G RE S HA M

COLLEGE

Reproduction of this text, or any extract from it, must credit Gresham College

FROM FOOTBALLS TO FULLERENES

A Lecture by

PROFESSOR IAN STEWART MA PhD FIMA CMath
Gresham Professor of Geometry

14 May 1996



- GRESHAM COLLEGE

Policy & Objectives

An independently funded educational institﬁtion,
Gresham College exists

to continue the free public lectures which have

.been given for 400 years, and to reinterpret the
" ‘new learning’ of Sir Thomas Gresham’s day in
contemporary terms;

to engage in study, teaching and research,
particularly in those disciplines represented by
the Gresham Professors;

to foster academic consideration of contemporary
problems;

to challenge those who live or work in the City of
London to engage in intellectual debate on those
subjects in which the City has a proper concern;
and to provide a window on the City for learned
societies, both national and international.

Gresham College, Barnard’s Inn Hall, Holborn, London ECIN 2HH

Tel: 02078310575  Fax: 0207831 5208
e-mail: enquiries@gresham.ac.uk




Gresham Geometry Lecture
14 May 1996

From Footballs to Fullerenes

the forbidden fivefold symmetry of quasicrystals

This lecture examines two different, but related, instances of fivefold
symmetry in the molecular structure of matter: quasicrystals and
fullerenes.

. Perfect crystals cannot have fivefold symmetry (though they
can have 2-, 3-, 4-, and 6-fold symmetry). Some years ago the
mathematical physicist Roger Penrose invented a series of tilings of the plane
that possessed approximate fivefold symmetry. it turned out that similar
structures do occur in nature, leading to the discovery of quasicrystals, a new
form of organization in solid matter.

. Soccer balls are made by sewing together hexagonal and
pentagonal panels, in the form of a truncated icosahedron. The same
structure was discovered in a new form of carbon, Cgqg, usually known as
Buckminsterfullerene.

The lecture will discuss the relations between symmetry and molecular
structure, and explain how these two discoveries have changed our views about
fivefold symmetry in nature.

Umted 1970 vintage. .. George Best in his prime giving Cup rivals Ipswich the run around
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Fig.1 What's football got to do with it?



Quasicrystals

Crystals provide one of the most striking examples of symmetry in nature (although
historically there was a great deal of controvery about the apparent mathematical regularities
of crystals forms, because these are much less obvious in natural samples found by field

geologists).  In 1922 Haiiy suggested that crystals are formed from identical units
arranged in patterns, like this:
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Fig.2 Haiiy's idea of crystal structure
He was heading in the right direction. It has now been known for over a century

that crystals have regular structure because their atoms are arranged in a lattice. Lattices in

the plane (space) are determined by choosing two (three) independent directions and
spacing dots at regular intervals along those directions.
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Fig.3 Lattice in the plane




Lattices have two basic types of symmetry. The obvious symmetries are the
translations of the lattice, sliding it sideways along the chosen directions. But there are
also point symmetries that rotate the lattice around a fixed lattice point, and there can also
be mirror symmetries — reflections in a line or plane. In this lecture it is the point
symmetries that matter. Lattices in the plane (and space) can have 2-fold, 3-fold, 4-fold,
and 6-fold rotational symmetries; there are corresponding tilings of the plane by
rectangles, equilateral triangles, squares, and hexagons. However, no lattice in the plane
or space can have 5-fold point symmetry (but it can occur in a 4-dimensional lattice).

To prove that 5-fold point symmetry is impossible in a plane lattice, we use two
facts about lattices:

1 They are discrete: there is a definite minimum distance between distinct points.
2 They are uniform: the structure is the same when viewed from any lattice point.
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Fig.4 Impossibility proof for 5-fold point symmetry.

Suppose, for a contradiction, that a plane lattice with 5-fold symmetry exists. By
property 1 we can find points P and Q of the lattice, separated by the minimum possible
distance r. By property 2 the lattice has 5-fold point symmetry around either P or Q. So
there are lattice points surrounding P formed by rotating Q through multiples of 72°, and
similarly there are lattice points surrounding Q formed by rotating P through multiples of
72°. However, two of these points, P' and Q', are closer together than P and Q,
contradicting minimality.

A similar proof works in three dimensions, but in four dimensions the geometry is
sufficiently different for such proofs not to work, and indeed a lattice with 5-fold point
symmetry is fairly easily found. In 5 dimensions it is very easy to find 5-fold point
symmetry.

The absence of 5-fold symmetry is called the crystallographic restriction, and it has
long been taken to imply that crystals cannot have 5-fold symmetries. However, recently
many alloys were found that produced apparently 5-fold symmetric crystals.



Fig.5 What about these, then?

(Left) AlgLizCu alloy. (Right) Algz 5CuygFejs 5 alloy.
[Al = aluminium, Li = lithium, Cu = copper, Fe = iron.]

These 5-fold symmetric structures are not in fact crystals in the usual sense of
crystallography — they do not have atomic lattices. They are quasicrystals, with atomic
quasilattices. They were discovered on the basis of mathematical predictions that tiling
patterns in the plane and space exist with striking elements of 5-fold symmetry, but
possessing no lattice periodicity.

A set of 20,000 tiles without lattice periodicity was found by Robert Berger in
1964: the number was later reduced to 104. Raphael Robinson found a set with six
members:

Fig.6 Robinson's aperiodic tiles.
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In 1974 Roger Penrose reduced the size of the set to two, which he called darts and kites.
They are formed by cutting up a thombus with angles 72° and 108°. (Strictly, to get
down to two tiles they must be 'decorated’, say with coloured curves that must join

together, or their edges must be fitted with tiny bumps and dents to force the same kind of
fit.)

Fig.7 Penrose's darts and kites.

They were brought to public attention in 1977 by Martin Gardner:
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Penrose tiles can cover the plane in many different ways, none of them with lattice
periodicity. Here are two examples: one has perfect fivefold symmetry about one point,
and the other 'nearly’ has:

The cartwheel pattern

Fig.9 The star and the cartwheel.



You can play Escherlike games too:

Fig.10 Penrose's aperiodic chickens.

All Penrose patterns have 'almost’ 5-fold symmetry around infinitely many distinct
points. Indeed all Penrose patterns are 'locally isomorphic': given two of them, each
contains arbitrarily large patches that are identical to patches of the other. Nonetheles
there are many globally different patterns.

If atoms are arranged in Penrose-like quasilattices, you get quasicrystals, and the
5—fold almost-symmetries of the quasilattices give rise to macroscopic structures that look
5-fold symmetric.

Fullerenes

What's football got to do with it?

Be patient — all will be revealed shortly...

There is another novel source of 5-fold symmetry in nature, the remarkable
molecule Cgp, or buckminsterfullerene ('buckyball’). Buckminster Fuller was an
architect renowned for his geodesic domes, quasispherical polyhedral structures.

~ . N

Fig.11 Buckminster Fuller.
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Fig.12 Buckminster Fuller's geodesic dome at the Montreal Expo 1967.

Geodesic domes are polyhedra. There are five more familiar regular polyhedra: here they
are drawn in Johannes Kepler's Harmonices Mundi of 1619.

Tetrahedron
Fire
Dodecahedron
The Universe
»,
{
2y
i Octahedron
Adr Icosahedron
o3 5 Water
.
< Fig.13 Regular solids in Kepler's Harmonices Mundi.
Cube

Earth




They occur in various forms in nature: radiolarians and viruses are examples.

. N
Circoporus M™%
sexfurcus &

Radiolarians with polyhedral shapes

Circogonia =
icosahedra "=

Circospathis
novena G
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Many viruses have icosahedral Here is the packing of spheres in an
shapes. (An example is the icosahedron
Polvoma virus)

Fig.14 Polyhedra in radiolarians and viruses.
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More complex polyhedra can be formed by 'truncating’ the regular solids.

J

Truncated tetrahedron Truncated cube

Truncated octahedron  Truncated dodecahedron ~ Truncated icosahedron

Fig.15 Truncated regular solids.

It is the truncated icosahedron that turned up as an entirely new form of carbon. It
was first synthesised in 1985, in a collaboration between Harry Kroto (University of
Sussex) and Richard Smalley (Rice University, Houston). On 1 September of that year
they vaporised carbon in an atmosphere of hydrogen, nitrogen, and various other elements
to simulate the conditions near red giant stars (where this form of carbon was thought
perhaps to exist). On 4 September they detected the presence of carbon molecules with
molecular weight 720. Carbon's molecular weight is 12, so this corresponded to exactly
60 carbon atoms. There was another trace of a 70-atom form too.

What was their structure? The two scientists tried all sorts of ideas. Their
graduate students discovered that the molecule was so stable that it could not have any
‘dangling bonds'. This reinforced a growing feeling that it was some kind of polyhedral
‘cage’.  Smalley recalls sitting up all night on 9 September with scissors and paper, and
finding a possible structure.  Kroto, a lifelong fan of Buckminster Fuller, says that he
was aware of the possibility all along. At any rate, despite this falling-out between the co-
discoverers, the structure was like this: : -

Fig.16 Truncated icosahedral structure of Buckminsterfullerene.
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The 70-atom form has a very similar structure:
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Fig.17 Polyhedral cage for C7q.

In retrospect it is difficult to understand why the two scientists didn't just go and grab a
random mathematician, who would (I hope!) have told them about the truncated

icosahedron.
Failing that, they might have asked Leonardo da Vinci, who knew the shape several

centuries ago:
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Fig.18 Da Vinci's drawing of the truncated icosahedron.
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or gone to any football match:

Fig.19 That's what football's got to do with it!
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