"Hearts will never be practical until they can be made unbreakable."

The Wizard of Oz to the Tin Woodsman

ProfMJElliott

The Artificial Heart: a new ending?

Martin Elliott 37th Gresham Professor of Physic

Professor of Cardiothoracic Surgery at UCL Consultant Paediatric Cardiothoracic Surgeon The Great Ormond Street Hospital for Children

ProfMJElliott

plumbing meets ethics

the heart

CO 1 5-6 times HR 40 → 200 bpm SV 50 \rightarrow 220 ml/beat

and most of the time you don't notice it's there

ProfMJElliott

starts working within days of conception works ceaselessly beats 100k/day, 40m/year 3 billion in average lifespan supplies distribution network of 97,000 km of vessels

The Heart can Fail

Congenital

non-compaction

cardiomyopathy (genetic)

metabolic anomalies

dysrhythmias

coronary artery disease

hypertension

infective myocarditis

dysrhythmias

substance abuse

Good LV

ProfMJElliott

dilated cardiomyopathy

Law of Laplace

For a thick-walled structure such as the ventricle, the <u>law of Laplace</u> can be expressed as:

$$T = (P \times r)/h,$$

where:

- T wall tension,
- P pressure difference across the ventricular wall,
- r radius of the ventricle,
- h ventricular wall thickness.

Normal heart

Myocardial tagging

McVeigh et al. Circ. 2000

hypertrophic (restrictive) cardiomyopathy

ProfMJElliott

hydraulic consequences, up stream

delivery problems, downstream

ProfMJElliott

Heart Failure "a staggering clinical and public health problem"

Veronique Roger, 2013

ProfMJElliott

In the United States, cases of heart failure now exceed 5.8 million Each year > 670,000 new cases are diagnosed. Survival estimates are 50% and 10% at 5 and 10 years, respectively

> Circ Res. 2013;113:646-659 *Circulation.* 2012;127:743-748

>25 million people living with heart failure worldwide

ProfMJElliott

Advanced (Stage D) Heart Failure

Goals of Therapy

- control symptoms
- improve Quality of Life
- reduce hospital admissions
- define end of life goals

Options

- heart transplant
- IV drugs via pump
- mechanical support
- palliative care
- deactivate implanted devices

surgical therapies for heart failure

effective support

- resynchronisation therapy (pacing)
- revascularisation
- 'restoration'
- remove aneurysms
- repair leaky valves

replacement

- transplantation
- total artificial heart

abandoned procedures (aimed at reducing dimension & wall stress)

- dynamic cardiomyoplasty
- passive cardiomyoplasty
- partial ventriculectomy

Delmo Walter and Hetzer 2013

effective support

ventricular assist devices

Christiaan Barnard

ProfMJElliott

Cape Town, 1967

Cardiac Transplantation

ProfMJElliott

ProfMJElliott

Adult and Pediatric Heart Transplants Kaplan-Meier Survival (Transplants: January 1982 – June 2013)

Adult and Pediatric Heart Transplants Number of Transplants by Year and Location

Mechanical Support

 Bridge to recovery Bridge to bridge Destination therapy

Bridge to transplant (majority of pts)

John & Mary Gibbon (Boston)

1931

a little history...1950's

Paul Winchell

ProfMJElliott

ProfMJElliott

Henry Heimlich

Early one morning, I watched a sad George Robinson lose a patient during open-heart surgery and an idea struck me that sent me running to Heimlich.

"Hank", I began excitedly, "I just watched poor George lose his patient and I got to wondering if an artificial heart with its own power source were available, could it keep a patient alive during a crucial period?"

Paul Winchell

Paul Winchell and the Artificial Heart

JULY1ST,2005 NICHOLASGENES(HTTP://WWW.MEDGADGET.COM/AUTHOR/NICHOLAS)

ProfMJElliott

"Odd as it may seem, the heart wasn't that different from building a dummy; the valves and chambers were not unlike the moving and eyes and closing mouth of a puppet."

THE ANNALS OF THORACIC SURGERY

Journal of The Society of Thoracic Surgeons and the Southern Thoracic Surgical Association

VOLUME I

The Implanted Bypass Heart

An Experimental Study

N. Zuhdi, M.D., C. Ritchie, B.S., J. Carey, M.D., and A. Greer, M.D.

NUMBER 3 MAY 1965

Assisted Circulation–The Concept of

EXPERIMENTAL CIRCUITRY AND PROTOTYPE

CRITERIA FOR TOTAL BYPASS IMPLANTABLE HEART

- 1. Inert
- 2. Deters clot formation
- 3. Does not destroy blood elements
- 4. Capable of reproducible performance over long periods of time, 20 years, for instance
- 5. Size is such that it could be placed within one of the pleural cavities
- 6. Source of energy is small, portable, preferably implantable, reliable, and lasting (atomic capsule, blood or urine)

ProfMJElliott

FIG. 2. Photograph of the portion of the bypass heart to be implanted.

ProfMJElliott

Pneumatic Mechanism

ProfMJElliott

Cleveland Clinic

ProfMJElliott

martin.elliott@gosh.nhs.uk

History Movies

ProfMJElliott

a donor heart became available and replaced the Liotta heart after just 64hrs

Haskell Karp died 34 hrs after the transplant

ProfMJElliott

1970

he hoped that what the doctors learned might help save the lives of others someday.

Barney Clark

ProfMJElliott

Barney Clark lived for 112 very difficult days

236 Jarvik 7 pumps inserted over the next decade

ProfMJElliott

late 1980s

The New York Times dubbed artificial-heart research:-

ProfMJElliott

'a kind of "Dracula" that was sucking money away from more worthwhile programs'.

SynCardia TAH

- 1250 implanted
- 350 patient-years of support
- Iongest pre-transplant is 1374 days

ProfMJElliott

The Abiomed total artificial heart (TAH) uses a centrifugal pump to move silicone hydraulic fluid, which drives the device. A sleeved, rotating valve shuttles the fluid between the left and right blood pumps.

Right-side cutaway

Woven polyester flexible tubing grafted to ascending aorta and pulmonary trunk.

Clear epoxy parts are easily ______ cast into irregular shapes, and allow visual inspections for proper pump function and to ensure that no air is present before the artificial heart is turned on.

Pump impeller -

Titanium-alloy case

Twist-lock quick connectors allow surgery without the artificial heart in the way.

Polyester cloth cuffs aresutured onto the remaining atria.

ProfMJElliott

🖂 ma

"Space and the inside of your body have a lot in common; hey both present harsh and inaccessible environments" STRUM COMPANY DS

Matthieu Dollon, Head of Business Development in Astrium

Carmat Heart: planned lifespan 5 years

biologic valves bio-coated surfaces demand feedback

If your satellite stops working during the final penalty of the football world cup it's disappointing. But if a heart stops beating for five seconds, it's fatal.

Carmat's first transplant patient, a 76-year-old man, died in March last year, 2.5m post op

A second patient died on May 2, 9m post op. due to a technical problem with the controls of the motor.

A third patient, who was fitted with the device on April 8, is undertaking physiotherapy.

total artificial hearts are heavy

ProfMJElliott

Constructed Patient Landscape

Ollie Hirst

www.olliehirst.co.uk

Contour Landscape III

Ollie Hirst

www.olliehirst.co.uk

ProfMJElliott

Ventricular Assist

ProfMJElliott

Thoratec PVAD

ProfMJElliott

Thoratec IVAD

IVAD is implanted inside the abd cavity and is attached to the same TLC II driver on the outside.

The Berlin Heart in Children

Great Ormond Street Hospital for Children NHS Foundation Trust

ProfMJElliott

the swing

ProfMJElliott

Image courtesy of Terri Pengilley, The Independent

Elliott Livingstone 1 year on the Berlin Heart

Image courtesy of Terri Pengilley, The Independent

Image courtesy of Terri Pengilley, The Independent

Berlin Heart EXCOR complications

ProfMJElliott

STATE OF ART

Axial and centrifugal continuous-flow rotary pumps: A translation from pump mechanics to clinical practice

Nader Moazami, MD,^{a,b} Kiyotaka Fukamachi, MD, PhD,^c Mariko Kobayashi, MD,^c Nicholas G. Smedira, MD,^{a,b} Katherine J. Hoercher, RN,^b Alex Massiello, MEBME,^c Sangjin Lee, MD, MS,^{b,d} David J. Horvath, MSME,^c and Randall C. Starling, MD, MPH^{b,d}

From the ^aDepartment of Thoracic and Cardiovascular Surgery; ^bKaufman Center for Heart Failure; ^cDepartment of Biomedical Engineering, Lerner Research Institute; and the ^dDepartment of Cardiovascular Medicine, Heart and Vascular Institute Cleveland Clinic, Cleveland, Ohio.

The Journal of Heart and Lung Transplantation

http://www.jhltonline.org

Pump Design Differences: Impeller

Axial = "PUSHES Fluid"

Centrifugal = "THROWS Fluid"

Pump Design Similarities

- Rotary Blood Pump Components:
 - Inlet and Outlet
 - Single Rotating Element (Impeller)
 - Housing
 - Bearing ____
 - Magnetic Motor Windings

ProfMJElliott

HeartMatell

ProfMJElliott

Micromed DeBakey HVAD (Reliant Heart)

PRODUCED BY BERLIN HEART, BERLIN GERMANY

ProfMJElliott

Examples of thrombus formation in axial flow LVADs

ProfMJElliott

* Includes RVADs implanted at time of LVAD and subsequent RVAD implantations

J Thorac Cardiovasc Surg 2012;144:584-603

The Journal of Heart and Lung Transplantation 2014 33, 555-564DOI: (10.1016/j.healun.2014.04.010) Copyright © 2014 International Society for Heart and Lung Transplantation <u>Terms and Conditions</u>

The Journal of Heart and Lung Transplantation 2014 33, 555-564DOI: (10.1016/j.healun.2014.04.010) Copyright © 2014 International Society for Heart and Lung Transplantation <u>Terms and Conditions</u>

FIGURE 16. Survival after cardiac transplantation, stratified by era. NA, Not applicable. (From Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dobbels F, et al. The Registry of the International Society for Heart and Lung Transplantation: Twenty-eighth Adult Heart Transplant Report—2011. J Heart Lung Transplant. 2011;30:1078-94. Reproduced with permission of the International Society for Heart and Lung Transplantation Registry.)

FIGURE 12. Actuarial survival among destination therapy patients, stratified by device type. Patients are censored at the time of transplant or explant due to recovery. LVAD, Left ventricular assist device. *See notation in Figure 4.

J Thorac Cardiovasc Surg 2012;144:584-603

The Hopkins Heart Initiative

- **Executive Board**
- Duke Cameron, Gordon Tomaselli, Ashish Shah JHMI
 - Joseph Katz, Rajat Mittal, Tak Igusa Whiting School
- Conrad Grant JHU APL
 - Management: Marty Devaney, Jacopo Biasetti

Tissue Engineered Peristaltic Muscle Pump

ProfMJElliott

Cost of Ventricular Assist Devices

by Leslie W. Miller, Maya Guglin, and Joseph Rogers

Circulation Volume 127(6):743-748 February 12, 2013

Copyright © American Heart Association, Inc. All rights reserved.

Left ventricular assist devices (LVAD) therapy: expenses and gains.

Leslie W. Miller et al. Circulation. 2013;127:743-748

Left ventricular assist devices (LVAD) early costs are comparable with other life-saving therapies.

Copyright © American Heart Association, Inc. All rights reserved.

30% of the west's healthcare spend is in the last year of life

'Modern medicine has prolonged not only our lives but also our period of dying'

ProfMJElliott

Tannsjo 2005

Patient selections should be careful and limited to those 'who are likely to derive sustained benefit in terms of survival and quality of life'.

significantly in recent years and continues to do so'.

NICE also notes that the 'technology for this procedure has evolved

- the scale of the problem
- · access
- cost:benefit
- legal and ethical
- the role of faith

distributive justice

access to expensive treatment

TAH cost ≈ £100-200,000

cash is limited

who should get the TAH?

ProfMJElliott

TAH care ≈ £100-200,000

medical 'worth' social worth wealth lottery

distributive justice

treat the heart or treat cancer?

ProfMJElliott

"Medical ethics, once a private ethic governing the intimate transactions between patient and physician, has become, by virtue of such devices as TAH, a public ethic".

Albert R Jonsen, 1973

ProfMJElliott

The totally implantable artificial heart will continue pumping after a person is otherwise dead

ProfMJElliott

by ALBERT R. JONSEN

I have a digatmare

Rancho Los Amigos Hospital, California, 1953

ProfMJElliott

Article 2 of the Human Rights Act (1998) states:

Everyone's right to life shall be protected by law.

No one shall be deprived of his life intentionally save in the execution of a sentence of a court following his conviction of a crime for which this penalty is provided by law.

The **right to life** is a moral principle based on the belief that a human being has the right to live and, in particular, should not be killed by another human being.

ethical principles guiding implantation

"best interests"

- relief of suffering
- preservation or restoration of function
- extent and quality of life
- "goals of medicine"
 - prevention, cure and care of illness
- "futile interventions"
 - no expectation of therapeutic benefit
 - no cognitive awareness of benefit

You can turn it on, but when should you turn it off?

CONTEMPLATING TOTAL ARTIFICIAL HEART INACTIVATION IN CASES OF FUTILITY

KATRINA A. BRAMSTEDT

Monash University, East Bentleigh, Victoria, Australia and Loma Linda University, Loma Linda, CA, USA Death Studies, 27: 295–304, 2003

Under current law, a healthcare professional's legal duty is to care for a patient and to take reasonable steps to prolong their life.

it is generally accepted (both legally and morally) that adult patients with decision-making capacity can make informed choices to have life-sustaining therapies terminated

A person with capacity may decide either contemporaneously or by a valid and applicable advance decision that they have reached a stage where they no longer wish treatment to continue.

If a person lacks capacity, this decision must be taken in their best interests and in a way that reflects their wishes (if these are known).

what if your advance directive demands that you be kept 'alive', come what may?

ProfMJElliott

care that is medically futile is that which is unlikely to produce 'significant benefit' for the patient

quantitative futility: a treatment is capable of producing desired result, but probably not in the case in hand

qualitative futility: a treatment is likely to produce a result, but "is lacking in purpose"

support therapy."

"it is difficult to exclude TAH therapy as a form of aggressive care that could be ethically withdrawn.

When beneficence cannot be facilitated, families and physicians must consider termination of this life

Bramstedt 2003

this technology is not going to **COBMENDO** more heart failure, more patients wide public debate & engagement

Thank You

ProfMJElliott

"Trump can try again for the Republican nomination after 4 years waiting for an artificial soul"

ProfMJElliott

Professor Tom Karl

our new ending?

ProfMJElliott

less heart death, but more dementia?

Aortix[™] for the **ambulatory** treatment of chronic heart failure