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We live in a universe of patterns. Human mind and culture have developed a
formal system of thought for recognizing, classifying, and exploiting those patterns: we

call it mathematics. By using mathematics to organise and systematise our ideas about

patterns, we have discovered a great secret: nature’s patterns are not just there to be

~, they are viti clues to the rules that govern natti processes.
A very curious pattern indeed occurs in the petals of flowers. k nearly dl flowers,

the number of petals is one of the numbers that occur in the strange sequence 3,5,8, 13,
21, 34, 55, 89. For instance, lilies have three petals, buttercups have five, many

delphiniums have eight, marigolds 13, asters 21, and most daisies have 34, 55, or 89.
You don’t find any other numbers anything like as often, Those numbers have a definite

pattern, but one that takes a little digging out: each is obtained by adding the two previous

ones together. For example 3+5 = 8, 5+8 = 13, and so on. The same numbers can be
found in the spiral patterns of seeds in the head of a sunflower. This particular pattern was

noticed many centuries ago, and has been widely studied ever since, but a reaUy

satisfactory explanation was not given until 1993.

Some features of the morphology of fiving creatures are genetic in origin, and some
are a consequence of physics, chemistry, and the dynamics of growth. One way to tell the

difference is that genetic influences can give pretty much anything you like, but physics,

chemistry, and dynamics produce mathematical regularities.
The numbers that arise in plants — not just for petals but for all sorts of other

features — display mathematical regularities. They form the beginning of the so-called

Fibonacci series, in which each number is the sum of the two that precede it. Petis aren’t

the only places you find Fibonacci numbers, either. If you look at a giant sunflower you

find a remarkable pattern of florets — tiny flowers that eventually become seeds — in its

head. The florets are arranged in two intersecting families of spirals, one winding

clockwise, the other counterclockwise. k some species the number of clockwise spirals is

34, and the number of counterclockwise spirals is 55. Both are Fibonacci numbers,

occurring consecutively in the series. The precise numbers depend on the species of

sunflower, but you often get 34 and 55, or 55 and 89, or even 89 and 144, the next
Fibonacci number stil. Pineapples have 8 rows of scales — the diamond-shaped markings

— sloping to the left, and 13 sloping to the right.
Fibonacci invented his series in a problem about the growth of a population of

rabbits, somewhere around 1202. It wasn’t as realistic a model of rabbit population

dynamics as the ‘game of life’ model that I’ve just discussed, but it was a very interesting
piece of mathematics nevertheless because it was the fmt model of its kind, and because
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mathematicians find Fibonacci numbers fascinating and beaudful in theti own right. The
key question for this chapter is this: if genetics can choose to give a flower any number of

petals it likes, or a pine cone any number of scales that it likes, why do we observe such a
preponderance of Fibonacci numbers?

The answer, presumably, has to be that the numbers arise through some

mechanism that is more mathematical than arbitrary genetic instructions. The most likely

candidate is some kind of dynamic constraint on plant development, which naturally leads

to Fibonacci numbers. Of course, appearances may be deceptive, it could be all in the

genes. But if so, I’d like to know how the Fibonacci numbers got turned into DNA codes,

and why it was those numbers. Maybe evolution startd with the mathematical patterns that

occurred naturally, and fine-tuned them by natural selection. I suspect a lot of that has

happened, and it would explain why geneticists are convinced the patterns in living

creatures are genetic and mathematicians keep insisting they are mathematical.
The arrangement of leaves, petals and the like in plants has a huge and

distinguished literature. Early approaches are purely descriptive — they don’t explain

how the numbers relate to plant growth, they just sort out the geometry of the

arrangements. The most dramatic insight yet comes from some very recent work of

St6phane Douady and Yves Couder, who devised a theory of the dynamics of plant growth
and used computer models and laboratory experiments to show that it accounts for the

Fibonacci pattern.

The basic idea is an old one. If you look at the tip of the shoot of a growing plant

you can detect the bits and pieces from which dl the main features of the plant — leaves,

petis, sepals, florets, or whatever — develop. At the centre of the tip is a circular region

of tissue with no special features, called the apex. Around the apex, one by one, tiny
lumps form, cdld primordia. Each primordium migrates away from the apex — or more

accurately the apex grows away from the lump, leaving it behind — and eventually the
lump develops into a leaf, petal, or the like. Moreover, the general arrangement of those

features is laid downright at the start, as the primordia form. So basically dl you have to

do is explain why you see spiral shapes and Fibonacci numbers in the primordia.

The fist step is to appreciate that the sptis that are most apparent to the the human

eye are not fundamentd. The most important spiral is formed by considering the

primordia in their order of appearance. Mmordia that appear earlier migrate further, so

you can deduce the order of appearance from the distance away from the apex. mat you
find is that successive primordia are spaced rather sparsely along a very tightly wound

spti, cdld the generative spti. The human eye picks out the Fibonacci spirals because

they are formed horn primordia that appear near each other in space; but it is the sequence
in time that retiy matters.

The essential quantitative feature is the angle between successive primordia,

which are pretty much equal. Their common value is called the divergence angle. h

other words, the primordia are qually spacti — regularly — along the generative SP~~.

Moreover, the divergence angle is usually very close to 137.5°, a fact fiit emphasised by

the crystallographer Auguste Bravais and his brother Louis. To see why hat num~r is

significant, take two consecutive numbers in the Fibonacci series, for example 34 and 55.
Now form the corresponding fraction 34/55 and multiply by 360° to get 222.5°. Since tiis
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is more than 180°, we should measure it in the opposite direction round the circle, or
equivalently subtract it from 360°. The result is now 137.5”, the value observed by the
Bravais brothers.

The ratio of consecutive Fibonacci numbers gets closer and closer to the number
0.618034. For instance, 34/55 = 0.6182 which is tieady quite close. The limiting value

is exactly (45-1)/2, the so-called ‘golden number’, often denoted by the Greek letter phi

(T). Name has left a clue for mathematical detectives: the angle between successive
primordia is the ‘golden angle’ of 360(1-q)” = 137.5°. k 1907 G.Van Iterson followed

up this clue, and worked out what happens when you plot successive points on a tighdy

wound spiral separated by angles of 137.5°. Because of the way neighboring points
align, the human eye picks out two families of interpenetrating spirals — one winding

clockwise and the other counterclockwise. And because of the relation between Fibonacci
numbers and the golden numkr, the numbers of sptis in the two f~ies are consecutive
Fibonacci numbers. Which Fibonacci numbers depends on the tightness of the spiral.
How does that explain the numbers of petals? Basically, you get one petal at the outer

edge of each spti in just one of the famifies.

At any rate, it dl boils down to explaining why successive primordia are separatti

by the golden angle: then everything else follows.

Douady and Couder found a dynamic explanation for the golden angle. They built

their ideas upon an important insight of H.Vogel, dating from 1979. He performed
numerical experiments which strongly suggest that if successive primorda are placed along

the generative spiral using the golden angle then they pack together most efficiently. For
instance, suppose that instead of the golden angle you try a divergence angle of 9U, which

divides 360° exactly. Then successive primordia are arranged along four radial lines
forming a cross. In fact, if you use a divergence angle that is a rational multiple of 36W

then you always get a system of radial lines. So there are gaps between the tines and the
promordia don’t pack efficiently. Conclusion: to fill the space efficiently you need a

divergence angle that is an irrational multiple of 36W— a multiple by a number that is not
an exact fraction.

~ich irrational number? Numbers are either irrational or not but — Me equtity

in George ~wel~s Animal Farm — some are more irrational than others. Number
theorists have long known that the most irrational number is the golden number. It is

‘bdy approximable’ by rational numbers, and if you quantify how badly, it’s the worst of

them dl. Mich, turing the argument on its head, means that a golden divergence angle
should pack the primordia most closely. Vogel’s computer experiments confm this
expectation, but do not prove it in fdl logical rigour.

The main new thing that Douady and Couder did was to obtain the golden angle as

a comeqwnce of simple dynamics, rather than postulate it direcdy on grounds of efficient

packing. They assumed that successive elements of some kind — representing primordia

— form at equally spaced intervals of time somewhere on the tim of a small circle,

representing the apex; and that these elements then migrate radi~y at some specified initial
velocity. In addition, they assume that the elements repel each other — We qud electric

charges or magnets with the same polarity. This ensures that the radid motion keeps
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going, and that each new element appears as far as possible from its immediate
predecessors. It’s a good bet that such a system will satisfy Vogel’s criterion of efficient

packing, so you’d expect the golden angle to show up of its own accord. And so it does.

Douady and Couder performed an experiment — not with plants, but using a

circular dish full of silicone oil placed in a vertical magnetic field. They let tiny drops of
magnetic fluid fdl at regular intervals of time into the centre of the dish. The drops were

polarised by the magnetic field, and repelled each other. They were given a boost in the

radid dirwtion by making the magnetic field stronger at the dge of the dish than it is in the
rnidde. The patterns that appeared depended on how big the intervals between drops

were; but a very prevalent pattern was one in which successive drops lay on a spiral with

divergence angle very close to the golden angle, giving a sunflower seed pattern of
interlacd spirals. Douady and Couder dso carried out computer calculations, with very

similar results. By both methods they found that the divergence mgle depends upon the

interval between drops according to a complicated branching pattern of wiggly curves.

Each section of a curve between successive wiggles corresponds to a particular pair of

numbers of spirals. The main branch is very close to a divergence angle of 137.5°, and

along it you find ~ possible pairs of consecutive Fibonacci numbers, one after the other in
numerical sequence. The gaps between branches represent ‘bifurcations’ where the

dynamics undergoes significant changes. The final step, making their analysis fully

rigorous, was made by M.Kunz of the University of Lausanne.
I’m not suggesting that botany is quite as perfectly mathematicdas this model. k

particular in many plants the rate of appearance of primordia can speed up or slow down,

and changes in morphology — whether a given pnmordium becomes a leaf or a petal, say

— often accompany such variations. So maybe what the genes do is affect the timing of

the appearance of the primordia. But plants don’t need their genes to tell them how to

space their primordia out: that’s done by the dynamics. It’s a partnership of physics and

genetics, and you need both to understmd whais happening.
0 Ian Stewart
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