only two ifwe avoid unnecessary repetitions.  They differ only by a
wolf/cabbage symmetry operation.

How to Get Across With Your Produce Intact

Solution 1
(0,0,0) Start
(0,1,0) Take goat over
(0,1,1) (Return and) take cabbage over
(0,0,1) Bring back goat
(1,0,1) Take wolf over
(1,1,1) (Return and) take goat over.

Solution 2

0
,0) Take goat over
,0) (Return and) take wolf over
,0) Bring back goat
,0,1) Take cabbage over

1

0
0
1,
1
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1,1,1) (Return and) take goat over.
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Notice what we did to represent the puzzle geometrically. Each possible position in the
puzzle can be thought of as a node in a graph, and each move from one position to another
‘as an edge joining the corresponding nodes. You can also use depth first search instead of
visual inspection. Here's the general procedure when you do not have a ‘'map' of the
graph, but can only construct it edge by edge as you go.

Using Depth First Search to Solve Puzzles.

Many puzzles involve the movement of people, animals, or objects from a given
posmon to a selected finishing position, subject to various rules. If the number of possible
posmons is finite, then Depth First Search can be employed. It takes the following form:

Whenever you first come to a new position (including the
initial position at the start of the puzzle) list all possible
positions that can be reached from it.

. From the starting position, make any move that leads to a
"new" position (one that has not yet occurred), at random.

. Repeat this as far as possible.

. If all possible moves lead to "old" positions, backtrack

through the sequence of moves that have been made unul you
find a position from which it is possible to move to a "new"
position. Then make that move.
. Henceforth ignore any move that has been backtracked.
. Repeat until you either reach the desired position, or return to
the starting position with no moves available, in which case the
puzzle is impossible.
We'll apply this to the wolf-goat-cabbage puzzle. We represent the participants by
F = farmer, W = wolf, G = goat, C = cabbage, and positions by symbols such as [FG i
WC] where the symbol Il ("Styx") represents the river. Here farmer and goat are on the
left bank, wolf and cabbage on the right.



current possible move
step position moves made comments
1 (FWGCi -] [WC Il FG) [WC Il FG] starting position
2 [WC Il FG] [FWGC I -] old position
[FWCIG] [FWC I G] forced by algorithm
3 [FWCIG] [WC I FG] old position
[W I FGC] [W il FGC] random choice of available moves
[CIFWG] other possible choice
4 [W Il FGC] [FWCIIG] old position
[FWGIC] FWG I C] forced by algorithm
5 [FWG I C] [W I FGC] old position
[G I FWC] [G I FWC] forced by algorithm
6 [GIFWC] [FWGIIC] old position
[FCG Il W] [FCG liw] random choice (bad move but it
[FG 1 WC] shows how the algorithm copes)
7 [FCG I W] [GUIFWC] old position
[CIFWG] [CHFWG] forced by algorithm
8 [CIFWG] [FWCIG] old position }backu'ack required!
[FCG i W] old position
9 [FCG I W] see step 7 backtrack to step 7
10 [GIFWC] see step 6 backtrack to step 6
tFG It WC] alternative move from position 6
11 [FG I W(C] [GIFWC] old position
[ - IFWGC] [ - IFWGC] forced by algorithm
12 [- I FWGC] finish

The algorithm does not require the graph to be drawn in advance: instead sections are
explored as needed. The solution takes a "wrong turn" at step 6 but the algorithm

successfully corrects this by backtracking.

This is a powerful way to solve all sorts of puzzles that involve moving objects
around. Just as for mazes, the rules of the algorithm are local, and require only a record

of past moves.

Another traditional puzzle leads to a graph of considerable beauty. The Tower of
Hanoi was marketed in 1883 by the great French recreational mathematician Edouard
Lucas (under the pseudonym M.Claus). In 1884, in La Nature, M. De Parville described it

in romantic terms:

In the great temple at Benares, beneath the dome which
marks the centre of the world, rests a brass plate in which
each a cubit high and as

are fixed three diamond needles,

thick as the body of a bee.

largest disc resting
getting smaller and smaller up to the top one.
Day and night
from one

Tower of Bramah.

transfer the discs
according to the fixed and

on the

brass

On one of these needles, at the
creation, God placed sixty-four

discs of pure gold, the

diamond

plate,

and the others

This 1is the

unceasingly the priests
needle to another
immutable laws of Bramah, which

require that the priest on duty must not move more than one
disc at a time and that he must place this disc on a needle
so that there is no smaller disc below it. When the
sixty-four discs shall have been thus transferred from the
needle on which at the creation God placed them to one of
the other needles, tower, temple, and Brahmins alike will
crumble into dust, and with a thunderclap the world will
vanish.



The Tower of Hanoi is similar to the Tower of Brahma but with eight (or sometimes fewer)
discs. Itis an old friend of recreational mathematicians, and it may seem that little new can
be said about it. But, as we shall see, the graphical approach leads to a delightful surprise.

For definiteness, consider 3-disc Hanoi, that is, the Tower of Hanoi with just three
discs (Fig.2). To construct the graph, we must first find a way to represent all possible
positions, then work out the legal moves between them, and finally draw up the graph.
I'l describe what I actually did, because to begin with it's not obvious how to proceed ---
and then we'll observe, with twenty-twenty hindsight, that there is a much cleverer
method.

Fig.2. 3-disc Hanoi

How can we represent a position? Number the three discs as 1,2,3, with 1 being
the smallest and 3 the largest. Number the needles 1,2,3 from left to right. Suppose that
we know on which of the three needles each disc is: for example disc 1 is on needle 2, disc
2 on needle 1, and disc 3 on needle 2. Then we have completely determined the position,
because the rules imply that disc 3 must be underneath disc 1. We can encode this
information in the sequence 212, the three digits in turn representing the needles for discs
1,2, and 3. Therefore each position in 3-disc Hanoi corresponds to a sequence of three
digits, each being 1, 2, or 3.

It follows that there are precisely 3x3x3 = 27 different positions in 3-disc Hanoi.
But what are the permitted moves?

The smallest disc on a given needle must be at the top. It thus corresponds to the
Jfirst appearance of the number of that needle in the sequence. If we move that disc, we
must move it to the top of the pile on some other needle, that is, we change the number so
that it becomes the first appearance of some other number.

For example, in the position 212 above, suppose we wish to move disc 1.  This is
on needle 2, and corresponds to the first occurrence of 2 in the sequence.  Suppose we
change this first 2 to 1. Then this is (trivially!) the first occurrence of the digit 1; so the
move from 212 to 112 is legal. Sois 212 to 312 because the first occurrence of 3 is in the
first place in the sequence. '

We may also move disc 2, because the first occurrence of the symbol 1 is in the
second place in the sequence. But we cannot change it to 2, because 2 already appears
earlier, in the first place. A change to 3 is, however, legal. So we may change 212 to
232 (but not to 222).

Finally disc 3 cannot be moved, because the third digit in the sequence is a 2, and
this is not the first occurrence of a 2.

To sum up: from position 212 we can make legal moves to 112, 312, and 232, and
only these.

We can list all 27 positions and all possible moves by following the above rules: the
result is:



The legal moves in 3-disc Hanoi

start here... finish on any of these..
111 211 311

112 212 312 113
113 213 313 112
121 221 321 131
122 222 322 132
123 223 323 133
131 231 331 121
132 232 332 122
133 ’ 233 333 123
211 111 311 231
212 112 - 312 232
213 113 313 233
221 121 321 223
222 122 322

223 123 323 221
231 131 331 211
232 132 232 212
233 133 333 213
311 111 211 321
312 112 212 322
313 113 213 323
321 121 221 311
322 122 222 312
323 123 223 313
331 131 231 332
332 132 232 331
333 133 233

All but three positions give exactly three legal moves, but the other three positions give
only two legal moves. Why?

The next task requires care and accuracy, but little thought. Draw 27 dots on a
piece of paper, label them with the 27 positions, and draw lines to represent the legal
nll?oves. A bit of thought, rearranging the vertices and edges to avoid overlaps, leads to
(Fig.3). -

Fig.3. Graph of 3-disc Hanoi.

Something that pretty can't be coincidence!
But before we investigate why the graph has such a regular form, let's observe that



it answers the original question. To transfer all three discs from needle 1 (position 111) to
needle 2 (position 222) we merely run down the left-hand edge, making the moves

111 - 211 5231 5331 5332 -5 132 5 122 - 222
Indeed, by consulting the graph, itis clear that we can get from any position to any other
--- and it is also clear what the quickest route is.

Fic 32 On to a deeper question: what is the explanation for the remarkable structure of
ig.3?

The graph consists of three copies of a smaller graph, linked by three single edges
to form a triangle. But each smaller graph in turn has a similar triple structure. ~ Why
does everything appear in threes, and why are the pieces linked in this manner?

If you work out the graph for 2-disc Hanoi you will find that it looks exactly like
the top third of Fig.9 Even the labels on the vertices are the same, except that the final 1 is
deleted. In factit is easy to see this, without working out the graph again. You can play
2-disc Hanoi with three discs: just ignore disc 3. Suppose disc 3 stays on needle 1.
Then we are playing 3-disc Hanoi, but restricting attention to those 3-digit sequences that
endin 1, such as 131 or 221. But these are precisely the sequences in the top third of the
figure. Similarly 3-disc Hanoi with disc 3 fixed on needle 2 --- that is, disguised 2-disc
Hanoi --- corresponds to the lower left third, and 3-disc Hanoi with disc 3 fixed on needle
3 corresponds to the lower right third.

This explains why we see three copies of the 2-disc Hanoi graph in the 3-disc
graph. And a little further thought shows that these three subgraphs are joined by just
three single edges in the full puzzle. To join up the subgraphs, we must move disc 3.
When can we do this? Only when one needle is empty, one contains disc 3, and the other
contains all the remaining discs! Then we can move disc 3 to the empty needle, creating
an empty needle where it came form, and leaving the other discs untouched. There are six
such positions, and the possible moves join them in pairs.

The same argument works for any number of discs.  The graph for 4-disc Hanoi,
for example, consists of three copies of the 3-disc graph, linked at the corners like a
triangle. Each subgraph describes 4-disc Hanoi with disc 4 fixed on one of the three
needles; but such a game is just 3-disc Hanoi in disguise. And so on. We say that the
Tower of Hanoi puzzle has a recursive structure; the solution to (n+1)-disc Hanoi is
determined by that for n-disc Hanoi according to a fixed rule. The recursive structure
explains why the graph for (n+1)-disc Hanoi can be built from that for n-disc Hanoi. The
triangular symmetry arises because the rules treat needles 1, 2, and 3 in exactly the same
way. You can deduce the graph for 64-disc Bramah, or any other number of discs, by
repeatedly applying this rule to the graph for 0-disc Hanoi, which is a single dot!

Two final observations.

1 As the number of discs becomes larger and larger, the graph becomes more and
more intricate, looking more and more like the Sierpinski gasket (Fig.4 overleaf). This
shape is a fractal, having detailed structure on all scales.  This is a striking and surprising
result, because the puzzle was invented almost a century before fractals were.

2 Pascal's famous triangle of binomial coefficients

1
1 1
1 21
1 331
1 4 6 41

is defined by the property that each number is the sum of the two above it to left and right.
If you colour odd numbers black and even numbers white, you get another Sierpinski
gasket shape.



\

Fig.4. The Sierpinski Gasket.
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mathematical problems of many kinds.

One way to solve a maze is to look at a map and block off all the dead ends. But
what if you don't have a map? Well, you can try the left-hand-on-wall trick: when you
first enter the labyrinth --- or any maze, come to that --- you put your left hand on the wall,
and keep it there. That guarantees that eventually you'll find your way back to the start; but
not necessarily that you will find your way to the desired goal in the maze. (You won't get
lost, at least.) What happens is that you traverse one complete connected system of walls,
and if that system isn't connected to the goal, it gets you nowhere useful.

There is a more abstract formulation of the whole problem. The most important
thing about a maze is how the junctions connect up. The lengths of the passages don't
affect the path you take to get out, just how long it takes. So threading a maze is a
topological problem. We can represent the topological essentials by a graph: its nodes
correspond to the junctions in the maze, its edges correspond to the tunnels. The problem
of getting out of a maze --- or of finding a particular place within it --- thus become that of
traversing a graph_from one node to another.

There is a key theorem that governs the possibility of doing this. Two nodes can
be joined by a continuous path if and only if they lie in the same connected component of
the graph. A connected component is the set of all nodes that can be reached from a given
one by a continuous path. So what the therorem says is that two nodes can be joined by a
continuous path if and only if there exists a continuous path that joins them.  This may
sound trivial, and it is, but it points to an important concept: connectivity. However, it's
useless for solving the problem.

A more constructive approach is to devise a maze-threading algorithm. The word
comes from the arab mathematician Muhammad ibn Musa abu Abdallah al-Khorezmi al-
Madjusi al-Qutrubilli. 'Al-Khorezmi' became 'al-Gorizmi', then ‘algorism’, and finally
‘algorithm’.  It's used to describe a specific procedure, a computer program. The first
general maze-threading algorithm was invented around 1892 by M. Trémaux. It was
rediscovered nearly a century later by J.Hopcroft and R.Tarjan in the context of graph
theory, which is just the same as mazes, really. They named it Depth First Search or the
DFS algorithm: it goes like this.

Depth First Search
This visits all nodes in the same connected component as the starting node: in
particular it can if desired be terminated when it hits a particular 'finishing' node.

. Begin at any chosen node.
. Visit any adjacent node that has not yet been visited.
. Repeat this as far as possible.

If all adjacent nodes have been visted already, backtrack
through the sequence of nodes that have been visted until you
find one that is adjacent to an unvisited node: then visit that one.

. Delete any edge that has been backtracked.

. Repeat until you return to the starting node and there are no
unvisited nodes adjacent to it.

. Then you have visited all nodes in the connected component of

the graph that contains the starting node.



Depth First Search is especially appropriate for threading mazes, because it is
possible to program the algorithm so that it can be carried out without having a map of the
maze. It involves only local rules at nodes, plus a record of nodes and edges already
used. You can explore the graph and traverse it as you go. The name is fairly
appropriate: the idea is to give top priority to pushing deeper into the maze. The algorithm
is quite efficient: the number of steps is at most twice the number of edges in the graph.

Wolf, Goat, Cabbage

Many puzzles are really maze-threading problems in disguise: the objective is to
thread a logical maze. For example, recall the famous old problem of a farmer who has to
cross a river. He has with him a wolf, a goat, and a cabbage. The boat can hold only the
farmer plus one item of 'produce’; but he can't leave the wolf alone with the goat, because
the goat will get eaten, and he can't leave the goat alone with the cabbage, because the
cabbage will get eaten. What does he do? This puzzle is usually attributed to the mediaeval
mathematician Alcuin (735-804). It is certainly quite ancient, and appears in Ozanam's
Récréations Mathématiques et Physiques of 1694.

The important thing is which side of the river each of the three items is on. We can
represent the position of a single item by the digits 0 and 1, using O to represent his side
of the river and 1 to represent the far side. Thus the configuration of all three items is
represented by a triple (w,g,c) in three-dimensional wolf-goat-cabbage space. For example
(w,g,c) = (1,0,1) represents w = 1, g = 0, ¢ = 1; that is, the wolf on the far side, the goat
on this side, and the cabbage on the far side.

How many configurations are there? Well, each coordinate w, g, or ¢ can take one
of the two values 0 or 1. Thus there are 2x2x2 = 8 possibilities. What's more, they have
a beautiful geometric structure: they are the eight vertices of a unit cube in wolf-goat-
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Fig.1 One solution. Find the other.

We may move only a single item at a time; that is, we may traverse only the edges
of the cube. But some edges are forbidden.  For example, the edge from (0,0,0) to
(1,0,0) corresponds to taking the wolf across the river on its own. But this leaves goat and
cabbage unchaperoned, so we would shortly be greeted by a fat goat and no cabbage. In



fact these gastronomic constraints rule out exactly four edges, which are drawn in grey.
The rest, representing permissible moves,will be coloured black.

The problem thus geometrized becomes: can we start at (0,0,0) --- all items on this
side --- and get to (1,1,1) --- all items on the other side --- passing only along green edges
of the cube? And of course the answer is 'yes'. Indeed, from a topological viewpoint, we
can lay the edges out flat, and the solution stares us in the face. There are two solutions,
in fact, and only two ifwe avoid unnecessary repetitions.  They differ only by a
wolf/cabbage symmetry operation.

How to Get Across With Your Produce Intact

Solution 1
(0,0,0) Start
(0,1,0) Take goat over
(0,1,1) (Return and) take cabbage over
(0,0,1) Bring back goat
(1,0,1) Take wolf over
(1,1,1) (Return and) take goat over.

Solution 2

0
,1,0) Take goat over

,0) (Return and) take wolf over
,0) Bring back goat
,0,1) Take cabbage over
,1,1) (Return and) take goat over.

Notice what we did to represent the puzzle geometrically. Each possible position in the
puzzle can be thought of as a node in a graph, and each move from one position to another
as an edge joining the corresponding nodes. You can also use depth first search instead of
visual inspection. Here's the general procedure when you do not have a 'map' of the
graph, but can only construct it edge by edge as you go.

Using Depth First Search to Solve Puzzles.

Many puzzles involve the movement of people, animals, or objects from a given
position to a selected finishing position, subject to various rules. If the number of possible
positions is finite, then Depth First Search can be employed. It takes the following form:

. Whenever you first come to a new position (including the

initial position at the start of the puzzle) list all possible
positions that can be reached from it.

. From the starting position, make any move that leads to a
"new" position (one that has not yet occurred), at random.

. Repeat this as far as possible.

. If all possible moves lead to "old" positions, backtrack

through the sequence of moves that have been made until you
find a position from which it is possible to move to a "new"
position. Then make that move.

. Henceforth ignore any move that has been backtracked.

. Repeat until you either reach the desired position, or return to
the starting position with no moves available, in which case the
puzzle is impossible.

We'll apply this to the wolf-goat-cabbage puzzle. We represent the participants by
F = farmer, W = wolf, G = goat, C = cabbage, and positions by symbols such as [FG ||
WC] where the symbol Il ("Styx") represents the river. Here farmer and goat are on the
left bank, wolf and cabbage on the right.



current possible move
step position moves made comments
1 [FWGC I -} [WC Il FG] [WC I FG] starting position
2 [WC I FG] [FWGCI -] old position
[FWCI G] [FWC iG] forced by algorithm
3 [FWCIIG] IWC I FG] old position
W | FGC] [W Il FGC] random choice of available moves
[CHFWG] other possible choice
4 [W I FGC] [FWCIG] old position
[FWGIIC] [FWGIC] forced by algorithm
5 [FWG I C}] [W Il FGC] old position
[G I FWC(C] [GIFW(] forced by algorithm
6 [GIIFWC] [FWG I C] old position
{FCG Il W] [FCG Il W] random choice (bad move but it
[FG Il WC] shows how the algorithm copes)
7 [FCG Il W] [G I FWC] old position
{CIFWG] [CIFWG] forced by algorithm
8 [CIIFWG] [FWCIiG] old position }backu'ack required!
[FCG I W] old position
9 [FCG I W] see step 7 backtrack to step 7
10 [G IFWC] see step 6 backtrack to step 6
[FG I W(C) alternative move from position 6
11 [FG I WC] [GIIFWC] old position
[ - IFWGC] [ - NFWGC] forced by algorithm
12 [- IFWGC] finish

The algorithm does not require the graph to be drawn in advance: instead sections are
explored as needed. The solution takes a "wrong turn" at step 6 but the algorithm
successfully corrects this by backtracking.

This is a powerful way to solve all sorts of puzzles that involve moving objects
around. Just as for mazes, the rules of the algorithm are local, and require only a record
of past moves.

Another traditional puzzle leads to a graph of considerable beauty. The Tower of
Hanoi was marketed in 1883 by the great French recreational mathematician Edouard
Lucas (under the pseudonym M.Claus). In 1884, in La Nature, M. De Parville described it

in romantic terms:

In the great temple at Benares, beneath the dome which
marks the centre of the world, rests a brass plate in which
are fixed three diamond needles, each a cubit high and as
thick as the body of a bee. On one of these needles, at the
creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others
getting smaller and smaller up to the top one. This 1is the
Tower of Bramah. Day and night unceasingly the priests
transfer the discs from one diamond needle to another
according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one
disc at a time and that he must place this disc on a needle
so that there is no smaller disc below it. When the
sixty-four discs shall have been thus transferred from the
needle on which at the creation God placed them to one of
the other needles, tower, temple, and Brahmins alike will
crumble into dust, and with a thunderclap the world will
vanish.



The Tower of Hanoi is similar to the Tower of Brahma but with eight (or sometimes fewer)
discs. Itis an old friend of recreational mathematicians, and it may seem that little new can
be said about it. But, as we shall see, the graphical approach leads to a delightful surprise.

For definiteness, consider 3-disc Hanoi, that is, the Tower of Hanoi with just three
discs (Fig.2). To construct the graph, we must first find a way to represent all possible
positions, then work out the legal moves between them, and finally draw up the graph.
I'll describe what I actually did, because to begin with it's not obvious how to proceed ---
and then we'll observe, with twenty-twenty hindsight, that there is a much cleverer
method.

Fig.2. 3-disc Hanoi

How can we represent a position? Number the three discs as 1,2,3, with 1 being
the smallest and 3 the largest. Number the needles 1,2,3 from left to right. Suppose that
we know on which of the three needles each disc is: for example disc 1 is on needle 2, disc
2 on needle 1, and disc 3 on needle 2. Then we have completely determined the position,
because the rules imply that disc 3 must be underneath disc 1. We can encode this
information in the sequence 212, the three digits in turn representing the needles for discs
1, 2, and 3. Therefore each position in 3-disc Hanoi corresponds to a sequence of three
digits, each being 1, 2, or 3.

It follows that there are precisely 3x3x3 = 27 different positions in 3-disc Hanoi.
But what are the permitted moves?

The smallest disc on a given needle must be at the top. It thus corresponds to the
first appearance of the number of that needle in the sequence. If we move that disc, we
must move it to the top of the pile on some other needle, that is, we change the number so
that it becomes the first appearance of some other number.

For example, in the position 212 above, suppose we wish to move disc 1.  This is
on needle 2, and corresponds to the first occurrence of 2 in the sequence.  Suppose we
change this first 2 to 1. Then this is (trivially!) the first occurrence of the digit 1; so the
move from 212 to 112 is legal. Sois 212 to 312 because the first occurrence of 3 is in the
first place in the sequence.

We may also move disc 2, because the first occurrence of the symbol 1 is in the
second place in the sequence. But we cannot change it to 2, because 2 already appears
earlier, in the first place. A change to 3 is, however, legal. So we may change 212 to
232 (but not to 222).

Finally disc 3 cannot be moved, because the third digit in the sequence is a 2, and
this is not the first occurrence of a 2.

To sum up: from position 212 we can make legal moves to 112, 312, and 232, and
only these.

We can list all 27 positions and all possible moves by following the above rules: the
result is:




The legal moves in 3-disc Hanoi

start here...

111
112
113
121
122
123
131
132
133
211
212
213
221
222
223
231
232
233
311
312
313
321
322
323
331
332
333

finish on any of these..

211
212
213
221
222
223
231
232
233
111
112
113
121
122
123
131
132
133
111
112
113
121
122
123
131
132
133

311
312
313
321
322
323
331
332
333
311
312
313
321
322
323
331
232
333
211
212
213
221
222
223
231
232
233

113
112
131
132
133
121
122
123
231
232
233
223

221
211
212
213
321
322
323
311
312
313
332
331

All but three positions give exactly three legal moves, but the other three positions give

only two legal moves. Why?
The next task requires care and accuracy, but little thought.

Draw 27 dots on a

piece of paper, label them with the 27 positions, and draw lines to represent the legal
moves. A bit of thought, rearranging the vertices and edges to avoid overlaps, leads to

(Fig.3).

. Fig.3. Graph of 3-disc Hanoi.

Something that pretty can't be coincidence!

But before we investigate why the graph has such a regular form, let's observe that



it answers the original question. To transfer all three discs from needle 1 (position 111) to
needle 2 (position 222) we merely run down the left-hand edge, making the moves

111 5211 5231 5331 5332 5132 5 122 - 222
Indeed, by consulting the graph, it is clear that we can get from any position to any other
--- and it is also clear what the quickest route is.

On to a deeper question: what is the explanation for the remarkable structure of
Fig.3?

The graph consists of three copies of a smaller graph, linked by three single edges
to form a triangle. But each smaller graph in turn has a similar triple structure. =~ Why
does everything appear in threes, and why are the pieces linked in this manner?

If you work out the graph for 2-disc Hanoi you will find that it looks exactly like
the top third of Fig.9 Even the labels on the vertices are the same, except that the final 1 is
deleted. In factitis easy to see this, without working out the graph again. You can play
2-disc Hanoi with three discs: just ignore disc 3. Suppose disc 3 stays on needle 1.
Then we are playing 3-disc Hanoi, but restricting attention to those 3-digit sequences that
endin 1, such as 131 or 221. But these are precisely the sequences in the top third of the
figure. Similarly 3-disc Hanoi with disc 3 fixed on needle 2 --- that is, disguised 2-disc
Hanoi --- corresponds to the lower left third, and 3-disc Hanoi with disc 3 fixed on needle
3 corresponds to the lower right third.

This explains why we see three copies of the 2-disc Hanoi graph in the 3-disc
graph. And a little further thought shows that these three subgraphs are joined by just
three single edges in the full puzzle. To join up the subgraphs, we must move disc 3.
When can we do this? Only when one needle is empty, one contains disc 3, and the other
contains all the remaining discs! Then we can move disc 3 to the empty needle, creating
an empty needle where it came form, and leaving the other discs untouched. There are six
such positions, and the possible moves join them in pairs.

The same argument works for any number of discs.  The graph for 4-disc Hanoi,
for example, consists of three copies of the 3-disc graph, linked at the corners like a
triangle. Each subgraph describes 4-disc Hanoi with disc 4 fixed on one of the three
needles; but such a game is just 3-disc Hanoi in disguise. And so on. We say that the
Tower of Hanoi puzzle has a recursive structure; the solution to (n+1)-disc Hanoi is
determined by that for n-disc Hanoi according to a fixed rule. The recursive structure
explains why the graph for (n+1)-disc Hanoi can be built from that for n-disc Hanoi. The
triangular symmetry arises because the rules treat needles 1, 2, and 3 in exactly the same
way. You can deduce the graph for 64-disc Bramah, or any other number of discs, by
repeatedly applying this rule to the graph for 0-disc Hanoi, which is a single dot!

Two final observations.

1 As the number of discs becomes larger and larger, the graph becomes more and
more intricate, looking more and more like the Sierpinski gasket (Fig.4 overleaf). This
shape is a fractal, having detailed structure on all scales. This is a striking and surprising
result, because the puzzle was invented almost a century before fractals were.

2 Pascal's famous triangle of binomial coefficients

1
1 1
1 21
1 3 31
1 4 6 41

is defined by the property that each number is the sum of the two above it to left and right.
If you colour odd numbers black and even numbers white, you get another Sierpinski
gasket shape.



Fig.4. The Sierpinski Gasket.
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