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Gresham Geometry Lecture
14 May 1996

From Footballs to Fullerenes

the forbidden fivefold symmetry of quasicrystals

This lecture examines two different, but related, instances of fivefold
symmetry in the molecular structure of matter: quasic rystals and ,
fullerenes.

● Perfect crystals cannot have fivefold symmetry (though they
can have 2-, 3-, 4-, and 6-fold symmetry). Some years ago the
mathematical physicist Roger Penrose invented a series of tilings of the plane
that possessed approxima fe fivefold symmetry. It turned out that similar
structures do occur in nature, leading to the discovery of quasicrystals, a new
form of organization in solid matter.

Soccer bails are made by sewing together hexagonal and
pentagonal panels, in the form of a truncated icosahedron. The same
structure was discovered in a new form of carbon, C60, usually known as
Buckminsterfullerene.

The lecture will discuss the relations between symmetry and molecular
structure, and explain how these two discoveries have changed our views about
fivefold symmetry in nature.

‘U+d 1970titage... @rge Bestb Msptie @,tig Cuptivds IpsMchthe m aroud.—--
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Fig.1 Wht’s footballgot to do witi it?



Quasicrystals
Crystals provideone of the most striking examples of s~etry in nature (rdthough

historicdy there was a great dd of conhovew about tie app~ent ~tie~ticd regularities
of crystals forms, because these are much less obvious in na~~ s~ples found by field
geologists). In 1922 Hatiy suggested that mystals we formed from identicd units
arranged in patterns, like this:
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He was heading in the right direction. It has now been known for over a century
that erysds have regu[m strucwe kause their atoms are arrangd in a lattice. Larnces in
the plane (space) are determined by choosing two (three) independent directions and
spacing dots at re@ar intervals along those dir=tions. .
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Lattices have two basic types of symmetry. The obvious symmetries are the
translations of the lattice, sliding it sideways along the chosen directions. But there me
dso point ~rnrnetries that rotate the lattice around a fixed lattice point, and there can ~so
be mtior symmernes — reflections in a line or plane. In this lecture it is the point
symmeties that matter. Lattices in the plane (and space) can have 2-fold, 3-fold, 4-fold,
and 6-fold rotational symmetries; there are corresponding tilings of the plane by
rectangles, quilaterd triangles, qums, and hexagons. However, no lattice in the plane
or space can have 5-fold point symmetry but it can occur in a 4-dimensional lattice).

To prove that 5-fold point symmetry is impossible in a plane lattice, we use two
facts about Iatdces
1 They are discrete: there is a deftite minimum distance between distinct points.
2 They are m~orrn: the structure is the same when viewed from any lattice point
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Fig.4 Impssibifity ~oof for 5-foldpint symmetry.

Suppose, for a contradiction, that a plane lattice with 5-fold symmetry exists. By
property 1 we cart find points P and Q of the lattice, separatd by the minimum possible
distance r. By property 2 the lattice has 5-fold point symmetry around either P or Q. So
there are lattice points surrounding P formed by rotating Q through multiples of 72”, and
similarly there are lattice points surrounding Q formed by rotating P through multiples of
72”. However, two of these points, P’ and Q’, are closer together than P and Q,
contradicting mini~ity.

A similar proof works in three dimensions, but in four dimensions the geometry is
sufficiently different for such proofs not to work, and indeed a lattice with 5-fold point
symmetry is fairly easily found. In 5 dimensions it is ve~ easy to find 5-fold point
symmetry.

The absence of 5-fold symmetry is ctid tie crystallographic restriction, and it has
long been taken to imply that crystis cannot have 5-fold symmetries. However, recentiy
many cloys were found that produced apparently 5-fold symmetric crystis.
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Fig.5 Wbt but these, then?
@ft) M#i3Cu alloy. @ght) ~3.5Cu24Fe12.5 alloy.

[A= duminium, Li = titiium, Cu = copper,Fe = iron.]

These 5-fold symmetric structures are not in fact crystals in the usual sense of
crystallography — they do not have atomic lattices. They are qwicrystds, with atomic
qwilattices. They were discovered on the basis of mathematical predictions that tihng
patterns in the plane and space exist with striking elements of 5-fold symmetry, but
possessing no lattice penodicity.

A set of 20,000 tiles without lattice priodicity was found by Robert Berger in
1964: the number was later reduced to 104. Raphael Robinson found a set with six
members:

Fig.6 Robinson’saperitic ties.
w
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In 1974 Roger Penrose rducd the size of the set to two, which he called duns and kites.
~ey are formed by cutting up a rhombus with angles 72° and 108°. (Stictly, to get
down to two tiles they must be ‘decorated’, say with coloured cuwes that must join
together, or their edges must be fitted with tiny bumps and dents to force the same find of
fit.)
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Fig.7 Pemw’s ~ md tites.

~ey were brought to pubtic attention in 1977 by Martin Gardnen
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Fig.8 Pemose tiles go public. g,,.,*.yY977 ~
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Penrose tiles can cover the plane in many different ways, none of them with lattice
periodicity. Here are two examples: one has perfect fivefold symmetry abut one point,

and the other ‘nearly’has:

—

The canwhecl Fftern

Fig.9 me sm md tie ctiwheel.



. ,

7

You can play Escherlike games too:

.- .-.

Fig.10 Penrose’saWridc chickens.

All Penrose pafterns have ‘almost’5-fold symmetry around itilnitely many distinct
points. Indeed dl Penrose patterns are ‘locally isomorphic’: given two of them, each
contains arbitrarily large patches that are identicd to patches of the other. Nonetheless
there are many globdy different patterns.

If atoms are arranged in Penrose-like quasilattices, you get quasicrystals, and the
5–fold almost-symmetries of the quasilattices give rise to macroscopic structures that look
5-fold symmetric.

Fullerenes
mat’s footb~ got to do with it?
Be patient — dl til be revdd shordy...
mere is another novel source of 5-fold symmetry in nature, the remarkable

molecule C60, or buckminste~ullerene (’buckybdl’). Buckminster Fuller was an
architit renowned for his geo&sic times, quasisphericd polyhedrd smctures.

Fig.11 Buchhswr FuUer.
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Fig.12 Bucbinster FuUer’sgeodesicdomeat tie Montrd Expo 1967.

Geodesic domes are polyhtia. mere are five more f@iar regular polyhedra: here hey
are drawn in Johannes Kepler’s Harrnonices Mundi of 1619.
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Octahedron
m r~Osahe&on
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Fig.13 Re~lar sotidsin Kepler’sHawnices ~undi.
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~ey wcm in vtious fores in name: mdioltians and vtises me exmples.

Radiolarims w“th polyhehal

Cuc

Many WSes hove icosahehal Here is the pactig ofspheres h an
shapes. (& example is the icosahehon

PoIyOma tis)
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Flg.14 Polyhti in mdiotis and vk=s.



More complex polyhda can be formal by ‘truncating’the regular sotids.
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Tmncated tevahe&on Tmcated cube

@

Tmncated octdehon Tmcated dodecahebon Tmcated icosahedron s

Fig.15 Tmneati regti mlih.

It is the tinc~ed icosakdon that turnd up as m endrely new form of carbon. It
was first synthesised in 1985, in a collaboration between Harry Koto (University of
Sussex) and Wchard Smalley mice University, Houston). On 1 September of that year
they vaporised carbon in an atmosphere of hydrogen, nitrogen, and various other elements
to simulate the conditions near red giant stars (where this form of carbon was thought
perhaps to exist). On 4 September they detected the presence of carbon molecules with
molecular weight 720. Carbon’s molecular weight is 12, so this corresponded to exactly
W carbon atoms. There was another trace of a 70-atom form too.

What was their structure? The two scientists tried all sorts of ideas. Their
graduate students discovered that the molecule was so stable that it could not have any
‘dangling bonds’. This reinforced a growing feeling that it was some Hnd of polyh~d
‘cage’. Smalley reeds sitting up all night on 9 September with scissors and paper, and
finding a possible structure. fioto, a lifelong fan of Buctinster Fuller, says that he
was aware of the possibility W along. At any rate, despite this falling-out between the co-
discoverers, the structure was We this:

Fig.16 Trunc~ ictiti smcti of Bucbinsterfderene,
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me 7@atom form has a very stiar swcture:

I

I

Fig.17 Polyhtid mge for C70.

In rebspect it is difficult to understand why the two scientists didn’t just go and grab a
random mathematician, who would (1 hope!) have told them about the truncated
icosahtion.

Faitig that, they might have asked tionardo da Vinci, who knew the shape several
centuries ago:
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Fig.18 h Vinc~s hwing of tie mncti icoh~n.
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or gone to any foot~ match:

fig.19 ~ats what foothtis got to h with it!
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