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Modelling the World
Professor Raymond Flood
Thank you for coming to this, the sixth and last lecture this academic year in my series on Shaping Modern Mathematics. 

Today I want to talk about applied mathematics or mathematical physics or what used to called in the 18th and early 19th century as mixt or mixed mathematics. This is mathematics used to investigate the physical world and Britain in the Victorian era was pre-eminent in these investigations.

Let me start my overview of the lecture by talking briefly about the situation at the end of the 18th century. In the eighteenth century many master mathematicians, for example Laplace and Lagrange, had built on Newtonian mechanics to describe and predict the motion of bodies on the earth and in the sky. They had the underlying equations for the motion of bodies, indeed they had them in various formulations and they investigated these equations mathematically.

But the behaviour of heat, light, electricity and magnetism had yet to yield their governing equations and this lecture is about applying mathematics to these four areas of heat, light, electricity and magnetism. I will start with Joseph Fourier, the distinguished French mathematician, physicist, Egyptologist, demographer and public servant who tackled the conduction of heat and found the fundamental equations for the conduction of heat but just as importantly found new mathematical methods for solving these equations. 
Then we will look at the life and works of four Victorian mathematicians: George Stokes, William Thompson (later Lord Kelvin), Peter Guthrie Tait, and James Clerk Maxwell. They were collaborators and friends and together changed the face of mathematical physics. 
I will pick out Stokes’ work on water waves which still raises important research questions today.

Thomson and Tait produced a very important textbook on mathematical physics which placed the principle of conservation of energy at the heart of its approach.
Thomson also made use of Fourier’s techniques in very important work on tide prediction which will be my fist case study.
Most important of them all was James Clerk Maxwell because of his work on light, magnetism and electricity and this work will form my second case study.
Joseph Fourier (1768–1830) worked on what are now known as Fourier series: this led to many of the most important mathematical discoveries of the 19th century, and had major applications in mathematical physics.
Fourier was born in Burgundy, and in 1797 succeeded Lagrange in the chair of analysis and mechanics at the École Polytechnique in Paris, leaving the following year to join Napoleon’s invasion of Egypt as a scientific adviser. On his return he was appointed by Napoleon to an administrative position at Grenoble in south-eastern France, organizing the draining of swamps and supervising the building of the road across the Alps from Grenoble to Turin. In his spare time he carried out his important mathematical research on the conduction of heat, which he published in 1822. The excerpts on this slide are from a translation of 1878.

In his 1822 Théorie  Analytique de la Chaleur (Analytic Theory of Heat), Fourier wrote:

Fundamental causes are not known to us; but they are subject to simple and constant laws, which one can discover by observation and whose study is the object of natural philosophy.
I want to pick out three things Fourier achieved. First he derived the fundamental equation for the conduction of heat and the resulting temperature distribution. On the slide we see at bottom right the section on the General Equation for the Propogation of Heat in the Interior of Solids. This is known as the heat equation and here it is in three dimensions but I will illustrate it in a moment in one dimension.
Then he developed the marvellous and powerful technique of representing a function or a waveform in terms of a sum of trigonometric terms – we just need to know how much of each trigonometric term to throw into the mix.  We will see a practical example of this when we come to Thomson’s tide predicting machine. First the heat equation.
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u(x , t) is the temperature at depth x at time t.

The left hand side is the change of temperature over time at depth x.

The right hand side is the flow of heat into the point at depth x.

K is a constant depending on the soil.

Now Fourier series.

I will illustrate the idea of Fourier series using an example from Fourier himself and this was representing a square wave form using a sum of cosines.
The square wave form arose in his investigations of heat flow. It is in blue here and it is a function that just takes two values and oscillates regularly between these two values. It is also important nowadays in digital engineering.

The first approximation is 

cos u  

He calculated the next term in the approximation as 

cos u  - 1/3 cos 3u  

He calculated the next term in the approximation as 

cos u  - 1/3 cos 3u  + 1/5 cos 5u  

The last one I will show is 

cos u  - 1/3 cos 3u  + 1/5 cos 5u  -  1/7 cos 7u

The approximation becomes better the more terms we take. Fourier gave explicit formula to allow him to calculate the coefficients, 1, -1/3, 1/5, -1/7, etc.
In fact:

cos u  - 1/3 cos 3u  + 1/5 cos 5u  -  1/7 cos 7u +  … ,

equals:

0 when u = π/2,

π /4 when u lies between - π /2 and π /2,

- π /4 when u lies between π /2 and 3π /2.
He wrote about this surprising outcome:

As these results appear to depart from the ordinary … it is necessary to examine them with care, and to interpret them in their true sense.
Fourier then considered the more general question of which functions can be represented by Fourier series in this way. He also derived formulas (involving integrals) for the coefficients in the Fourier series of the function.
In fact, the question of what conditions should be imposed on a function so as to ensure that its Fourier series does indeed converge to the original function generated much new mathematically activity.
The third thing that Fourier used was the idea of linearity.

Much of Fourier’s success arose from the observation that the Heat Equation and indeed many of the laws of mathematical physics were linear. This just means that if you have found two solutions of the underlying governing equations then you have in fact found many others because, for example, their sum is also a solution as is their difference.  In fact, If u1 and u2 are solutions then so is α u1 + β u2 for any constants  α and β.
This linearity is very obvious for water waves on the surface of a pond, which satisfy the wave equation. Here, for example if you throw in a stone, waves will spread and if you now throw in a second stone at a different point more waves will appear and the two sets of waves will pass through each other as if the other were not present. Here u1 is the solution for the first stone on its own, u2 for the second one and u1 + u2 for both of them together.
Fourier then represented the temperature distribution as a Fourier series and used the idea of linearity to solve the heat equation. Because the temperature variation at the surface, which is known, can also be written as a Fourier series he was able to solve the equation. He was able to show that at about 4.5 metres below the surface the temperature fluctuates very little over the course of the year. Of course, this must have been known empirically for a long time but the truly innovative thing was that Fourier had derived the heat equation and solved it using Fourier series and this could be applied in many other situations where objects of different shapes were heated and we wanted to know the subsequent distribution of heat. 
Fourier’s work was to be very influential on Victorian mathematical physicists.
The Victorian era was characterized by the dominance of Great Britain, both militarily and economically.

The Victorian era lasted from 1837 to 1901 and was the age of Peel and Palmerston, Gladstone and Disraeli, Tennyson and Thackeray, Dickens and Wilde, Stanley and Livingstone, Gilbert and Sullivan. It was the age of the Great Exhibition, the Crimean War, the Suez Canal, the Indian Mutiny, and the American Civil War. It was characterized by rapid industrialization and urban growth, far-reaching social and political reforms, vast colonial expansion overseas, and impressive scientific development: increased urbanization resulted in Britain moving from being a primarily agrarian to a largely industrial society; parliamentary reforms enfranchized whole new sections of the population; innovations such as the telegraph and the railways revolutionized daily life; while Darwin’s theory of evolution challenged the very basis of people’s beliefs.

An area of which 19th century British mathematics could be uniformly proud was applied mathematics where new techniques were used on a wide range of problems.  Figures such as William Thompson (later Lord Kelvin), Peter Guthrie Tait, George Stokes and James Clerk Maxwell succeeded in applying mathematics to understanding the physical world. They worked on many topics including mechanics, thermodynamics, electricity and magnetism, hydrodynamics and the theory of gases.  
 George Gabriel Stokes (1819–1903) made major contributions in the areas of hydrodynamics, elasticity, gravity, light, sound, heat, meteorology, solar physics and chemistry. His name is remembered in mathematical physics for Stokes’ theorem and the Navier–Stokes equations. Claude-Louis Navier, 1785 –1836, was a French engineer and physicist who specialized in mechanics.

The Navier-Stokes equation for fluid flow forms one of the million dollar Clay Mathematical Institute prize problems. 

As The Clay Institute web site describes it:
Waves follow our boat as we meander across the lake, and turbulent air currents follow our flight in a modern jet. Mathematicians and physicists believe that an explanation for and the prediction of both the breeze and the turbulence can be found through an understanding of solutions to the Navier-Stokes equations. Although these equations were written down in the 19th Century, our understanding of them remains minimal. The challenge is to make substantial progress toward a mathematical theory which will unlock the secrets hidden in the Navier-Stokes equations.

Stokes was born in County Sligo, Ireland, and attended schools in Dublin and Bristol before entering Pembroke College, Cambridge. He graduated as senior wrangler (gaining top marks in the final examinations) in 1841, and became Cambridge’s Lucasian Professor of Mathematics in 1849. During his long tenure of this position (for over fifty years until his death), he restored its reputation to the high point it had when occupied by Isaac Newton.
In later years, Stokes explained why he took up the study of hydrodynamics:

I thought I would try my hand at original research; and, following a suggestion made to me by Mr. Hopkins [a famous Cambridge tutor] while reading for my degree, I took up the subject of Hydrodynamics, then at rather a low ebb in the general reading of the place.
At the 1846 meeting of the British Association for the Advancement of Science, Stokes reported on hydrodynamics. His perceptive survey enhanced his reputation and as he said in his report: 

The fundamental hypothesis on which the science of hydrostatics is based may be considered to be, that the mutual action of two adjacent portions of a fluid at rest is normal to the surface which separates them … and thus the hypothesis above-mentioned may be considered as the fundamental hypothesis of the ordinary theory of hydrodynamics, as well as hydrostatics.
After 1850 his output of academic publications slowed. This was due partly to his role in academic administration — for example, he became Physical Sciences Secretary of the Royal Society — but also to the time and effort that he spent in  corresponding with colleagues, encouraging them and commenting on their work, and communicating their results.

Stokes had a near sixty year friendship with the next person I want to talk about, William Thomson.

William Thomson (1824–1907), later known as Lord Kelvin, was a dominant figure in Victorian science with contributions to mathematics, physics and engineering, particularly in the areas of electricity and magnetism. A leading figure in the creation of thermodynamics, the area of physics concerned with heat and energy, he was instrumental in the laying of the first transatlantic telegraph cable. 
Thomson was born in Belfast, Ireland. He was educated at Glasgow and Cambridge Universities, and was appointed Professor of Natural Philosophy at Glasgow University at the age of 22. He remained at Glasgow until his death and was buried in Westminster Abbey alongside Isaac Newton.
Peter Guthrie Tait (1831–1901) carried out research in a wide range of topics: quaternions, knot theory, atmospheric and meteorological phenomena, thermodynamics, aerodynamics and kinetic theory, as well as the colouring of maps.

Tait was born in Dalkeith, Scotland, and was educated at Edinburgh and Cambridge Universities. He became Professor of Mathematics at Queen’s College, Belfast, in 1854 and took up the Chair of Natural Philosophy at Edinburgh in 1860, which he then held for more than 40 years. He collaborated with Thomson, and also with James Clerk Maxwell and William Rowan Hamilton. 
In the 1860s, Thomson and Tait collaborated on a highly influential book on natural philosophy, which was published in 1867

They started to work on it in 1861, shortly after they met, and it proved to be highly influential in identifying and placing the conservation of energy at the heart of its approach, although in scope it fell far short of its authors’ original intentions. The two collaborators had very different natures. Thomson frequently went travelling, while Tait did not leave Scotland after 1875. Tait could also be argumentative, with bitter disputes (for example) with Heaviside and Gibbs over the relative merits of vectors and quaternions — but it was he who drove the collaboration towards publication, berating, cajoling and coaxing Thomson to keep to deadlines. Tait’s frustration is illustrated in a letter he wrote to Thomson in June 1864, about halfway through the collaboration:
I am getting quite sick of the great Book … if you send only scraps and these at rare intervals, what can I do? You have not given me even a hint as to what you want done in our present chapter about statics of liquids and gases!

And continued
I have kinetics of a particle almost ready, nearly the whole of the next chapter, but I don’t see the fun of paying 30/- for sending the MSS to you [in Germany] for revision, when in all probability you won’t look at it till some indefinite period when you are in Arran, where it would be certain of reaching you — and for 8d. Now all this is very pitiable: I declare you did twice as much during the winter as you are doing now 

Thomson and Tait had three main purposes for the project that resulted in the Treatise.

These were:

• to provide appropriate affordable textbooks to back up their lectures

• to nurture physical intuition and mitigate against relying on mathematical manipulation 

• to base their natural philosophy on the conservation of energy and extremum principles, replacing ‘Newton’s Principia of force’ with a new Principia of ‘energy and extrema’.

Their treatise was well received.

Maxwell’s view of Thomson and Tait’s achievement was:

The two northern wizards were the first who, without compunction or dread, uttered in their mother tongue the true and proper names of those dynamical concepts which the magicians of old were wont to invoke only by the aid of muttered symbols and inarticulate equations. And now the feeblest among us can repeat the words of power and take part in dynamical discussions which but a few years ago we should have left for our betters.
The second edition of Thomson and Tait features a marvellous discussion on continuous calculating machines, bringing together previous work by Thomson and his brother James. There are machines for solving simultaneous equations, integrating the product of two given functions, and finding the solutions of linear second-order differential equations with variable coefficients. 
But the one I wish to use for illustration was the machine for predicting tides which computed the depth of water over a period of years, for any port for which the ‘tidal constituents have been found from harmonic analysis of tide-gauge observations’ — that is, from the coefficients of the Fourier series representing the rise and fall of the tide.

Modern tidal analysis and prediction in all its mathematical and mechanical detail is due to William Thomson from around 1867. 

In his lifetime Thomson was seen as the most important natural philosopher of the Victorian age - but the waxing and waning of the twentieth century and the supplanting of classical physics by quantum mechanics and relativity theory have eroded his reputation, so that for many people he is remembered as little more than a unit of temperature. 
It was Thomson who used the phrase substituting “brass for brain” when discussing the mechanization of tidal prediction. 

I want to briefly:

•
Show how to describe the tide.

•
Introduce the beautiful idea that allows us to calculate the tide theoretically.

•
Finish this part of the lecture with the practical developments that allow us to calculate the tide practically.

But I want to start and end this section of the lecture with invasions separated by nearly 2000 years to illustrate how important it is to know in advance about the behaviour of the tide.  
My first invasion is Caesar invading Britain and the other one will be the D day landing in Normandy, during the Second World War.
This is what happened to Julius Caesar when he invaded England in 55BC. He wrote:
That night happened to be the night of a full moon, when the Atlantic has the highest tides, and we did not know this. So the longships, which had been pulled up on the beach, were swamped, while the supply ships, moored to anchors, were tossed about by the storm…. Many of the ships were broken up…

And his expedition was cut short by this disaster.
The tide is caused by the pull, the gravitational pull, of the sun and the moon on the oceans, and the rotation of the earth, but its exact pattern at any particular spot on the coast depends on the shape of the coastline and on the profile of the sea floor nearby. So even though the forces that move the tide are completely understood, the tide at any one spot is essentially impossible to calculate theoretically. What we can do is record the height of the tide at that spot over a certain period of time, and use these measurements to predict the tide at that spot in the future, and I want to show you how that can be done.

The tidal force is governed by a small number of astronomical motions which are themselves periodic, but since the various frequencies have no whole-number ratios between them, the whole configuration never repeats itself exactly. There is an almost exact 19-year cycle in the joint pattern of equinoxes and solstices, and phases of the moon, so the tidal record repeats almost exactly if you wait long enough: this fact had been used to prepare useful tables for European ports. But a major motivation for Kelvin’s work was predicting the tides in India where they did want to wait nineteen years for accurate tide predictions.
Because the earth, moon and sun are all in relative motion the gravitational pull at a point of the ocean is constantly changing. The five main astronomical periodicities are:
•
Length of the year

•
Length of the day

•
The lunar month

•
The rate of precession of the axis of the moon’s orbit

•
The rate of precession of the plane of the moon’s orbit

When you look at the geometry you can see that the gravitational pull can be described using a collection of sine waves.

Here is a collection of sine waves where the frequency is increasing as we move down the page.

A0 + A1cos(v1t) + B1sin(v1t) + A2cos(v2t) + B2sin(v2t) + ... another 120 similar terms

Here t denotes time and the expression tells you how the height of the tide changes with time.
There are two important points.
First the analysis of the geometry to get this expression tells us what the frequencies are, so we know the components making up the tide. Each of them is a combination of the five astronomical frequencies. However we do not know the coefficients or how much of each is in the mixture. They depend on the location and geography of the place. 
In other words the frequencies v1,v2, etc. are all known – they are combinations of the astronomical frequencies.

We do not know the coefficients A0 ,A1  ,A2 , B1  , B2  ,…- these numbers depend on the place. 

Here is the record of the tide at Glasgow over a week

What we need to do is to use this record to find the coefficients and this builds on the work of the French mathematician Joseph Fourier.

As is often the case in mathematics we will look at something simpler, not 120 terms added together, not even 25 but 2!

Here we have a pretend tidal record made up of two sin waves but we do not know how much of each is in the record. But there is a beautiful thing we can do, which makes use of the fact that the long term average of a sine wave is zero.

If we take our pretend tidal record and multiple it by sin(t) and take the long term average we will get the  coefficient  A. This is because the long term average of sin(t) times sin(21/2 t) is zero. This is because the product can be written as a sum of two other sine waves and the average of each of them is zero.
Similarly to find B multiple by sin(21/2t) and calculate twice the long term average.

Here we do it to get A as 2 and B as -3

This tells us how to calculate the coefficients theoretically but there is a lot of practical work involved in multiplying the tidal record by each of the sin curves and calculating the long term average. William Thomson used an invention of his brother, James, to mechanize this process and obtain the coefficients. They restricted themselves to the 11 most significant tidal components.

We are now in the position that if we know the tidal record for say a year at a particular spot we will be able to determine the amount of each tidal component at that spot. How to use that to predict the tide in the future!
Kelvin came up with his idea of the tidal predictor on a railway journey to attend the British Association meeting in Brighton in 1872.
A wire is fixed at the right and passes alternately over and under 15 movable pulleys, after which it suspends a weight in this image: in practice, an ink bottle with a pen. Each of the movable pulleys is driven in a simple sine wave, as follows. 
•
Turning the crank drives eleven gear assemblies. The gear ratios are chosen so that the speeds of the output gears in each assembly are proportional to the speeds/frequencies of the tidal constituents being summed. 

•
the amplitude of the vertical motion can be set to match the coefficient of the corresponding constituent at the port in question

•
The crank also moves a strip of paper horizontally in front of the pen (this is not shown) to record the predicted tidal curve.
The machine could predict the tide a year ahead in a matter of days.

I mentioned Caesars’ invasion so let me now mention another one – that of the allied landing in Normandy in June 1944. Here we see Kelvin’s tide predictor still in use responding to a request from the Admiralty in Bath for a prediction of the tide at position Z.
Let me finally turn to James Clerk Maxwell.

James Clerk Maxwell (1831–1879) is widely considered to be one of the most important mathematical physicists of all time, after only Newton and Einstein. Foremost among his contributions to science was the formulation of the theory of electromagnetism, with light, electricity and magnetism all shown to be manifestations of the electromagnetic field. He also made major contributions to the theory of colour vision and optics, the kinetic theory of gases and thermodynamics, and understanding the dynamics and stability of Saturn’s rings. Maxwell was born in Edinburgh, Scotland, entering the University there when he was 16. In 1850 he moved to Cambridge University, and six years later returned to Scotland to the Chair of Natural Philosophy at Marischal College, Aberdeen, being made redundant when the College was amalgamated into Aberdeen University.
He was subsequently professor at King’s College, London, and first Cavendish Professor of Physics at the Cavendish Laboratory in Cambridge where he designed the laboratory and contributed to the purchase of its equipment.

When at Edinburgh Maxwell was interested in colour vision. It had been suggested by Thomas Young, in 1800, that there were three sets of colour receptors in the eye. Maxwell and a colleague identified three primary colours as red, green, and blue. 
They used a wooden disc to which three coloured discs could be attached so that different amounts of each colour could be displayed. When the wooden disk is spun these primary colours are in some sense mixed and the brain perceives a single colour. Persistence of vision, which Maxwell was earlier interested in, seems to be fundamental here. The central area of the wooden disc could contain another colour and his aim was to find the proportions of the primary colours that, on spinning the disc, gave the colour in the centre. The important point is that he quantified the effect of combining his three primary colours of red, green, and blue. He represented this geometrically as a colour triangle.
Maxwell was invited to give a lecture in 1861 to the Royal Institution on colour vision. He wanted to illustrate his lecture and demonstrate that any colour could be made by mixing the three primaries of red, green, and blue, but the spinning colour disc was too small to be seen by the audience. A subsequent invention, the colour box, could only be used by one person at a time. However there was photography. Perhaps he could use photography to show the phenomenon to such a large audience? It was possible to project a black and white photograph onto a screen so that it was large enough for an audience to see.  Maxwell wanted to see if he could make a colour photograph and project it in the same way, illustrating that any colour could be made by mixing the three primaries of red, green, and blue. For this, he would need to take three photographs of the same object through red, green, and blue filters in turn and then project them simultaneously on the screen through the same three filters. 

It worked, though it shouldn’t have!

The result could not be duplicated. The problem was that the then available photographic plates were sensitive to light at the blue end of the spectrum but much less to light at the red end. Maxwell had been lucky because of a sensitivity of the emulsion to the ultra-violet. Instead of photographing the ribbon under red light Maxwell was actually photographing it under ultraviolet light so the mixture of colours which Maxwell obtained was ultraviolet, blue, and blue-green, not the mixture red, blue, and green he believed he had obtained. He had simply been lucky in obtaining the first colour photograph.
Maxwell is mainly remembered for his work on electromagnetism. He began his researches on electricity and magnetism shortly after graduating in 1854 and continued with them until shortly before his death. It is a complicated story and here I can only select some key features.

Oersted’s discovery of electromagnetism in 1820 was very important because what he observed differed from previous phenomena in two ways. First, he observed that magnetism was caused by electricity in motion and second, that the magnet was not attracted or repelled but was caused to move at right angles to the wire carrying the current. Michael Faraday viewed this result as crucial in his own thinking about electromagnetism and his development of ideas about lines of magnetic and electric force.

 Faraday was an important influence on Maxwell, as indeed was Thomson who, for example, developed a formal connection between the equations of electrostatics and the equations for the flow of heat. Maxwell’s first paper on electromagnetism dealt with an analogy between lines of force and streamlines in an incompressible fluid. Then he started the development of a theory of electromagnetism which made extensive use of Stokes’ work.

Maxwell’s next paper, ‘On physical lines of force’, published in 1861 and 1862, attempted to devise a medium that would fill space and would account for the stresses associated by Faraday with his lines of magnetic force.  It concluded with the property that vibrations of this medium have properties identical with light.

This is Maxwell’s model of the ether which carried the electric and magnetic field. It is an array of hexagonal vortices in an incompressible fluid. Normally the pressure is identical in all directions but if a vortex rotates, centrifugal force will cause it to expand along the middle, in the plane of the page, and contract along the axis of spin, perpendicular to the page – in the same way that the earth’s rotation causes it to bulge at the equator and flatten at the poles. In the plane of the page the rotating cells will push against each other creating a pressure, and along the spin axis, perpendicular to the page, they will try to contract, creating a tension. So the lines along the spin axes will behave just like Faraday’s lines of force, exerting an attraction along their length and a repulsion sideways. By making the angular velocity proportional to the local magnetic intensity, Maxwell obtained the existing known connections between magnets and steady currents.

But how did he incorporate electricity into the model? This was done by means of the small spheres between the hexagonal vortices, the electrical particles. These spheres also solve another problem, which is to prevent the vortices rubbing against each other when rotating in the same sense. They act as ‘idle wheels’, which engineers put between wheels that need to rotate in the same direction.
The model was to prove very useful as an engine of discovery. 
There is one final important feature of the model that Maxwell introduced. This was to make the vortex medium elastic. The importance was that an elastic substance can transmit waves, and Maxwell calculated that their velocity was the ratio of the electromagnetic and electrostatic units of electric charge which turned out to be the speed of light. As he wrote:
we can scarcely avoid the inference that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena. 
In other words light is propagated as an electromagnetic wave.
Maxwell was unhappy, as were many, with this model of whirling cells and idle wheels and as he wrote:

The conception of a particle having its motion connected with that of a vortex by perfect rolling contact may appear somewhat awkward.  I do not bring it forward as a mode of connexion existing in nature, or even as that which I would willingly assent to as an electrical hypothesis.  It is, however, a mode of connexion which is mechanically conceivable, and easily investigated, and it serves to bring out the actual mechanical connexions between the known electro-magnetic phenomena; so that I venture to say that anyone who understands the provisional and temporary character of this hypothesis, will find himself rather helped than hindered by it in his search after the true interpretation of the phenomena.
Maxwell’s fourth paper, ‘A dynamical theory of the of the electromagnetic field’, published in 1865, resolved this issue as it provided a theoretical framework based on experiment and a few general dynamical principles from which the propagation of electromagnetic waves through space followed, without any recourse to vortices or forces between electric particles. 
Maxwell wrote about this paper

I have also a paper afloat, containing an electromagnetic theory of light, which, till I am convinced to the contrary, I hold to be great guns.
In this paper and in his Treatise on electricity and magnetism (1873), he developed ‘Maxwell’s equations’ which in a modern notation are:

H is the magnetic field strength, the magnetic flux density divided by the permeability of the medium.

j is the current density

t is time

B is the magnetic flux density

E is the electric field strength

D is the volume density of charge.

Maxwell’s equations are immensely practically and theoretically important. Let me end with the following quotations, first from Einstein, then Richard Feynmann.

First from Einstein:
Since Maxwell’s time, physical reality has been thought of as represented by continuous fields, and not capable of any mechanical interpretation. This change in the conception of reality is the most profound and the most fruitful that physics has experienced since the time of Newton.
In other words, Maxwell went from a mathematical description of a mechanical model involving vortices separated by rolling spheres to the complete abstraction given in his Treatise on Electricity and Magnetism. Maxwell stripped away all the imagery of the model until finally all that remained was the mathematics. The mathematics was the model. This transformation was, possibly, James Clerk Maxwell’s greatest achievement, and is a fitting point to end a lecture on modelling the world.
And the distinguished physicist Richard Feynman predicted:

From a long view of the history of mankind — seen from, say, ten thousand years from now — there can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s discovery of the laws of electrodynamics.
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