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Hearhg the Shape of a Drum

Cm you&w th she of a h?
Mathematicians can fmd deep and funtienti problems where nobody else wotid

think to look and this strange question, posti by the M Mark Kac in 196, is much more
important than its quirky formulation might suggest. me @uency of a sound is the
number of vibrations per second tie spectrum of an object is the fist of basic frequencies at
which it can vibrate. h that language, a more impressive-sounding version wotid be this:
what information about a shape can you infer from its vibrational spectrum? men an
earthquake hits, the entire Earth rings like a be~, and seismologists deduce a great ded
about the intemd structure of our planet from the ‘sound’ that it produces and the way
those sounds echo around, bouncing off different layers of rock. Kac’s celebrated
question is the simplest and tidiest one that we can ask about such techniques:
reconstructing information about an object ~m the range of vihtions that it cm undergo.

Kac showed that some features of a drum are determined by its sound: for example
its area and its perimeter. “Personally, I betieve that one cannot ‘hear’ the shape... but I
may we~ be wrong md I arn not prepared to bet large sums either way,” he wrote. It has
taken over a quarter of a century to prove that Kac’s instincts were correcc you cart’t, in
gened, infer the shape of a vibrating membrane from its spectrum. Carolyn Gordon and
David Webb at Washington University in St. buis, and Scott Wolpert at the University of
Maryland, have constructed two distinct mathematical drumskins that produce the identid.
range of sounds (Fig.1). me curious sha~s to which their analysis leads show that the-...
pro~lem is decided-y weird, and justifies’
guess.

Kac’s diffidence about the correctness Oi-hls

I

Fig. 1 Diffmt tires witi tie samemd, wch assembl~ tim ~ven halvesof a M- ms.
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His problem is just the tip of a mhdc~ ice~g, ~fi fm-mhing -cations
and genertintions, and more unsolved problemsthan answers. At a meeting of the
American Wthematicd Society at Nab- a few Y- ~~, M* BTurck ~niversity
of Pennsylvania) used a computerto play tie Alab~ JUb~~eMlt Wodd soundon a so-
cdti flat torus, and a quartetplayeduponfow Merent proJwtivespaces(rd, complex,
quaternionic, and ~yley) — or quivdently on spheres of dimensions 1, 2, 6,and 12.
Harmony of the spheres? Not entirely. Writing in tie M~kmtical Intelligence, Gordon
remarked that “The audience would perhaps be happy to le- hat flat tori and low-
dimensiond projective spaces are tiquely detem~ by tieti sp~. No two of them
produce the same terrible sound” Subscribers to the Inteliigencer were trati to a &
record of stiar music by ~Turck, including tie Ro~ movement tim B=thoven’s
Sowtiw in G on a -nsiond sphere.

Gc’s question is an ‘inverse problem’: it runs the opposite way compti to what
is most nati. The sensible, far rosier question is: given the shape of an objw~ how
does it vibrate? As the seismic example shows, however, inverse problems have
consi~ble practical importance. Even the direct problem took sevd centuries to solve.
Probably the =liest mjor result was obtained in 1714 by Brook Taylor, who calculated
the fundamenti vibrational frquency of a vioti string in terms of its length, tension, and
density. me ancient Greeks knew that a vibrating string can produce many different
musical notes, depending on the position of the ‘nodes’, or rest-points (Fig.2). For the
fundamenti frequency, ody the end points are at rest. H the string has a node at its
centre, then it ptiuces a note one octive higheq and the more nodes there are, the higher
the fiquency of the note will be. In modern language the Greeks discovered that the
vibrational spectrum of the string consis~ of d whole number multiples of the fundamenti
frequency. The higher vibrations are called overtones. Taylor’s work shows that the
length of the string can be deduced from the fundamenti frequency, the smallest term of
the vibrational spectrum — provided the tensions and density are tieady known. In
sho~ you cn hear the length of a viofin string — a one-ensiond drum

..................................................................................................................................................

....................................................................... ........................................................................

.................................... .................................. .................................... ................................

Fig. 2 No- modm of a violin stig: fmdamenti (top)andovemnes @low).

The vibrations shown in Fig.2 are standing waves — the shape of tie srnng at ~Y
instant is the same, except that it is smetched or compressed in the direction at right angles
to its len@. The maximum amount of stretching is the amptitude of the wave, which
physicdy determines how loud the note sounds. The waveforms shown are sinusoidd in
shap~ and their amplitudes vary sinusoitily with time. ‘Pure’ standing waves of this
type are died n- modes.
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In 17ti Jean le Rend d~embert showd that the M story isn’t quite that simple.
There are many vibrations of a violin string that are not normal modes, not sinusoidd
standing waves. h fact, he proved that the shape of the wave can start out being anything
you like. k response to d’Alembert’s work, ~onhard Euler took the question much
further, and by 1748 had worked OULand solv~ the ‘wave equation’ for a stig. These
discoveries started a century-long controversy, whose end restit was that you get W
possible vibrations of the string by s~eri~osing noti modes in suitable pportions.
The normal modes, the pure sinusoiti standing waves, are the basic components; the
vibrations that can occur are ~ possible sums of constant mtitiples of titely or titely
many no@ modes. As Daniel Bemoti expressed it in 1753: “d new curves given by
&Membert and Etier are ody combinations of the Taylor vibrations”.

The fmt work on drums was dso Eder’s, in 1759. Again he derivd a wave
quation, describing how the displacement of the drumskin in the vertical direction varies
over time. Its physical interpretation is that the acceleration of a small piwe of the
drumskin is proportional to the average tension exerted on it by d nearby parts of the
drumskin. Drums differ horn violin strings not only in their dimensiondity — a tim is
a flat twtinsiond membrane — but in having a much more interesting boti~. h
this whole subjec~ boundaries are absolutely crucial. The boundary of a drum can be
any closed curve — usually a smooth one, but nowadays it may we~ be a fracti. The
key condition is that the boundary of the drum is fwed. The rest of the drumhead can
move, but its rim is my strapped down. This ‘boundary condition’ ~atiy restricts the
possible motions of the drum. There are boundary conditions on violin strings too: the
ends must be fixed. Among other things, those boundary conditions prevent the
occurrence of traveling waves, moving sideways along the string.

The mathematicians of the eighteenth century were able to solve the equations for
the motion of drums of various shapes. Again they found that dl vibrations can be built
up from simpler ones, the nomd modes, and that those yield a specific fist of tiequencies.
The simplest case is the rectangular drum, whose normal modes me combinations of
sinusoiti ripples in the two perpendicular directions @ig.3a). A more tilcult case is
the circular drum, whose normal modes involve more complicated expressions ctied
Bessel functions (Fig.3b). The amplitudes of these normal modes still vary sinusoitily
with tim~ but their spatial structure is more compticati

The wave equation is exceedingly important. Waves arise not only in musical
instruments, but in the physics of Eght and sound. Euler found a three-dimensiond
version of the wave quation, which he appfied to sound waves. Rougtiy a century later,
James Clerk Maxwell extracted the same mathematical expression from his equations for
electromagnetism, and predicted the existence of radio waves. Without the early
mathematicians’ work on musical instruments, we would not today have television.

We can now explain, with greater pr~ision, what Kac’s question was. Choose a
clod ewe, defining the boundary of the tire, and imagine a flat membrane stretched
between it, of constant density and tension. The possible vibrations of such a membrane
are determined by the tw~dimensiond wave equation, with the condition that the boundary
of the drum, the original cume, remains fixed for all time. The solutions of the wave
equation are combinations of norrnd modes, standing waves whose ampfitude varies
sinusoiddly over time. The set of frequencies of the normal modes is the drum’s
spectrm. In general it consists of an infinite sequence of numbrs V1 S V2 S P3 S ....
the smallest frequency p 1 being the fundamental. Unlike violin strings, the other
frequencies need not be integer multiples of the fundamenti (which is why drums and
beUs have distinctive sounds, not entirely consistent with the usual rules of music~
harmony).

Clearly the drum’s shape determines the spectrum: you just have to solve the wave
~uation and see what the nomd mode @uencies are. But is the converse true? Does
the sptrum determine the shape? That was what Kac asked.



(a)

(b)

of ~e pap, whi~ region&low; amplimdevties sinusoiMly.

As he remarked in his original paper, the answer is ‘no’in higher dimensions. h
19@ John Minor (now at SW, Stonybrook) wrote a one-page paper in which he
exhibited two distinct sixteen-dimensional tori (generatizd doughnuts) with identicd
vibrational s~tra. ~e idea is quite ingenious. tie way to get an ofiary torus is to
take a unit square in the plane and glue its opposite edges together. ~uivdentiy, draw the
integer lattice in the plane and pretend that points whose coordinates differ by those of a
lattice point are ‘the same’. ~is effectively ro~s the plane up in circles along both
coordinate axes and yields the torus. me same consmction appfies in higher dimensions:
just use a higher-nsion~ httice. ~nor prov~ that tie tibrationd ~~ of such a
torus is determined by the ‘length spectrum’ of the latice: the orderd fist of distances of
lattice points from the origin. men he observed that the algebraist E.Witt had tieady
found two (rather famous) distinct lattices in 16dimensiond space with tie me len@
spectrum, and everything else fo~owd at once.
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Sixteen dimensions are dl very well, but what of a b k the plane? That
proved much less tractable. The fmt restits were positive: various features of the shape
can indeed be ‘heti’, that is, deduced from the spectrum. The fmt was the area. One
of the great mathematical centres around the turn of the century was G6ttingen.
P.WoKskeM had endowd a prize for a pmf of Fermat’s Last Theom~ but in the absence
of any solution (the problem is sti open but the prize has Wted to nothing) the interest
was to be used to pay for a series of lectures. k October 1910 the Dutch physicist Hendrik
brentz, of Lorenw-Fitzgerdd contraction fame, gave the WoEskeN lectures on ‘Old and
New Problems of Physics’. His lecture included the fo~owing passage:

“There is a mathematical problem which perhaps wfil arouse the interest of
mathematicianswho are ~n~ It originates in the radiation theory of J-. h an
enclosurewitha perfectiy~flecting surf= k can formstandingelec~dc waves
dogous to tones of an or~ pipe... J- ask for the energy in the @uency interval
~ To this ~d he Atites the numberof overtoneswhichk betweenthe ~uenciw
p and p+dp... It is here that tiere arises the mathematid problem to prove that the
number of sufficiency high overtones which ties betwm p and ~+d~ is independent
of the shape of the enclosureand is simply proportioti m its volume.”

The wave equation for elec~magnetism is the same as that for a vibrating sohd of the same
shape as the enclosure. Lorentz wasting about ‘asymptotic’ properties of the spectrum,
depending only upon very high fi~uencies; and he was asking whether you could hear the
volume of the enclosure if ordy high @uencies were taken into account. Nlegdy David
Hilbert, the Grand Old Man of Gottingen mathematics, predicted that brentz’s question
wodd not be answered within his tifetime. For once he was wrong: less than two years
later, Hermann Weyl proved the theorem — for waves in any number of dimensions —
using the theory of integral equations (much of which had been developed by ~bert).

Kac himself proved that for an ordinary two-dimensiond drum, the spectrum
determines the perimeter. One curious consequence is that you can hear whether or not a
drum is circular. A circle has the sdest perimeter for given area. If you know the area
A and the perimeter p, and it so happens that p2 = 4zA (as it is for a circle), then the drum
is a circle. Kac also conjectural a formula implying that, should a drum have finitely
many holes (whose edges are considerti to be part of the boundary and hence also kept
fixed) then you can hear how many holes there are.

No serious progress was made for fifteen years after Kac asked his question, but
then the problem came off the back Wller. In 1980 Marie-France Vign&ras found new
high-dimensiond spaces with the same spectra but different topology, proving that a
topological invariant called the ‘fundamenti group’ cannot be heard. Other examples
were found by A.&eda in the same year. h 1985 Toshikazu Sunada (Nagoya
University) found a gengral criterion for two distinct shapes to have the same spectrum.
Using it, Peter Buser @cole Polytechnique, Lausartne), Robert Brooks @niversity of
Southern California), and Richard Tse found distinct curved surfaces with the same
spectrum. Surfaces are classified topologicdly by the number of holes they have, and
these examples could have any number of holes greater thm or qud to four. You can
hear the number of holes, but not the actual shape.

Gordon was describing one of Buser’s examples at a geometry conference in the
spring of 1991, and Wolpert, in the audience, noticed that this curved surface possesses a
particuh symmetry allowing it to be ‘flattened’ in a natural way. He asked whether the
result would answer Kac’s original question in the negative. Webb reports the suggestion
as being “mea cold shower”, forcing him and Gordon to think the whole problem through
again. They became convincd — wrongly, it later turned out — that Wolpert’s idea
wouldn’t work, but that something more comphcated might. Eventually, having fflled
their offices with huge paper constructions that wouldn’t flatten, they got back on the right
track, and came up with two drums, each made from seven bisectd Maltese crosses,
tieady shown in Fig. 1. One drum resembles a pound sign, the other (with artistic
licence) a yen sign. The pound and yen have identicd sp~tr~ but different ovedl shapes.

The two drums also have a clear ‘family resemblance’: they’re assembld from
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identicd pieces, and that’s important in the clevm p~f hat tie spectra are identicd. It
involves taking any possible vibration of one-, cu~g ~ong tie dotted hes betw~n
the seven pimes, and showing that the resdt can ~ ~wmbl~ t? give a vtid vibration of
the other drum — which perforce has the same frequency. ms technique is based on
Suntis work, and was pionmred by ~e~e B6~d ~~versiw of @noble). Solutions
of the wave equation, in she% can be ‘cut-and-pastd between different drums. The
method has now tin made more elegan~ and many otier ex~ples of sound-tie drums
are now known.

Despite this cunning answer to Kac’s question, most of the subject is sti~ a
mystery. What can you hear? Volume or are~ dimension, a few curvature properties.
The topology, for two-dimensiond surfaces. Some information about lengths of
geodesics, shortest cues. According to a 1988 resdt by Michel Lapidus ~niversity of
Georgia) and Jacqueline Heckinger-Pel16 (Universit6 Paul Sabatier, Toulouse) -
confiig a conjecture by the physicist Michael Berry university of Bristol) that
gen-s Wey~s theorem — you can hear the ficti dimension of the Hs boundary.
Not the usual Musdorff-Besicovotch dimension, but a variat called the Minkowski
dimension. What can’t you hear? The fundamenti group (md hence tie topology).
Esoteric items such as patterns of criss-crossing of closed geodesics. Not much else for
sure. ‘me detective work of dtiuherin~ iust what geometrical information the ~trum
holds,” says Gordon, “has only ju~t be~-~.” -
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