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Queen Dido’s Hide

Ian Stewart 10 March 1998

Why are soap bubbles spherical’? The energy in a film of soap depends on its
area. The sm~er the area, the smaller the energy. Nature is fundamentally lazy. and does
everything using the least energy possible, So a soap film always has the smallest area
possible — consistent with doing its job. The job of a bubble is to contain a given quantity ‘
of air. The surface of smallest area that contains a given quantity of air is a sphere,
That’s why soap bubbles are round. But why is the surface of smallest area th3t contains a
given qumtity of air a sphere? That’s a question for mathematics.

Mathematics can help us find which thing of a given kind is the longest, the
shortest, the best, the biggest, the stilest, or the cheapest. What shape should a piece of
card be in order to make the largest box? You can imagine that a company that sells
grmeries, say, would be interested in such que$tions. Similarly, an airline company
wishing to run services between a number of cities would be interested in finding out how
to schedule the flights so as to maximise their profits. Problems of this type come under
the general heading of ‘optimization’ — finding the best solution,

Dido’s Hide
The earliest recorded example of a mathematical solutit)n coan optimization problem

is tie ancient Greek legend of Queen Dido. Dido, it is said, was given a bull hide and told
that she could take possession of whatever land she couJd enclose with it. She cut the
hide into an enormously long, thin strip, and manged it in a huge circle, thereby enclos~irtg
the largest possible area of land. On it, she founded the city of Carthage,

Dido found the answer to the two-dimensiond version of the soap bubble problem
— to enclose a given area with the shortest curve. Our job is to prove that her answer was
right. To do the same for a three-dimensional bubb~e is beyond our powers — it can be
done, but only with a lot of mathematical technique. Even the two-dimensional version is
far from easy.

We’ll assume that we are presented with a~i.r~d length of hide, and ask whether a
cimle is indeed the largest area that it can enclose. We model the long, thin hide by a
mathematical curve of zero thickness, Now we’ve got a problem that can be subjected to
mathematical analysis. Given a curve of fixed length, whut shape should it be to enclose
the greatest area?

Existence?
It took mathematici~s quite a long time to realise that questions like this come in

two pm:
● Show that an answer to the question e.rists,

Find out what it is.
~nswers to mathematical questions do not always exist, even if the question looks
reasonable. Here’s an example. It is known that the sho~lest path between two given
points (in the plane) is a straight line. We might ask ‘what is the shortest non-sfraig}zt
path between two given points?’ h effect, this asks what the next shortest p~th, after the
stiaight line, is. However, there is no such beast. Given any path that’s not straight, you
can always find a shorter path that is also not straight, by tating a short cut across some
bend. So the shortest non-straight path does not e.rist,

In Queen Dido’s problem, it turns out that a solution does exist. In 1S38 the great
geometer Jacob Steiner found a beautiful argument to show that o~~ceyol.1know that an
answer exiszs, you can see that it has to be a circle. His basic idea is that if you take any
curve that is not a circle, then you can change it to increase the area that it contains. This is
a line of attack that will be familiar to Sherloek Holmes fans: ‘Once you have eliminated the
impossible, then whatever remains, however improbable, must be the trot h.’
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Without a proof of existence, Steiner’s slyle of argument can lead [o fallaci~s.
Probably the simplest such fallacy is this statement:

● The largest non-zero whole number is 1.

If Steiner’s line of argument — ignoring the question of existence — is valid, then we can
easily establish that 1 is the largest nonzero whole number. To do so we m.erel,yshow that,
given any non-zero whole num,~r that is not equal to 1, we can find a bigger one. To do
this is easy. If you take any non-zero wh{>!enumber that is not equal to 1 and multiply it by
itself, you get something even bigger, Only for the number 1 does this step not produce

a bigger number, because 1 x 1 = 1. Conclusion: any non-zero whole number other than
1 cannot be the biggest non-zero whole number. But does this perrnic us to conclude that 1
is the biggest? No. All we cm legitimately conclude is that girher J.is the biggest, ~the
biggest does not exist.

.b this case we know, on other grounds, that it is the second statement that is true:
there is no biggest non-zero whole number. PIoofi if there were such a number, then it
would be greater than or equal to any nonzero whole number — for example jtself plus
one. But no number is greater than or equal to itself plus one.

Steiner would have seen the fallacy in this numerical argument, but he didn’t seem
able to grasp that his own ‘proof for Queen Dido’s problem suffered from the same
potentird fault. The difference, perhaps, was that on this occasion his answer was correct.
Itis so intuitive that the answer is a circle that it’s hard to conside~ the possibility that no
answer exists. But in mathematics, intuition and proof are not the same — and you may
get the right answer by faulty reasoning, wtich is what Steiner did.

Circular Reasoning
Other mathematicians quickly filled the gap in Steiner’s proof, however, by

showing that in this case an answer does exist+ Bearing that in mind, we can now
appreciate how clever the rest of Steiner’s proof was. It goes like this.

Suppose we have, by some method+laid hands on a curve of the chosen length that
really does convain the lwgest possible area. We will now infer, from the maximal area
property, various other features of that curve. The aim is to show that it has to be a circle,
md we’ll reach that deduction in several easy stages. Here’s the first step:

Step 1: The curve is convex.

(a) (b) (c)

Fig.1 Roof of convexity.

BY ‘convex’1 mean that given any two points inside the cume, the line segment that
joins them also lies inside the curve. In other words, there are no ‘dents’ where the cllrve
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bulges inwards as in Fig.la. Well, suppose
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there is such R dent. The]l we can find ii
line that touches the curve at two points. as in Fig. lb. Then we fol~n a ne~v curve bY
reelecting part of the old one in a ntirror that lies alo-tlg that line, as in Fig.lc, Clea~lythe
resulting cume has the same length as the old one — because the length of the refJected part
doesn’t change. However, the new curve encloses a I.argerarea — the shaded part in the
figure. But the original curve enclosed the f(zrgest possible area! The only waY out of the
logical impasse is that no such enlargement is possible. This carries the” inevitable
conclusion that the origin~ cme must have been convex dl ~ong.

An important feature of a convex curve is that if a line cuts across it, then it divides
the region inside the curve into exactly two parts. Steiner needed this property for hj.s
second step. Before describing how that goes, it’s usefu~ to have some terminology. Say

~ that a line is a diar~~eterof the curve if it divides the perin~eterintQtwo equal p~s.

Step 2: Every diameter divides the area tito two equai pafis as well.

Suppose that some diameter does not divide the area into two equal parts. Then
we can t~e the piece with the larger area @ig.2&), reflect it across the line (Fig.2b), and
thereby create a new curve (Fig.2c) with the same perimeter as before, but larger area.
Again, since the original curve enclosed the largest possible area, no such enlargement is
possible, Therefore tie assumption that some diameter does not divide the area into two
equal parts must be false. Therefore every diameter divides the area into two equal p’arts,
as required.

curve.

(a) 1 (b) ‘

Fig.2 Any diameter must split the area in two.

With this e$tabtished, we can simplify the problem by looking at just half of the
Choose some diarnater, and cut the curve in half. Its mea also halves. If we can

prove that this hdf-cuwe must be a sedcirele, hen it follows — by doing the same for the
other half — that the whole curve must be a circle. And that’s how Steiner proceeded.
First he proved a vcv neat geometrical property:

Step 3: The angle subtended (in the halved curve) by its diameter is always a right
angle.

‘Subtended by’ means draw a line from each end of the diameter co a point on the
curve: then see what angle they meet at (Fig.3&). Suppose that the angle subtended by
some diameter is not a right mgle. The it is either more than a right angle+ or less than a
right angle. If it is less than a right angle, we can ~mcreasethe area of the curve by
‘spreading the angle out’ as in Fig.3b. The same goes if the angle is more than a right
angle (Fig.3c).
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(a)

(b)
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Ng.3 Bending thecurve togeta right angle,
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HOWdo we bow hat these changes to the angle redly do increase the area’?
me way we change the curve is this: we leavethe shadedregionsas they were, apart frommoving

them around a bit, and we open Up or squash the white ~i~gle unti] t]le top angle is 9V. What I’m
claiting is that his angle m~es tie t~angle’s ~ea m~imal. Notice that when we open up or squash the
tiangle, tie two sloping sides don’t change in length: all that changes is the base. So what I’m really
cltiming is this: if you are given wo ~ides of a ttig/e, ~~eni~~area is greate~: ]vhen the angle bel~veer~
them is a nghr mgle.

Fig.4 shows VtiOUS possible positions for such 3 bangle, including one where the angle is a
right angle, one whereit is less,and one where it is more. NOWthe area of such a triangle is half the base
times the height (h), SO we want to move the end marked x to tie highest possible position. Since X
winders round a ci~le as we vary tie angle, we want to de~~ine the point of the circle that is highest.
~$ is of course the point that lies along a line at right angles to the base of the triangle. and that’s exactly
what we want to es~hlish.
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Fig.4 Maxirnising

Step 4: me we must & a circle.

the area of a triangle,

Choose a dimeter. and let its ends be A and B. Choose any ~oint C on the cume.
We how that angle ACB-is 90”. It is a general theorem in geom;~~ that the ang!e in a
semicircle is 90”. Less well known, buc dso true, is the converse: if all such angles are
90° tien the curve is a semicircle.

~WCfi E-
~e fact that the angle in a semicircle is 90’ is so well known that I won’t prove it.

Unfortunately,wharwe need is the converse: if all such angles are 90” then the curve is a semicircle, That
is, if the curve is a circle, then the part {ying above the line AB is a semicircle, and then angle ACB must
be 9W. Now *is is very similar to what we already know, but the ~..rhef~ is the wrong way round. We
knowthat‘if it’s a circle then angle ACB is 9W for any C, Unfortunately what we have to prove is that ‘if
angle ACB is 90’ for any C then it’sa cimle.’

That’s not the same statement, Compare ‘if it’s raining, then my garden gets wet’ with ‘if
my garden gets wet, then it’s raining.’ The first is true. The second could be false — for example, I may
be watering the garden witi a hose. So the two statements aren’t logical equivalents of each other.

To fix tings up, we compare our (h~~ curve with a (semi) circle and show that there’s
no difference. Suppose,then, that our half cu~veis not a semicircle, Then we can find a diameterAB anda
point C such that C does not lie on the circle with diameter AB. ~is means that AC cuts the circle at a
point D diflerentfmm C, Now, we know that angle ACB is 90. because we’ve proved that our curve h3s
that propetiy, We also know that angle ADB is 90* because that’s how circles behave. So the line CB
must be parallel to DB, since both cut the same line at right angles. However, the two lines CB and DB
meet at B, whereas par~lel ljnes don’t meet at all,

ThcR’s nothing wrong with the logic, so our initial assumption has to beat fault. What
was it? mat the half curve isn’t a semicircle. Conclusion: actually, it iJ a semicircle.

Step 5: Go for [he jugulm+

Since each hdf cme is a setichle, and they adjoin along a comon diameter, the
whole curve is a circle.

~ne!
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Arithmetic and OU tice
Our next optimisation problem is about shoelaces. There arc at least three conunon

ways to lace shoes, shown in Fig.S: American zig-zag lacing, the European straigh[
lacing, and quick-action shoe-store lacing. From the.point of view of [he purchaser, styles
of lacing can differ in their aesthetic appeal and in the time required to tie them. From the
point of view of the shoe manufacturer, a more pertinent question is which type of lacing
requires the shortest — and therefore cheapest — laces. Here 1’11side with the shoe
manufacturer, but you might care to assign a plausible measure of complexity to the lacing
patterns illustrated, and decide wtich is the simplest to tie.

Fig.5 We tyys of shoe lacing,

Of course, the shoemaker is not restricted to the three ]aclng patterns shown, and
we can ask a more difficult question: which pattern of lacing, among all the possibilities,
mq~ the shortest lace?

To keep the discussion simple, ~m going to assume that the lace moves alternately
from the left row of eyelets to the right and back again. Some perfectly practical ways to
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lace shoes don’t do that, and some of them are shorter [ban anything I’m going to desc[ibe
here, Im choosing my context and I’m sticking to it — and my conclusiorls will be valid
only within that context. 111 focus only on the length (:)fshoelace that lies betwten t.hc
‘top’ two eyelets of the shoe, on the left of [he diagrams — the part represented by straight
line segments. The amount of extra lace required is essentially that needed [o tie An
effective bow, and is the same for all methods of lacing, jo it can be igt~ored.

My terminology will refer to the lacing as seen by the wearer (hence ‘top’ just
now), so that the upper row of eyelets in the figure lies on the left side of the shoe. and the
lower row on the right. I shall dso idealise the problem, so that the lace is a mathematical
line of zero thickness and the eyelets are points. Using a brute force attack,, the length of
the lace cm tien be calculated in terms of the parameters of the problem:
● The number n of pti of eyelets
c The distance d beween successive eyelets ‘

The gap g between corresponding left and right eyelets.
&ith the aid of Pythagoras’s Theorem (one wonders what the great m,anwould have made
of this particular application) it is not too hard to calculate the lengths for the lacings in
Fig.5. The results are:

American: g + 2n~(#+g21

European: ng + 2d(&+g2)+ (n-1)~(4#+ g2)

shoe-store: ng + n~(&+g2) + ~(n2d2+g2).
Suppose, for the sake of argument, that )1= 8 as in the figure, d = 1t and g = 2

Then the lengths are:
● American: 37.777
● European: 40,271

shoe-store: 42.134,
;he shortest is Ametican lacing, fo~owed by European, and finally by shoe-store. But can
we be certain that this is always the case, or does it depend upon the numbers n, d and g?

Some careful algebra shows tiat if d and g are nonzero and n. is at least 3 then the
shortest lacing is always American, followed by European, followed by shoe-store. Mn
= 2 and d and g are nonzero then American is still shortest but European and shoe-store
lacings are of equal length, (Ifn=l, ord=O, erg= 0, then all three lacings are
equally long, but only a mathematician would worry about such cases!) However, the
algebraic approach is complicated, and offers little insight into what nl~es different lacings
more or less efficient.

Instead of usingd algebra, a mathematician called John Halton described a clever
geometrical trick which makes it completely obvious that American lacing is the shortest of
the three. With a littie more work and a variation on that trick it also becomes clear th~c
shoe-store lacing is the longest.

Fermat’s Principle
HdCon’s idea owes its inspiration to optics, the paths traced by rays of light.

Mathematicians discovered long ago tiat many features of the geometry of light rays cm be
made more transparent — if that is the word to use when discussing light — by applying
carefully chosen reflections to straighten out a bent light-path, making comparisons
simpler. For example, to derive the classical law of reflection — ‘angle of incidence
equals angle of reflection’ — at a mirror, consider a light ray whose path is composed of
two stiaight segments: one that hits the mirror, and one that bounces off. If you reflect the
second hdf of the path in the mirror (Fig.6) then the result is a path that passes through the
front of the mirror artd enters Alice’s mirror-world behind the looking glass. According to
the Principle of Least Time, a general property of light rays enu~lciatedsome centuries back
by Pierre de Ferrnat, such a path must reach its destination in the shortest time — which in
this case implies that it is a straight line. Thus the ‘mirror angle’ marked in the figure i$
equal to the angle of incidence — but it is rdso obviously equal to che angle of reflection.
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actual path
\

~g,6 Reflection Minciple,

Fig.7 shows geometric representations of all three types of lacing, which ~alton
derives by an extension of this optical reflection trick.
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Fig.7 Representation of tie lacings using reflections.

American

European

shoestore,...*.x...........<<%,,%s,.,,,.

me figure requires a littie explanation. It consists of 2n rows of eyelets, spaced distance
d apart in the horizontal direction, Successive rows are spaced distmce g apart vertically,
and jn order to reduce the size of the figure we have now reduced g from 2 (as it was in
Fig.63) to 0.5. The method works for any values of d and g so this causes no
difficulty. The first row of the diagram represents the left-hand row of eyelets. The
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second row of the diagram represents the right-hand row of eyelets. After that, rows
alternately represent the left-hand eyelets md the right-hand eyelets. so that the od~-
numbered rows represent left-hand eyelets and even-numbered rows represent right-hal~d
eyelets.

The polygonal patis that zigzag across this diagram correspond to [he lacings, but
with an extia ‘twist’— almost literally. Start at the top left eyelet of a lacing pattern and
draw the first segment of lace, running from left to right of the shoe, in between the first
two rows of the diagram. Draw the next segment of lace reflecred to lie between rows ~
and 3 instead of going back from row 2 to row 1 as it does in a rea~shoe. Continue in this
manner, reflecting the physical position of each successive segment whenever it encounters
an eyelet. After two such reflections, the segment will be parallel to its original position
but two rows lower, and so on. In effecc, the two rows of eyelets are replaced by mirrors.
So, instead of zigzagging between the two rows of eyelets, the path now moves steadily
down the figure, one row at a time, while its horizontal motion along the rows repeats
precisely the motion along the rows of eyelets of the conespondjng segments of the lacing
pattern.

Because mflwtion of a segment does not alter its length, this representation leads to
a path that has exacfly the sme length as the corresponding lacing pattern. The added
advmtage, however, is that it is now easy to compare the Americm md European patterns.
In a few places they coincide, but everywhere el$e the American pattern runs along one
edge of a thin triangle (one such triangle is shown shaded) while the European one runs
along two edges of the sme triangle. Beeause any two sides of a triangle exceed the third
side in length (that is, a straight line is the shortest path between two gjven points), the
American lwing is obviously shorter.

M~ICM EX~
It is not quite so obvious that the shoe-store lacing is longer than the European. The simplestWay

to see this is to eliminate from boti paths all vertical segments (which contribute the same amount to both
lengths because each path has n-1 vertical segments) and also any sloping segments that match up. The
result is shown in Fig.8 (dark lines). If each V-shaped path is now straightened out by reflection about a
vetiical axis placed at the tip of the V (faint lines) it finally becomes easy to see that the shoe-store path is
longer, again hccause two sides of a triangle exceed the third side.

Fig.8 Comparing European 3nd shoesorelacings.

O Ian Stewart
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