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Fermat’s Theorems

Professor Raymond Flood

Slide: Title slide

Welcome to the first of my lectures this academic year and thank you for coming along. This year’s lectures will look at the personality and some of the work of a number of famous mathematicians and then discuss more recent developments and applications.

I will say more about today’s lecture in a moment but first I want to say a little about my other lectures this academic year. The two before Christmas are on Isaac Newton and Leonhard Euler.

Slide: Newton and Euler

In October I will discuss Newton and some of his laws. Newton used his law of universal gravitation and three laws of motion to explain elliptical planetary motion, the orbits of comets, the variation of the tides and the flattening of the earth at its poles. Further important work on celestial mechanics was undertaken by Joseph-Louis Lagrange, Pierre-Simon Laplace and Henri Poincaré. It was Poincaré who discovered that even with Newton’s deterministic laws the resulting motion may be irregular and unpredictable, the basis of modern day chaos theory.
Then in November it will be Euler’s Exponentials. Euler was the most prolific mathematician of all time. He introduced the symbols e for the exponential number, f for a function and i for[image: image3.png]


. He discovered what many mathematicians consider to be the most beautiful expression in mathematics,[image: image5.png]cosx + isinx



: a relation connecting the exponential and trigonometric functions. The exponential function and its inverse the logarithm function appear throughout mathematics and its applications, in physics, engineering, mathematical biology, chemistry and economics and I will give examples.
Slide: Fourier and Möbius
In January the lecture will be on Fourier’s Series.  Joseph Fourier was interested in the mathematical study of the diffusion of heat in solid bodies which he described using infinite trigonometric series which are now known as Fourier series. These series had major applications in many other types of physical problems and led to many of the most important mathematical discoveries of the nineteenth century. Fourier series are used not only in engineering, geology and astronomy but also in number theory, control theory and statistics.

My February lecture will be on Möbius and his band. Many people have heard of the Möbius band, a one-sided surface, but the work of August Möbius was more far reaching than just inventing a topological curiosity. His work in geometry, celestial mechanics and topology, sometimes called rubber sheet geometry, illuminates the mathematical and astronomical life of the nineteenth century. Möbius’s concerns, concepts and the methods he helped to develop played an important part in twentieth century mathematics.

Slide: Cantor

And my final lecture in March will be on Cantor and his infinities. Although many people contributed to the study of infinity over the centuries it was Georg Cantor in the nineteenth century who established its modern development. Cantor created modern set theory and established the importance of one-to-one correspondence between sets. For example he showed that the set of all integers can be put into one-to-one correspondence with the set of all fractions and so these two sets have the same infinity.  But he also proved the remarkable result that there are infinitely many infinities, all of different sizes.

But now back to today’s lecture.

Slide: Pierre de Fermat 160/ - 1665
The seventeenth century French mathematician Pierre de Fermat is now mainly remembered for contributions to number theory even though he often stated his results without proof and published very little. 
Fermat spent most of his life in Toulouse working as a lawyer and magistrate. Very little is known of his early life, even his date of birth is uncertain, some sources giving it as 1601 and others in 1607-8. Fermat is sometimes described as an amateur mathematician but he was only amateur in the sense that he did not earn his living from mathematics. He was an exceptionally talented mathematician who made important contributions to all the important work of his time. For example, Fermat and the mathematician and philosopher, René Descartes, are often described as the fathers of Analytic Geometry where we use algebraic techniques to help us solve geometric problems. 
Among the problems he considered were finding tangents to curves, finding the maximum and minimum of certain expressions and finding areas. He also applied his algebraic techniques to provide a proof of the law of refraction in optics in which he used the principle that “nature acts in the shortest time”.

Another example of his contributions is that the modern theory of probability is often considered to have begun in 1654 and arose out of correspondence between Fermat and another mathematician and philosopher, Blaise Pascal.
Corresponding by letter was Fermat’s favored method of communicating his mathematical discoveries rather than publishing them. Usually he did not give any proofs of his results but there are letters in which he does give proofs and which show his enormous talent.

After his death other mathematicians tried to prove his results and one by one they were resolved, Euler for example giving the first published proof what became known as Fermat’s little theorem which is about certain large numbers which can be divided by primes and is the basis of important recent work in cryptography and internet security.

But there was one of his results which defied all efforts at a proof for over 350 years. This result became known as Fermat’s ‘last theorem’ and it was only proved in the mid-1990s by Andrew Wiles. 

I will mainly concentrate on Fermat’s work on number theory but want to say a little first of all about his work on analytic geometry and then on probability.
Slide: Fermat and Descartes – founders of analytic geometry

Analytic geometry uses algebra and a system of axes along which lengths are measured to solve geometric questions. It is sometimes also called coordinate geometry. Both Fermat and Descartes used their coordinate or analytic geometry to find the path of a point that moved in a specified way relative to a number of fixed lines.
Fermat also used algebraic analysis and approximations to find the maximum and minimum values of certain expressions. 
Slide: Fermat’s principle and Refraction of light

Late in his life Fermat investigated the refraction or bending of light as it passes from one medium to another, say from air to water. In his investigation he made use of two principles or postulates. The first was that the finite speed of light varied depending on the medium it was passing through and the second that “nature operates by the simplest and expeditious ways and means”

The second is now known as Fermat’s principle of Least Time and assumes that the path of a ray of light is a path taking least time. 

In this diagram let v1 be the velocity of light in air and v2 the velocity of light in water.

A ray of light goes from Q1 in air to Q2 in water touching the boundary between the air and water at the point R. From Fermat’s Principle of Least Time we want R to be chosen to make the total time to travel from Q1 in the air to Q2 in the water to be as small as possible.
This total time is Q1R/v1 + RQ2/v2 and Fermat achieved his result by minimising it. It is minimized when 
sin ( / sin ( = v1 / v2
where ( is usually called the angle of incidence and ( the angle of refraction. The ratio of the speeds is usually called the refractive index and because by measurement we have that ( is greater than ( Fermat’s result shows that the speed of light in air is greater than the speed of light in water. 
The result that sin ( / sin ( is constant is usually called Snell’s law although I believe that it first appeared in print in Descartes La Dioptrique of 1637. But Descartes like the great Sir Isaac Newton made assumptions that led them to conclude that the ratio of the velocities was the other way around which then implied that light travelled faster in water than in air. At that time there were no accurate methods of determining the speed of light in air and in water and it was not until the middle of the nineteenth century that Foucault showed that light did travel faster in air than in water and so Fermat rather than Descartes or Newton was correct.
Slide: Founders of Modern Probability
The modern theory of probability is frequently considered to begin with correspondence between the two French mathematicians Pierre de Fermat and Blaise Pascal.

Their work on probability arose out of gambling problems. 

Slide:  A gambling problem: the interrupted game
One of these problems was:

What is the fair division of stakes in a game which is interrupted before its conclusion?

Example: suppose that two players agree to play a certain game, say tossing a coin, repeatedly to win £64; the winner is the one who first wins four turns. 

If the game is interrupted when one player has won two turns and the other player has won one turn, how should the £64 be divided fairly between the players? 

So, for example you and I toss a coin. If it is heads you win and tails I win. We agree that we will keep tossing the coin until one of has 4 wins. But the fire alarm goes off when you have won twice and I have won once and we have to stop the game. What is the probability that each of us would have won if we had been able to continue?

Fermat’s approach was to imagine that another four tosses did take place and he listed out all the possibilities and the crucial thing is that all these different outcomes for the next 4 tosses are equally likely.

Also the game would be decided after at most the next 4 tosses because one of us must reach 4 wins. Four is the maximum number of tosses needed to decide. For example: I win the next 2 tosses so we are at 2 for you and 3 for me. Then you win the next 2 tosses and win the game.  So it takes four tosses to get a winner. It never takes more but it could take less. For example if you win the next 2 tosses you win and the game is over after two tosses only.

Slide: Interrupted game: Fermat’s approach

Let us list all the possible outcomes for the next four tosses. All outcomes are equally likely and are (Y = you, M = me):

YYYY
YYYM
YYMY
YYMM
YMYY
YMYM
YMMY
YMMM
MYYY
MYYM
MYMY
MYMM
MMYY
MMYM
MMMY
MMMM
The yellow ones are were you would have won and there are 11 of them. The red ones are where I would have won and there are 5 of them.

Probability you would have won is 11/16

Probability I would have won is 5/16

So if the prize was £64 you should get 11/16 of £64 which is £44 and I would get £20.

Pascal took a different approach which made use of what is now called Pascal’s triangle although what Pascal called his Arithmetical triangle had been used in various cultures for more than 500 years.

Because Fermat published so little and because there was a very limited circulation of his letters and manuscripts his work on analytic geometry, maximum and minima and how to find areas as well as his work on probability had very little influence on his contemporaries. The area to which we now turn his number theory had almost none at all! But it is justly the area for which he is most remembered today. It is also correct to call it his number theory because as one of his biographers has said Fermat invented number theory as an independent branch of mathematics (Mahoney see refs).

Slide: Fermat’s number theory
This is because he was the first to restrict his work to the area of whole numbers and integers only. This was different from the classical approach of the Greek mathematician Diophantus who would accept solutions which were fractions.

His restriction to working only with whole numbers explains why he was so interesting in the themes of prime numbers and divisibility i.e. which integers divide which other integers. His other dominant theme was to find families of solutions, again in integers, to various equations.
Although so much of what Fermat did is core to today’s number theory he kept his methods secret or at least did not share them. His manuscripts, letters and notes in the margins of books he was reading state various theorems and conjectures but without proof except for an indication of a method which he called “proof by infinite descent” which uses a particular property of the integers Otherwise he left little evidence of the method he claimed to have to obtain his results but it is clear must have had a general method but he never revealed it to anyone. 
Let us look at what he did leave – his method of infinite descent.

Slide: Method of infinite descent

He wrote about it:

"As ordinary methods, such as are found in books, are inadequate to proving such difficult propositions, I discovered at last a most singular method...which I called the infinite descent. At first I used it to prove only negative assertions, such as
‘There is no right angled triangle in numbers whose area is a square’... 
To apply it to affirmative questions is much harder,
so when I had to prove
 ‘Every prime of the form 4n+1 is a sum of two squares’
 I found myself in a sorry plight (en belle peine). But at last such questions proved amenable to my methods."
-Quoted from Andre Weil's Number Theory

Slide: No right angled triangle in numbers whose area is a square - examples
 Let us look at the first of these. Here are some examples of right angled triangles whose sides are integers and in no case is the area a square of an integer.

Fermat’s proof of this in general used infinite descent. He started by assuming that there was a right angled triangle with integer sides whose area was the square of an integer. 
Slide: There is no right angled triangle in numbers whose area is a square – in general

He was then able to find integers x and y so that the hypotenuse, longest side of this right angled triangle was x2 + y2.

Slide: There is no right angled triangle in numbers whose area is a square – final

 Then he cleverly constructed another right angled triangle whose area was also a square of an integer but this second triangle was smaller than the first. In fact its hypotenuse had length x so quite a lot shorter than the first triangle. This gives a contradiction as Fermat explains:
Slide: Fermat on infinite descent

If there was some right triangle of integers that had an area equal to a square there would be another triangle less than it which has the same property. If there were a second less than the first which had the same property there would be by similar reasoning a third less than the second which had the same property and then a fourth, a fifth etc. ad infinitum. But given a number there cannot be infinitely many others in decreasing order less than it – I mean to speak always of integers. From which one concludes that it is therefore impossible that any right triangle of numbers has an area that is a square.

The other result that Fermat mentioned when talking about his method of infinite descent also involved squares. It is:

Slide: Every prime of the form 4n+1 is a sum of two squares
Let us list all prime numbers of the form 4n + 1(that is, each is one more than a multiple of 4):

5, 13, 17, 29, 37, 41, 53, 61, … .

Fermat observed that

Every prime number in this list can be written as the sum of two squares:

for example, 

13 = 4 + 9 = 22 + 32 

41 = 16 + 25 = 42 + 52.

61 = 25 + 36 = 52 + 62
Although Fermat stated this result he did not prove it. Leonhard Euler about a hundred years later provided a proof using Fermat’s method of infinite descent.  It was Euler who also disproved another conjecture of Fermat.
Slide: Fermat primes

Fermat conjectured that if n is a power of 2 then 2n + 1 is a prime number. The first few of these numbers are indeed prime numbers:
21 + 1 = 3

22 + 1 = 5

24 + 1 = 17

28 + 1 = 257

216 + 1 = 65537

But 232 + 1 = 4294967297 = 641 × 6700417
Slide: proof 

Because 232 + 1 = (232 + 54×228) – (54×228 – 1)
Now 641 = 24 + 54 and = 5×27 +1

So 232 + 1 = 228(24 + 54) – (5×27 + 1) (5×27 - 1) (52×214 + 1)

Fermat must have had other methods that he did not reveal because he found a solution to the Pell’s equation of quite impressive size.
Slide: Pell’s equation

Pell’s equation is of the form

C x2 + 1 = y2
And the seventh century Indian mathematician, Brahmagupta, solved it for several values of C and found methods for generating families of solutions.

Fermat managed to find a solution in the difficult case of C = 109 and challenged his mathematical contemporaries to do the same. Since the smallest solution is 
x = 15,140,424,455,100 and

y = 158,070,671,986,249

Fermat must have had some general method but he never shared it!

But now let me turn to the two amazing theorems named after him. These are Fermat’s Little Theorem and Fermat’s Last Theorem. We will need a little notation first of all and that is the idea of modular arithmetic. Modular arithmetic is sometimes called clock arithmetic because the numbers wrap around like those on a clock face. On a clock the number 12 is the modulus and any time in an arithmetical calculation you get the number 12 or any multiple of the number 12 you can replace it by zero. Of course we can choose other numbers than 12 to be the modulus.
Slide: Modular arithmetic

In general, if n is the modulus we write 

 a ( b mod n 
to mean that a and b have the same remainders when divided by n and we say say a is congruent to b mod n. Examples: 
35 ( 11 mod 24,  18 (  11 mod 7,     16 ( 1 mod 5 

An equivalent way of describing this is that n divides a – b.

Let us see how we can do some arithmetical calculations in modular arithmetic.

If a ( b mod n and c ( d mod n
Then addition and multiplication are straightforward
Addition: a + c ( b + d mod n
Multiplication:  ac ( bd mod n

But division is trickier. For example it is true that 

9 ( 3 mod 6

But it is not the case that you can divide by 2 because 6 is not congruent to 3 mod 6.
Let us see what went wrong:

If ac ( bc mod n then we know that 

n divides ac – bc which is (a – b)c but we cannot conclude that n divides (a – b)unless n and c have no factors in common. In particular this will happen if n is a prime and n does not divide into c.
Cancellation: If ac ( bc mod p and p is a prime and p does not divide c then a ( b mod p.

Let us now use these laws of modular arithmetic to prove Fermat’s Little theorem.
Slide: Fermat’s Little theorem
Pick any prime, p and any integer, k, smaller than p.

Raise k to the power of p -1 and find its remainder on dividing by p. The answer is always 1 no matter what p and k are!

kp – 1 ( 1 mod p
Pick your p = 7, k = 5

Then we know that 57 – 1 = 56 leaves a remainder of 1 when divided by 7. 

Now to the proof: in the notes I give the proof in general but we can see the ideas clearly if we do it for p = 7 and a = 5.
Slide: Fermat’s Little theorem Proof

[General Proof: Write down the list of all the whole numbers less than p. These are
1, 2, 3, 4, … p -2, p -1 mod p
Multiply each of them by k and find its remainder after dividing by p to get the list

k, 2k, 3k, 4k, …(p -2)k, (p-1)k mod p
It follows from the cancellation theorem that these two lists are made up of the same integers but in a different order. But if that is the case then by the multiplication law multiplying together all the numbers in each list will give the same answer:

kp – 1 (p – 1)! ( (p – 1)! mod p
Now p does not divide (p - 1)! So we cancel it to get

kp – 1 (  1 mod p as we required.]
Example:

P = 7

K = 5
List A:
1,
2,
3,
4,
5,
6,
mod 7
Multiply each by k = 5
List B:
5,
10,
15,
20,
25,
30,
mod 7
When we write it mod 7 we obtain list A in a different order. 

List C:
5,
3,
1,
6,
4,
2,
mod 7

So the terms in list A multiplied together are the same mod 7 as the terms in list B multiplied together.

5.1.5.2.5.3.5.4.5.5.5.6 ( 1.2.3.4.5.6 mod 7

56.1.2.3.4.5.6 ( 1.2.3.4.5.6 mod 7

We can cancel 1.2.3.4.5.6 as it is not divisible by 7 to get 
56 ( 1 mod 7

Exercise: Try it for yourself for p = 11 and a = 6.

Fermat’s little theorem is the forerunner of two very important areas of modern applications in mathematics which are primality testing – find when a number is prime or not and the area of public key cryptography which is crucial to electronic commerce.

Slide: Primality testing

We know the little theorem tells us that for any prime, p and any integer, k, smaller than p then kp – 1 ( 1 mod p.
So the consequence is that if for any choice of a the remainder is not 1 then the number p is not prime. It is actually quite easy to find the remainders and so Fermat’s Little theorem provides the basis for a necessary condition for the number p to be prime.

For example: a = 2 and modulus, p, is 15
214 mod 15 ( 24 x 24 x 24 x 22 mod 15 ( 16 x 16 x 16 x 4 mod 15 

( 1 x 1 x 1 x 4 mod 15 ( 4 mod 15

So 15 is not prime! Sadly this test is not sufficient there are infinitely many numbers, called Carmichael numbers, that pass the test but are not prime. However there are more sophisticated genuine tests for primality which build on Fermat’s Little theorem.
The other application I want to briefly mention is public key cryptography which uses modular arithmetic and ideas similar to that in Fermat’s little theorem.
Slide: RSA cryptography

The RSA algorithm is named after Ronald Rivest, Adi Shamir and Leonard Adleman.

We can here see it on a t-shirt. 
P and Q are prime numbers perhaps found using a method based on Fermat’s little theorem.

Set N = PQ and make it public.

Find E and D so that ED is congruent to 1 mod (P – 1)(Q – 1) and publish E, for encryption. D is for decryption.

Then if M is the message the coded version of it is the remainder of ME mod N. This is called C.

To recover the message find the remainder of CD mod N. The justification uses Fermat’s little theorem applied to the primes P and Q.
Slide: Fermat’s marginal note 
To finish let me talk about Fermat’s famous last theorem. Fermat appears to have conjectured this result about 1630. It is called his last theorem because it was the last of his theorems to be proved over 350 years later in the mid-1990s. Fermat came up with the theorem while reading an edition of Diophantus’s Arithmetica. The result was first published in 1670 when Fermat’s son Samuel published an edition of Diophantus’s Arithmetica which included the comments his father had written in the margins. On the right we see at the bottom what Fermat wrote in the margin about Diophantus’s question VIII of Book II. This question of Diophantus was about writing a square as the sum of two squares and Fermat’s note in the margin said:
Slide: Fermat’s marginal note in translation
It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second, into two like powers. I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.

Slide: Fermat’s last theorem
In algebraic language Fermat’s last theorem states:

The equation xn + yn = zn has no whole number solutions if n is any integer greater than or equal to 3.

We only need to prove the theorem for n equal to 4 or n an odd prime. This is because every integer, n, greater than or equal to 3 is divisible by 4 or by an odd prime and so every nth power is either a 4th power or a pth power. For example suppose you have proved the theorem when n is 4 or an odd prime then it must also be true for example for n = 200 because x200 + y200 = z200 can be rewritten (x50)4 + (y50)4 = (z50)4 so any solution for n equal to 200 would give a solution for n equal to 4 which is not possible.

Fermat proved the theorem in the case n = 4

Slide: n = 4

One way of viewing what Fermat did is as follows:

Suppose there is a solution in integers to the equation

x4 + y4 = z4
This can be written

(x2)2 + (y2)2 = (z2)2

so there exists a right angled triangle with sides x2, y2 and z2. You can use this right angled triangle to find another right angled triangle with integer sides whose area was a square. But as we have seen he had used his method of infinite descent to show that such a triangle was impossible. Hence there were no integer solutions to 

 x4 + y4 = z4
After this progress was slow!

Slide: First 200 years

As we have seen Fermat did n = 4 
Then over 100 years later Euler did n = 3 in 1770, using the method of infinite descent.
Legendre and Lejeune-Dirichlet did n = 5 in 1825
Gabriel Lamé did n = 7 in 1839
These attacks used particular features of the numbers 3, 4, 5 and 7. A major advance was made by the woman mathematician Sophie Germain who had ideas about a more general approach that could handle more than one power at a time.
Slide: Sophie Germain
Germain was born in Paris, the daughter of a wealthy merchant who later became a director of the Bank of France. In the predominantly male world of late 18th-century university mathematics, it was difficult for talented women to become accepted.

Women were discouraged from studying mathematics and were barred from admission to universities or the membership of academies. Her interest in mathematics supposedly began during the early years of the French Revolution.

During the Reign of Terror in France, Sophie Germain remained at home, teaching herself the differential calculus. In 1794, when she was 18, the Ecole Polytechnique was founded in order to train much-needed mathematicians and scientists. This would have been the ideal place for her to study, but it was not open to women. Frustrated, but undeterred, she decided on a plan of covert study. She managed to obtain the lecture notes for Lagrange’s exciting new course on analysis, and at the end of the term submitted a paper under the pseudonym of M. Antoine Le Blanc, a former student of the Ecole. Lagrange was so impressed by the originality of this paper that he insisted on meeting its author. When Germain nervously turned up, he was amazed, but delighted. He proceeded to give her much help and encouragement, putting her in touch with other French mathematicians and helping her to develop her mathematical interests. One of the most important of these was the theory of numbers. Germain wrote to Adrien- Marie Legendre, the author of a celebrated book on the subject, about some difficulties she had found with his book. This led to a lengthy and fruitful exchange.

Another productive correspondence was with the great Gauss. His recent Disquisitiones Arithmeticae on number theory had impressed Sophie Germain so much that she plucked up the courage to send him her discoveries, once again choosing to present herself as Monsieur Le Blanc. 

One topic that Sophie Germain included in her communications with Gauss was Fermat’s last theorem. Over the next few years, Germain obtained several new results on Fermat’s last theorem, proving in particular that, if n is any prime number less than 100, then there are no positive integer solutions if x, y and z are mutually prime to one another and to n.

Gauss was impressed with Germain’s discoveries and continued to correspond with her eventually discovering her true identity in1807. 
Later Germain tried to prove Fermat’s Last Theorem for all even powers. She failed and in fact the even primes were only dealt with in 1977.
But Fermat’s theorem was to provide the impetus for a new area of mathematics – algebraic number theory – and it arose out of a false proof of the theorem!

Slide: False proof

In 1847 Lamé who had dealt with the case of n = 7 published what he thought was a proof for all n. It was based on factorizing xn + yn into linear factors but over the complex numbers and using the complez numbers called the nth roots of unity.
The factorization can be written

 xn + yn = (x + y)(x + (y)(x + (2y) ((((x + (n – 1 y) where (n = 1.
As usual you assume that this equals an nth power zn for some z.  He then concluded that each of the factors was also an nth power and from that he derived a contradiction. 
But to conclude that each factor was an nth power he needed to assume that these complex numbers could be factored into primes in essentially only one way – usually called unique prime factorization.
This works for ordinary integers but is not always possible for these complex numbers.

Slide: Kummer

Ernst Kummer showed that uniqueness of prime factorization failed but could be recovered by introducing “ideal numbers”. This was the beginning of algebraic number theory and by 1850 Kummer announced that he had proved Fermat’s Last theorem for a large number of primes which he called regular. Kummer claimed that there are infinitely many regular primes but it is still not known whether that is true or not. But it is known that there are infinitely many primes that are not regular.
Over the next hundred or so years up to 1993 using techniques based on Kummer’s work and using computers Fermat’s Last Theorem was proved for the power, n, up to 4,000,000. Although the evidence for Fermat’s Last theorem was mounting, the techniques used were becoming specific to the power being considered. Something new was again needed.

The eventual solution was to come from a different direction and is one of the most dramatic stories in mathematics brilliantly told by Simon Singh in his book on the subject and also in the BBC Horizon documentary programme on Fermat’s Last theorem.

The solution was due to Andrew Wiles
Slide: Andrew Wiles

It is not given to everyone to achieve their childhood dream, but this happened for Andrew Wiles, who encountered Fermat’s last theorem as a schoolboy, worked on it single-mindedly for many years, and eventually proved it after a lengthy and difficult struggle and a magical moment.

Wiles recalls when he first came across Fermat’s last theorem: One day I happened to be looking in my public library and I found a book on maths — it told a bit about the history of this problem and I, a ten year old, could understand it. From that moment I tried to solve it myself — it was such a challenge, such a beautiful problem — this problem was Fermat’s last theorem.

Two ideas that were central to Wiles’s eventual proof are those of an ‘elliptic curve’ and a ‘modular form’. 
Slide: Elliptic curve

An elliptic curve is essentially a curve whose equation is of the form

y2 = x3 + rx2 + sx + t, for some integers r, s and t
for some integers r, s and t. 
Elliptic curves have many beautiful and important properties in number theory.

Slide: Modular form

A modular form may be thought of, in general terms, as a way of generalizing the Mobius transformation

f (z) = (az  + b) / (cz + d).

Modular forms do for elliptic curves what trigonometric functions do for the circle which is that a circle can be described in terms of sines and cosines. And indeed every circle can be described in this way. That there is a similar connection between elliptic curves and modular forms is the Taniyama – Shimura conjecture.

Slide: Taniyama – Shimura Conjecture

Yutaka Taniyama and Goro Shimura conjectured that 
Every elliptic curve is associated with a modular form.
Around 1984 major progress was made when Gerhard Frey spotted that if Fermat’s theorem were false, so that the equation 
a p + b p = c p held for some positive integers a, b and c and prime number p, then the elliptic curve

y2 = x3 +(bp - ap) x2 - apbp x

would have such bizarre properties that it could not be modular, thereby contradicting the Taniyama–Shimura conjecture.

At this stage, Andrew Wiles excited by Frey’s observations set himself the task of proving the special case of the Taniyama–Shimura conjecture that was enough to prove the truth of Fermat’s last theorem. For seven years he hid himself away from other distractions while he concentrated on chipping away at the problem:

By 1993 he had convinced himself that he had completed the proof, and he presented it, to world-wide enthusiasm and acclaim, at a major conference at Cambridge University.

But during the detailed checking of the proof by the great and the good, a serious gap was discovered. For over a year, Wiles and his former doctoral student, Richard Taylor, struggled to close the gap. Wiles was about to give up when:
 Suddenly, unexpectedly, I had this incredible revelation. It was the most important moment of my working life. Nothing I ever do again … it was so indescribably beautiful, it was so simple and so elegant, and I just stared in disbelief for twenty minutes, then during the day I walked around the department. I’d keep coming back to my desk to see it was still there — it was still there.

The proof was indeed complete, and Andrew Wiles was able to look back with pride and pleasure on his monumental achievement:

There is no other problem that will mean the same to me. I had this very rare privilege of being able to pursue in my adult life what had been my childhood dream. I know it’s a rare privilege, but I know if one can do this, it’s more rewarding than anything one can imagine. 
Crucially the important point about the proof of Fermat’s theorem is not Fermat’s theorem at all but the relationship between elliptic curves and modular forms that was provided by proving the Taniyama – Shimura conjecture. Now whenever you meet an elliptic curve it will have an associated modular form which allows lots of tools and methods to be used in its study. And indeed this has happened in other problems in number theory. The importance of Fermat and his teasing marginal note was that it led to many important developments in mathematics and caused the creation of many rich areas and connections between them.
Thank you.
Slide: Next Lecture on Newton and his laws.
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