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Overview 

• Is the solar system stable? 

• Dynamical systems 

• Logistic equation 

• Deterministic chaos  

• Sensitivity to initial conditions 

• Predictability horizon 

• Lorenz attractor 

• Mandelbrot set  

• Fractals 

• Predictability in real physical systems 

 

 

  



Henri Poincare 

1854–1912 

 



Is the Solar System Stable? 

King Oscar II, his son Gustav, grandson 

Gustav-Adolf  and great-grandson Prince 

Gustav-Adolf   

Given a system of  arbitrarily many 

mass points that attract each according 

to Newton’s law, under the assumption 

that no two points ever collide, try to 

find a representation of  the coordinates 

of  each point as a series in a variable 

that is some known function of  time and 

for all of  whose values the series 

converges uniformly 



Motion of  two bodies under 

gravitational attraction 



The complexities of  three-body motion: here is a typical 

trajectories of  a dust particle as it orbits two fixed 

planets of  equal mass.  
 



Examples of  Dynamical systems 

• Swinging pendulum 

• Ship at sea 

• Solar system 

• Particle accelerator 

• Power networks 

• Fluid dynamics 

• Chemical reactions 

• Population dynamics 

• Stockmarkets 

Drawings: Robert Lambourne, Open University 



Discrete Dynamical systems 

A discrete dynamical system is one that evolves in jumps. 

 

Example: the system could be the amount of  money in a 

savings account at the start of  each year and the underlying 

dynamic is to add the interest once a year 

 

This could be modelled by a difference equation and written 

S(n + 1) = S(n) + 0.1 × S(n) 

 S(n) means the amount of  money in the account in year n. 

The number 0.1 is the interest rate. 



Continuous Dynamical systems 

This is where the state of  the system varies continuously with 

time and is usually given by differential equations. 

For example: for a swinging pendulum the angle of  

inclination, , of  the angle of  the string supporting the 

pendulum bob from the vertical is given by: 

 



Our dynamical systems are 

deterministic 
• for our savings account example, if  we know the 

exact sum of  money put into the bank at year 1 

then this determines how much is in the account 

in all subsequent years. 

• For the pendulum if  we know exactly the angle at 

which we start of  the motion then this 

determines the value of   at all subsequent 

times. 

 



Pierre Simon Laplace 1749 – 1827 
 

An intellect which at a certain moment 

would know all forces that set nature 

in motion, and all positions of  all 

items of  which nature is composed, if  

this intellect were also vast enough to 

submit these data to analysis, it would 

embrace in a single formula the 

movements of  the greatest bodies of  the 

universe and those of  the tiniest atom; 

for such an intellect nothing would be 

uncertain and the future just like the 

past would be present before its eyes. 

 



Logistic Difference Equation 

 
xn is the size of  the population in the 

nth generation divided by the 

maximum sustainable population  

 

xn + 1 = r xn (1 – xn) 
 

We take 0 ≤ r ≤ 4 

 

The graph of f(x) = r x (1 – x) 
For different values of r 



Logistic equation with r = 2 and 

starting at 0.1 

The equation  is: 

xn + 1 = 2xn (1 – xn) 

When x1 = 0.1 then x2  = 2 × 0.1 × (1 – 0.1) 

                                     = 0.18 

When x2 = 0.18 then x3  = 2 × 0.18 × (1 – 0.18) 

                                     = 0.2952 

When x3 = 0.2952 then x4  = 2 × 0.2952 × (1 – 0.2952) 

                                     = 0.4161 

x4 = 0.4161 then x5  = 0.4859 

x5 = 0.4859 then x6  = 0.4996 

x6 = 0.4996 then x7  = 0.4999 

x7 = 0.4999 then x8  = 0.5 

x8 = 0.5 then x9  = 0.5 
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Generation 

Logistic Equation with r = 2 
Staring at 0.1  

Values



When r = 2  the value 0.5 is a fixed point since if  xn  = 0.5 then 

xn + 1  = 2 x 0.5 × (1 – 0.5) = 0.5  

But it also an attractor  for the trajectories. No matter what our 

starting value we end at 0.5 
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Generation 

Logistic Equation with r = 2 
Staring at 0.23  

Values
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Generation 

Logistic Equation with r = 2 
Staring at 0.78  

Values



Cobweb construction 

r = 2.8 start is 0.07  



When r = 2.5 then 0.6 is the attractor.   

If  xn  = 0.6 then xn + 1  = 2.5 × 0.6 × (1 – 0.6) = 0.6  
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Generation 

Logistic Equation with r = 2.5 
Staring at 0.78  
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Generation 

Logistic Equation with r = 2.5 
Staring at 0.23  

Values



When r = 3.0  

the attractor is now a pair of  values and the system oscillates 

between them. 
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Generation 

Logistic Equation with r = 3.0 
Staring at 0.23  

Values
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Generation 

Logistic Equation with r = 3.0 
Staring at 0.78  

Values



When r = 3.5  

the attractor is now a set  of  four  values and the system oscillates 

between them. 
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Generation 

Logistic Equation with r = 3.5 
Staring at 0.23  

Values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

P
o

p
u

la
ti

o
n

 v
al

u
e

 

Generation 

Logistic Equation with r = 3.0 
Staring at 0.78  

Values



Going from order to chaos 

For r from 0 to 3 there is a point attractor. 

For r from 3 to 1 + 6 = 3.449 the attractor is 

of  period 2 

For r slightly above that the period doubles and 

the attractor is of  period 4. 

As r increases period doubling 8, 16, 32 … occurs at 

ever more closely spaced values of  r until at r = 

3.57 the system is no longer periodic – it is 

called chaotic. 



The system is no longer periodic  

it is chaotic  
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Generation 

Logistic Equation with r = 4.0 
Staring at 0.78  

Values
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Generation 

Logistic Equation with r = 3.57 
Staring at 0.78  

Values



Period doubling road to chaos 



Period three implies chaos 
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Generation 

Logistic Equation with r = 3.8284 
Staring at 0.78  

Values



Sensitivity to initial conditions 
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Generation 

Logistic Equation with r = 3.7 
Difference between a start at 0.25 with a start at 0.251  



Sensitivity to initial conditions 
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Generation 

Logistic Equation with r = 3.7 
Difference between a start at 0.25 with a start at 0.2501  



Sensitivity to initial conditions 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

P
o

p
u

la
ti

o
n

 v
al

u
e

 

Generation 

Logistic Equation with r = 3.7 
Difference between a start at 0.25 with a start at 0.25001  



Sensitivity to initial conditions 
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Generation 

Logistic Equation with r = 3.7 
Difference between a start at 0.25 with a start at 0.250001  



Sensitivity to initial conditions 
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Generation 

Logistic Equation with r = 3.7 
Difference between a start at 0.25 with a start at 0.2500001  



Sensitivity to initial conditions 
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Generation 

Logistic Equation with r = 3.7 
Difference between a start at 0.25 with a start at 0.25000001  



Sensitivity to initial conditions 

Predictability Horizon 
Starting Value Number of  generations in step 

with the starting value 0.25 

0.251 5 

0.2501 13 

0.25001 17 

0.250001 22 

0.2500001 26 

0.25000001 32 



Sensitivity to initial conditions 

Predictability Horizon 
Starting Value Number of  generations in step 

with the starting value 0.25 

0.251 5 

0.2501 13 

0.25001 17 

0.250001 22 

0.2500001 26 

0.25000001 32 

TEN fold increase in accuracy of  starting values  

only gives 

LINEAR increase in agreement of  population sizes 

From this we can estimate the Lyapunov exponent which is a measure of  the 

average speed with which infinitesimally close states separate 



Simple mathematical models with very complicated 

dynamics 

Robert M. May, Nature, 1976 

Not only in research, but in the world of politics 
and economics, we would all be better off if 
more people realised that simple non-linear 
systems do not necessarily possess simple 
dynamical properties. 

 



Lorenz system 
Three variables x, y, and z 

Three parameters ,  and β  

Edward Lorenz 1917 - 2008 



Lorenz Attractor 

= 10,  = 28 and β = 8/3 



Source: http://www.ylilammi.com/lorenzattractor.shtml 



Mandelbrot set 



Complex numbers 

Representing, adding and multiplying 

 



Hopping 

• Pick a point, c, on the plane. 

• Start at the point c 

• Hop according to the rule  

The point you are at The point to move to  
Square the 

point you are 

at and add c 

If you hop off  to infinity  

colour the staring point c white  

otherwise  

colour it black 



Iterate zn + 1 =  𝑧𝑛
2  + c 

Colour black those starting points which do not go to infinity 



Peitgen and Richter The Beauty of Fractals 



Peitgen and Richter The Beauty of Fractals 



Peitgen and Richter The Beauty of Fractals 



Colours indicate how quickly the point goes to infinity 



Zooming in! 



Abstract: Geographical curves are so involved in 

their detail that their lengths are often infinite or, 

rather, undefinable. However, many are statistically 

"self-similar," meaning that each portion can be 

considered a reduced-scale image of  the whole. In 

that case, the degree of  complication can be 

described by a quantity D that has many properties 

of  a "dimension," though it is fractional; that is, it 

exceeds the value unity associated with the 

ordinary, rectifiable, curves. 

Benoît Mandelbrot: How Long Is the Coast of  Britain? 

Statistical Self-Similarity and Fractional Dimension 
 Source: Science, New Series, Vol. 156, No. 3775 (May 5, 1967), pp. 636-638  



Characterizing the dimension of  a 

straight line 

If  you measure a straight line by laying rulers along 

it then if  you halve the length of  the rulers you use 

you will need twice as many of  them. 

We use this scaling to arrive at the dimension of  the 

line as 1. 



How many rulers needed for Britain? 

If  ruler is of  length 200km need 11.5 of  them = 2300 km     

If  ruler is of  length 100km need 28 of  them = 2800km 

If  ruler is of  length 50km need 70 of  them  = 3500 km 

As the length of  the measuring stick is scaled smaller and smaller, the total 

length of  the coastline measured increases and the number of  rulers needed 

is increasing by more than a factor of  2 



Mandelbrot took the fract in fraction as the root of  

the word fractal. 

A  fractal has fractional dimension 

• Construction of 
Koch curve 

• Continue this ad 
infinitum 

• The dimension is 
ln 4/ln 3  1.26 
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