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* Which mathematician was killed in a duel?

 Which one published books, yet did not exist?

e Which one was crowned Pope?

* Who were Dr Mirabilis and Dr Profundus?

e Who learned calculus from her nursery wallpaper?
e Who was excited by a taxicab number?

e Who measured the chests of 5732 Scottish soldiers?



INTRODUCTION

The storles of Isaac Newton and the apple, and of Archimedes
running naked along the street shouting 'Eureka’, are familiar to
many. But which mathematiclans are the answers to the

following questions?
« Who was killed In a duel?

« Who published books, yet did not exist?

« Who was crowned Pope?

« Who were Dr Mirabllis and Dr Profundus?

« Who learned caiculus from her nursery wallpaper?

« Who was excited by a taxicab number?

« Who measured the chests of 5732 Scottish soldiers?

And what have Geoffrey Chaucer, Christopher Wren, Napoleon,
Florence Nightingale and Lewis Carroll to do with mathematics?

As theso questicns may indicate, and a3 the
pagas of this book will show, mathamatics has
always bean 2 human andasvour as people have
found thamasives grappling with a wide range of
problems, both practical and theoratical. The
subgect has as long and interasting 3 history as
literatura, music or painting, and its origins were
both intemational and multicultural

For many who remambar mathematics from
thoir schooldays as a dull and dusty subject,
largely incomprehansible and irmelovant to thair
everyday lives, this view of mathematics may
coma as 2 surprise. The subject has all teo oftan
boen presented as & collection of rules to be
learned and techniques to be apphed, providing
litla understanding of tha undariying principles
or any appreciation of the natura of the subject
a whaola — # is rather lke teaching musical scales
and inervals without over playing a piece of
music

For whargvar we look, mathamatics parvadaes
our daily lives. Our oredit cards and the nation’s
defonce secrets are kopt securw by encryption
methods based on the propertios of prime
rumbars, and mathematics s intimataly imvolvad
whan ane fes in a plane, stants a car, switches an

the tlovision, forocasts the westher, books 3
holiday on the imternat, programs & computer,
navigates heavy traffic, analyses a pida of
statistical data, or secks 3 ocure for o deaase
Wiathout mathematics as its foundation thars
would ba no science.

Mathomaticians are often described as
‘pattern-suarchers’ — whather thay study
abstract pattarns in numbers and shapes or look
for symmatry in the natural world around us.
Mathematical Gws shape the pattems of seeds in
sunflower hoads and gusda the solar systom that
we live in. Mathomatics analyses tha minuscula
structure of the atom and the massive axtent of
the universe.

But it can also be a groat deal of fun. The
logical thinking and problem -solving techniques
that one %eams in school can oqually be put to
recroational use. Chess s essentially a3
mathamatical game, many pecple anjoy solving
logical puzries based on mathematical ideas, and
thousands travel into work each day struggling
with thair sudoky puzzies, a pastime arising from
combinatonal mathamatics.

Mathomatics is dovoloping at an ever-
mcraasing rate — ndeed, mora  new

William Blakes Ts2ac Newwon'

mathematics has baen discovarad since the
Socond World War than was known up to that
tima. An cutooma of all this activity has been the
intornatsonal Congresses of Mathematicians that
are held every four years for the presentation and
discussion of tha latest advances.

But none of this would have happenad o it
had not been for the mathematicians who
craated their subject.

in this book you will moat tima-measurers like
the Mayans and Huygens, logcians like Aristotio
and Russell, astronomers fike Ptolemy and

Hallay, taxtbook writers like Euclid and Bourbaki,
geomeaters lika Apollonius and Lobachevsky,
statsticians (ke Bernoulli and Nightingale,
architects like Snunelleschi and Wran, teachers

ike Hypatia and Dodgson, arithmeticans like
Pythagoras and al-Khwanzmi, number-theonsts
lika Fermat and Ramanujan, applied
mathematicians like Pomsson and Maxwell
aigebraists like Victe and Galos, and calculators
ko Napior and Babbage. We hopa that you find
all their lives and achiovoments 35  fascinating
a3 we do.
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CHAPTER 1

ANCIENT MATHEMAT

Mathematics Is anclent and muitl-
cultural. Several examples of early
counting devicas on bone (such as
tally sticks) have survived, and some
of the earllest examples of writing
(from around 5000sc) were financial
accounts Involving numbers. Much
mathematical thought and Ingenulty
also went Into the construction of
such edifices as the Great Pyramids,
the stone circies of Stonehenge, and
the Parthenon In Athens.

In this chapter we descibe the mathematical
contributions of several ancient oultures: Egyat,
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A Mesopotamian clay abls

Mescpotamia, Greece, China, India and Cantral
Americs. The mathematics developed in each
cultura depanded on need, which may hava been
practically inspired (for exampla, agrioultural,
admirmstrative, financial or military),
scadamically motivated (educatonal or
philosophical), or 2 moura of both

SOURCE MATERIAL

Much of what wa know about a cultura dopends
on the availsbility of appropriate primary source
matenal.

For tha Mesopotamians wa have many
thousands of mathematical clay tablats that
pravide much useful information. On the athar
hand, the Egyptians and the
Grooks wrote on papyrus,
made from meds that rarcly
surviva tha ravages of the
canturies, although we do have
two substantial Egyptian
mathematical papyn and 3
handful of Groak axtracts. The
Chinesc wrote their
mathematics on bamboo and
paper, ittla of which has
survived. Tha Mayans wrote on
stona pillars called smise that
cortain useful material. Thay
also produced codices, mada of
bark paper; 3 handful of thase
surviva, but most wero
destroyed dunng the Spansh
Conguest many centurics later.

Apart from this, we hawve to
roly on commentaries and
transiations. For the classical
Groak writings we have

commentaries by a fow I|aster Greek
mathomaticians, and also 3 substantial numbar
of Arabic translations and commentaries by
Islamic scholars. There are also later translations
mto Latin, though how trua these may ba to the
onginal works remains 3 causa for spaculation.

COUNTING SYSTEMS
All civilizations neadad to be able to count,
whather for simple household purpesas or for
mora substantial activities such as the
corstruction of buildings or the planting of folds.

As wa shall see, the number systoms
daveloped by different cultures waried
considersbly. The Egyptians used a decsmal
systam with differant symbols for 1, 10, 100,
1000, otc. The Gruaks used differont Greck lomors
for the units from 1 to 9, the tans from 0 to 20,
and tha hundrods from 100 to 800. Othar culturas
devalopad place-value counting systoms with 3
imaed number of symbols: here the same
symbol may ply difaront roles, such as the
two 3s in 3835 (reforing to 3000 and 30). The
Chinese used s dooimal placovalua system,
whila the Masopotamians had a systom based oo
60 and the Mayans devaloped a system mainly
based on 20

Any placevalue system noods the concapt of
zaro; for wample, wa write 207, with @ zero i the
tons place, to distinguish it from 27. Sometimes
the positioning of a zoro was cloar from the
context. At other times 3 gap was loft, as in the
Chinesa counting boards, or & zoro symbol was
specifically designad, as in the Mayan systam

The use of zero in a decimal place-value
systom ovantually emerged in India and
clsawhern, and rulas were given for calculating
with #. The Indian counting system was |ator
davalopad by Islamic mathomatioens and gave
nsa to what we now wall tha Hindu-Ambic
numaerals, the systam that wa usa today.
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So, stating from the natural numbers, 1, 2,3,
.- » genamtions of mathematcians obtained all
the infogars — the positive and negative whola
numbers and zaro. This was a Jengthy process
that took thousands of years to accomplish



CHAPTER 2

ATy

The revival of mathematical learning
during the Middle Ages was largely
due to three factors:

« the transiation of Arabic classical
texts Into Latin during the 12th and
13th centuries

« the establishment of the earflest
European universities

« the Invention of printing

Tha first of thasa made the works of Euclid,
Archimedas and other Grock wrtars available to
European scholars, the second anabled groups of
lika-mindad scholars to mest and discourse on

~=iywvi1)

Brabers oumenals,
SECAOd Century AD

i

L

i)

J

mattors of common interest, while tha last
enablod scholarly works to ba avaiable at

dost cost to the g | populaca in thair own
language.

The first European univarsity was foundad in
Hologna in 1088, and Paris and Oxioed followed
shortly after. Tha cumioulum was in two parts. The
first part, studiad for four years by those aspiring
t0 3 Bachalor's dagroa, was based on the anciant
“trvium’ of grammar, rhatoric and logic (ususlly
Arnstotelian). The second pan, lesding to 3
Mastor's dogroa, was based on tha ‘quadrivium’,
the Grock math ial arts of arithmats
geometry, astronomy and musiz; the works
studied induded Euclid's Blemants and Prolomy's
Alrages.

THE HINDU-ARABIC NUMERALS
We hava seon how the decimal placo-valua

I\’l'q““‘ﬁ!

¥ op d by the Hindu-Arabic
numerals first arose in India and was lter

Gwakor hstrigtion
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doveiopad by al-Khwarzemi and othar lslamic
scholars working in Baghdad and alsewhara.
Gradually tha numerals

— the modem Hindu script, the

» night to left), stil found today n the

countnies of the Middlc East, and

the West Arabic numerals 1 to 8 and 0 {wrtten
from left to right) that avantually becama the
b y usad through Westorn

]
] diverged into throe saparato typas
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raruacript]
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number sysioms

Eurcpa.

Viewing #o hoavons with a joynt rule

Buat it tock many canturies for tha Westemn
form of the Hindu-Arsbic numernals to becoma
fully cstablshed. Thay were certainly more
convenient to osloulate with than Roman
numerals, bt for practiml use most paopia
contirued 1o use an abacus.

As time prog d the stuation impeoved
with the publication of influantial books that
promoted tham, such 35 thosa by Fbonacci lin
Latin), Pacioi (in halian) and Recorda (in English).
By the tima that printad books had becoma
widely avadlable, the Hindu-Arabic numarals
werg in genaral usa.

THE AGE OF DISCOVERY

The spirit of anquiry and imventivaness of the

Middla Ages and the Renaissance led poopla to

adopt 3 more critica] view 1o ideas that had boon

acoapted for cantunes. it showed itsalf m many

ways:

* tha voyages of discovery to unknown lands

* tha devalopmant and invention of scientific and
mathematical mnstrumonts for a vanaty of
purposes

*tha usa of geometnical parspective i painting
and other visual arts

« tha sclution of cubic and quartic equations

ethe dovelopment and standardization of
mathamatical tarminology and notation

« tha ravolutionary approach to plnatary motion

* tha radiscovery and reintarpratation of classical
toxts

* tha developmant of mechanics

* tha removal of sigebra from its depandance on
geomatry.

These all contributed to the davelopment of a
wiow that the universe is a book written in the
language of mathematics. As instruments
bocame ever moro sophisticated, mathematics
for practical purposes increased — particulardy in
navigation, map-making, astronommy and warfara.
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The 17th and 18th centurles
witnessed the beginnings of modern
mathematics. New areas of the
subject came Into being — notably,
analytic geometry and the caiculus —
mmm“mm,
were reborn or took on a new lease
of life. Fundamental problems, such
as that of determining the orbits of
the heavenly bodies, were solved or
Investigated with novel techniques.

It was tho age of Newton in England, De and
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CALCULUS AND DISCOVERY
initially, the probl that math
solved were geomatrical, as ware thair answars,
sithough the tedhniques thoy used (including the
loulus} were not ily of this kind, baing
3een as muhods of pmcnodlrg from =
i blom to a g | answer.
Thoiaﬂluwmlywbdwammwmd
mathamatics, with its most striking characteristic
baing s algebraic appearance.
The cbjects of mathematics were now
dascribed by formulas with symbols for

Pascal in France, and Laibniz in Garmany, followed
by a sucoession of Continantal ‘groats”: tho Bamoull
brothers, Eulor, Lagrange and Laplaca.

It was 3iso the age of gatherings - the
formaticn of national sciantific socatios, such as
Londons Royal Sooety and the Academy
of Sciances in Paris, and the founding of scholary
insttutions such as
the St Petersburg et gl
Academy and the |

ianlir;

The arm swopt ou
by a mowing body:
Newion's use of
geometry (right)
contrasts with
Laplace's amalyvical

sppmach (far righ)

If we project the body m, on the
plane of x and y, the differential
(xdy —ydx) /2, will represent the
area which the radius vector,
drawn from the origin of the
coordinates to the projection of m,
describes in the time dt,
consequently the sum of the areas,
multiplied respectively by the
masses of the bodies, is
proportional to the element of
time, from which it follows that in
a finite time, it is proportional to
the time. It is this which
constitutes the principle of the
conservation of areas.

The caiculus is sxade up from two seemingly unrekated strands, now caBed dfferndadon snd
Differentzabion ks concamed with how tast things move or change, and ks used In the

integration.

finding of velocities and tangeats 10 curves.
Itegration Is used to find areas of shages i
m-_lh

uhm—yp—nt-
gradugily realized that thes= two strands are
Intimately related. As both Newton and Lelbriz
expained, they are Inverse processes — If we
“qhﬁnmi-

starting point. :

However, Newton and Leeiz had different.
mottvations, with Newton focusing on motion
and Ledniz concamed with tangents and areas.

varsbles and constants. A man roason for
doing 30 was that tho machinary of the caleulus
could than be zpplied both to them and to
practical  situati This h d the

o O

‘partial differentiation’. The partis! denvativa
3udx is the rate of change of v in the xdirection,
whila the partial derwative 3uy is the mte of
changa of v in tha y-direction.

daval of new
uidhdlnqmmd’iummnmrgﬂgawof
difemntal oquations

This shift towards tha algebrmx type of
dascription also led 1o a good way of discovaring
naw cbjects. Bodsmmnlmhodgobmc
stylo, and I
shout and solved problams in this my
Mvalgnhﬂmebboueﬂaalogunl

guage suitable for tha & sgation of all the
SCRNCSS.

Mochanics and astronomy weea the main
aroas of practical & igation. They both applied
the calculus to functions of more than one
variable, such as

ulx, )= xF +x3F =y
hare, ulx, y) can be thought of s the haight of 3
surface abova the point with coordinates (x, y) in
the plana.

The ewzborl that arose were called partial
diffal b they imvolved

"

Lowts X1V visles $ho Farls Academy of Sciencss, 1671




CHAPTER 4

The 19th century saw the
development of a mathematics
profession In which people eamed
thelr illving from teaching, examining
and researching. The mathematical
centre of m moved from France
t0 Germany, while Latin gave way to
national languages for publishing
mathematical work. There was also a
dramatic Increase In the number of
textbooks and journals.

Bocause of this increase in mathematical activity,
mathematicans began to (indeed, nooded to}
specizfize. Whilke one weould uso the term
mathemaiaan in the 18th century, one now had
analysts algebraists, geomoters, number
theorists, loginans and appliod mathematioans
This need for spadialization was avoided only by

[1ON

in aach discipling thera was a revolution {as
well as an evolution) in the dopth, extent, and
oven the vary oxistence of the discplina. But aach
discipling axperianced 3 movemant towards an
inoreasingly abstract style with an increased
emphasis on putting mathamatics on 3 sound
and rigorous basis and  axamining its
joundations. We illustrate thas by considering the
mvolutions in three areas - anafysis, algebra
and geomatry.

FROM CALCULUSTO ANALYSIS

in tha 1820s Augustinlouis Cauchy, the most
profific mathematican of the century, rigorized the
calouhss by basing 2 on the concept of 3 imit He
than usad this idea to develep the arass of resl and
complax analysis. This noresse in ngour
nocessitated tho formulation of a foolproof
defintion of tha real numbars, which in turn led to

tha very greatest: Gauss, Hamilton, Riemann and
Klain

2 study of mfinita sats by Georg Cartor and athers
Joseph Fouriar's work on haat conduction
also gawe rise to infinite

] ARG ol =

=TT processes — in thas case,
"3 infinito serics — theraby
4% stimulating Barnhard
Riamann in his work on
integration. Anaziytical
techniques cama to be
appliad to a wide ranga of
probloms — n alectrcity
and magnetism by William
Thomson (Lord Kebvin} and
Jamus Clark Maxwell, in
hydrodynamics by Goorge
Gabrial Stokes, and in
probabilty and rmumber

- . £ theory by Pafnuty
The Universry of Gottingen, whore Causs, Riomann and Kicen workod. Chebyshev.
uz

ware dscoverad: Hamilton
introduced the algebrs of
quaternions, George BSocle
cragted an sigabes for use in
logic and probability, and
Cayloy studied tha algebra of
rectangular armays of symbols,
called matnices.

FROM ONETO MANY
GEOMETRIES

Over the space of orne hundred
years the study of goometry
was complataly transformed. In
1800 the only “true’ geometry

Revolotions did noe happen ooy In mathemancs: this is 2 miners’ ot tht had been Euclidean geomatry,

wok place in Befgium, 1868

FROM EQUATIONS TO STRUCTURE:
Algabra alse changed d lly through
the th contury. In 1200 the subject was about
solving equations, but by 1900 it had becoma the
study of mathematical structures — sets of
clomants that am combined according to
specified rules, called sxoms.

At the baginning of tha century, Gauss laid
down the basics of number theory and
mtroduced modular anthmaetic, an eary example
of a naw algebrax structurs called 2 group.

A long-standing problem had to do with
finding 3 genaral mathod for sclving polynomial
oquations of dogree 5 or mors, using only
arithmetical operations and the taking of roots.
Nials Abol showod that thero can be no such
gunaral sokution, and Evariste Galois developed
his ideas by mamining groups of parmutations
of the roots of an equation.

The mystigua concaming complax numbars
was at last removed by William Rowan Hamaton,
who daefined them as pairs of real numbars with
cartain operations. Other algebraic stnxcturas

although there wers soma

scattorcd results on spharical
and projective geomeatry. By the end of tha
century, infinitoly mary geometries wera known,
while geometry had become dosely inked to
group theory and placed on a more rigorous
foundation

Gauss studied surfaces and their curvatura,
finding 3 ralationship betwaan curvatura and tha
sum of the angles of a triangle on tha surface,
and this turmad out to be rolsted to the
investigations into tho parallel postulato in
Euclidean geomatry. Nikolai Lobachavsky and
Janos Bolyai independently developed non-
Euchdcan goometry, in which the paraliel
postidata doas not hold.

It took time, howaver, for the sdaas on non-
Euclidean geometry to becoma absorbod, and it
was the mid-century work of Riemann that
showad tha imporntance of tha new idess and
extended the work of Gauss. Through such
shstract tachniques, geometry was also moving
out of two and threa dimansions and into highar
ones. Later, Felix Klain wsod groups to examing
and classify different types of goometry.



THE MODERN AC

In our final chapter we meet the

mathematiclans who have:

« examined the limits of what we can
prove and shown why some tasks
are Impossibie to carry out

« lald the foundations of our current

prove things that we could not do
otherwise, while raising questions
about our identity.

PARADOXES AND PROBLEMS

In previous chaptars we have seen 3 doveloping
dasira to place math ics on 3 ok
foundation, with the story going from the
underpinning notions of the calculus to
anthmatic and tha theory of sats. As 20th-contury
mathematicians axamined more carafully the
nature of infinity and the problems connected
with sots thoy met 2 number of problams and
paradoxes. One of the most famous of thase was

The I for Ad d Study, cstablishod In 1930: 25 Nobel Laumases and 38 (cut of 52) Fields

ModaBisis have boen afilizsed with it

C H. Hasdy with bs msasxch studost Mary
Canvwrighe, laser 00 be e fins woman appoined
Prisiden of $he London Mathematical Socioty

jormulated by Bermrand Russall in 1302, and
nacessitated 3 much more thorough treatmant of
the vary foundations of set theory and of the
axact nature of deductve proof.

Another approach was taken by David Hilbart,
whose attempt to make arithmebc seoura was 1o
make it axiomatic an approach that ha had
slroady used with whan dealing with the

increasing genaralization and

abstraction continued o accelarate

dramatically throughowt the 20th

contury. For example, Albert Einstoin

usad the abstract formulations of

geometry and caloulus for his genaral

thoory of relatwity, whia aigebra

b an ab and axi i

subject, being particularly influcnced by

the work of Emmy Noathar. Advances

also continued to be made in rumbar

thoory, with Hardy (and his co-workers

Lital d and R i and

Andrew Wiles making  major
contributions.

Maoarwhile, new arcas of tha

subject cama into being, such as

sigabraic topology and the thoory of ‘Hibart

spaces’, whila machi putath d tha

i of the subj as sp larly

dlustratod by Appel and Haken in thair proof of
the four-colour theoram.

SPREAD AND DEVELOPMENT

The 20th century saw mathematics becoming a
major profession throughout the world, with jobs
n aducation and industry and numarous areas of

e

of g y- b d of defining a8
the basic torms, such as point or line, he gava 3
sat of nies (or axioms) that they had to satisfy.
Akhough Hilben's approach was influantial,
his objoctives wors avantually proved to ba
inable, as d d in the 13305 by
Kunt Godal and Alan Turing, who cbtained 2
numbar of amazing and unoxpected rasults
sbout the limits of what can ba proved or
dadded.

P and app
With mathematics davaloping at such 3 fast
rata, many new journals hava boen croated, and

I and & £ have
b idespread. Most imp among
thesa angs are the | jonal Cong

of Mathematicans, held every four yaars, when
the prestigious Fields madals are

mary th ds of math il

learn about the latest davalopments in thair

subjoct.
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Mathematics Is anclent and muitl-
cultural. Several examples of early
counting devicas on bone (such as
tally sticks) have survived, and some
of the earllest examples of writing
(from around 5000sc) were financial
accounts Involving numbers. Much
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scadamically motivated (educatonal or
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SOURCE MATERIAL

Much of what wa know about a cultura dopends
on the availsbility of appropriate primary source
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For tha Mesopotamians wa have many
thousands of mathematical clay tablats that
pravide much useful information. On the athar
hand, the Egyptians and the
Grooks wrote on papyrus,
made from meds that rarcly
surviva tha ravages of the
canturies, although we do have
two substantial Egyptian
mathematical papyn and 3
handful of Groak axtracts. The
Chinesc wrote their
mathematics on bamboo and
paper, ittla of which has
survived. Tha Mayans wrote on
stona pillars called smise that
cortain useful material. Thay
also produced codices, mada of
bark paper; 3 handful of thase
surviva, but most wero
destroyed dunng the Spansh
Conguest many centurics later.

Apart from this, we hawve to
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transiations. For the classical
Groak writings we have
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Islamic scholars. There are also later translations
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mora substantial activities such as the
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daveloped by different cultures waried
considersbly. The Egyptians used a decsmal
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for the units from 1 to 9, the tans from 0 to 20,
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devalopad place-value counting systoms with 3
imaed number of symbols: here the same
symbol may ply difaront roles, such as the
two 3s in 3835 (reforing to 3000 and 30). The
Chinese used s dooimal placovalua system,
whila the Masopotamians had a systom based oo
60 and the Mayans devaloped a system mainly
based on 20

Any placevalue system noods the concapt of
zaro; for wample, wa write 207, with @ zero i the
tons place, to distinguish it from 27. Sometimes
the positioning of a zoro was cloar from the
context. At other times 3 gap was loft, as in the
Chinesa counting boards, or & zoro symbol was
specifically designad, as in the Mayan systam

The use of zero in a decimal place-value
systom ovantually emerged in India and
clsawhern, and rulas were given for calculating
with #. The Indian counting system was |ator
davalopad by Islamic mathomatioens and gave
nsa to what we now wall tha Hindu-Ambic
numaerals, the systam that wa usa today.

S A Conerad
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So, stating from the natural numbers, 1, 2,3,
.- » genamtions of mathematcians obtained all
the infogars — the positive and negative whola
numbers and zaro. This was a Jengthy process
that took thousands of years to accomplish



PITHAGORAS

The seml-legendary figure of
Pythagoras (c.570—490ec) was born
on the Island of Samos, In the
Aegean Sea. In his youth he studled
mathematics, astronomy, philosophy
and music. Possibly around 520ec, he
left Samos to go to the Greek
seaport of Crotona (now In Southern
Italy) and formed a philosophical
school, now known as the
Pythagoreans.

Tha inner mambers of the Pythagormans (the
mathemaikoi) apparantly obayed a stnct regeme,
having no personal possassions and eating only
vogetables (axcopt bears); tha soct was open to
both man and women

The Pythag diad math cs,
astronomy and philosophy. Thoy balioved that
avarything is created from whole numbers, and
that anything worthy of study @n be quantsfiad.
They are said to hava subdivided the
mathematical sciences into four parts: anthmatic

Pythagoeas, from Raphacd's fesco The Schaal of Athens

NUMBER PATTERNS

Far the Pythagoreans, ‘arthmetic’' meant
studying whaole numbers, which they
sometimess represented geomesrically; for
example, they constdered sgxare sumbers
as betng formed by square patterns of
dots or pebbies

Uising such pictures they could show that
suare numbers cn be obtained

by scding comsecutive

odd numbers, J' $
starting from 1

~ for Pk

IG=1+3+5+7.

foemed by trangolar patterns of dots.

‘The firt few trtangular numbers are
31,3, 6,10, 15 and 21.

Nottcethat F«1+26-1+21+35
W=1+2+3v4, ac

Important In geameatry are right-angied Fiangles where one of
the angles Is 90°; 3n example is e triangie with sides 3, 4 6.

The most impartant result conceming hem Is known as the 4
Pythagoraan Meomm, though no contsmporary Mistorical evidence
ks 1t £ Pythagoras himsel. AMough & was known by e
Masopatamians 1000 years earfier, the Greeks were probably =

the first to prove It

Geomatrically, the Pythagorzan Deorem says Mat If we tae 3
right-angled triangle and draw squares on each side of It, then
e aras of the sguare an the longest side fs egusf & the sum Z
of e aeas of the squares on te omer (wo sties

— that Is, (area of 2) - {area of X) + area of ¥)

S0, for a right-angled trangle with sides of lengths 3, 0 3nd ¢
(wher ¢ s the length of the longest side), we have 37 + 07 = ¢

— for example, for the triangle wath sides 3, 4,5,
3447 w9416 = 25 = 5.

Other examples are the right-angiled triangles with sides 6, 12, 13

and 8, 15,17,

geomatry, astronomy and music {later called the
quadn wum). Thesa subjects, in combination with
the tivium (thae kbaral arts of grammar, rhatoric
and logic), compnsod the ‘liberal arts’ — the
curriculum of academics and universitios ovar
the next 2000 years.

MATHEMATICS AND MUSIC
The Pythagoroans also experimanted with music
— i particular, linking certain musical intervals
1o simpla ratios batwoen small numbars.

¥ is Skoly that thay discovared these ratics by
plucking strings of difforent longths and
comparnng the notes produced; for example, the
harmonicus intarval of an octave results from
halving the length of a string, giving a froquancy
ratio of 2 to 1, whila snothar harmoniouws irtarval,
a parfoct fifth, results from stopping 2 string at
two-thirds of its length, giving a rabo of 3 to 2.

A i
S - e -

A 1492 woodout feanring some of Pythagoras's
messical expericens







NUMBER PATTERNS

For the Pythagoreans, ‘arithmetic’ meant
studying whole numbers, which they
sometimes represented geometrically; for
example, they considered square numbers
as being formed by square patterns of

dots or pebbles.

@ e o
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16

Using such pictures they could show that

square numbers can be obtained

by adding consecutive
odd numbers,

starting from 1

— for example,
16=1+3+5+7.

They also studied triangular numbers,
formed by triangular patterns of dots.
The first few triangular numbers are

1, 3, 6, 10, 15 and 21.

Notice that 3=1+2, 6=1+2+ 3,
10=1+2+3+4, etc.

E)
°
. e o
[ ® o
e o e o o
1 3 e e o
5 e o o
10

Using such pictures they could show that

the sum of any two
consecutive triangular
numbers is a square
number

— for example,

10 + 15 = 25.







THE PYTHAGOREAN THEOREM

Important in geometry are right-angled triangles, where one of
the angles is 90°; an example is the triangle with sides 3, 4, 5.

The most important result concerning them is known as the
Pythagorean theorem, although no contemporary historical evidence
links it to Pythagoras himself. Although it was known by the
Mesopotamians 1000 years earlier, the Greeks were probably
the first to prove it.

Geometrically, the Pythagorean theorem says that if we take a
right-angled triangle and draw squares on each side of it, then
The area of the square on the longest side is equal to the sum
of the areas of the squares on the other two sides
— that is, (area of Z) = (area of X) + (area of ¥)

So, for a right-angled triangle with sides of lengths a, b and ¢
(where ¢ is the length of the longest side), we have a2 + b? = ¢?
— for example, for the triangle with sides 3, 4, 5,

324+42 = 94+16 = 25 = 52
Other examples are the right-angled triangles with sides 5,12, 13
and 8, 15, 17.




The MAYANS

One of the most Interesting counting
systems Is that of the Mayans of
Central America, used between thelr
most productive years from AD200 to
1000. The Mayans were situated over
a large area centred on present-day
Guatemala and Bellze and extending
from the Yucatan peninsula of Mexico
In the north to Honduras In the
south Most of thelr caiculations
Involved the construction of
calendars, for which they developed
a place-value system based mainly on
the number 20.

Our knowledga of the Mayan cournting systorn and
of thawr calendars is derived mainly from writings
on the walls of caves and ruins, hisroglyphic
inscriptions on warved pillars {stelas), and a
handful of pamted manuscnpts (codioes). The
codices wemn intendad to guide Mayan pnasts in
ritual coramonias involving hunting, plarting and
rainmaking, but many codices were destroyed by
tha Spanish conquarors who amived in this arsa
aftor the yoar 1500.

The most notabla of tha surviving codices s
the beautifil Dresdan codex, dating from about
1200. It = painted in colour on 3 long strip of
glazed fig-tree bark and contains many examples
of Mayan nrumbers.
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Th Mayan symbols for e numbers fom 010 19,

THE MAYAN NUMBER SYSTEM

The Mayan counting system was 2 place-value
systom with @ dot to represert 1, 2 Bna to
represant 5, and a specisl symbol (3 shell) to
represant 0. These ware combinod to giva the
numbers from 0 to 13.

To obtain larger numbers thoy combined
these numbers, writing tham vertically; for
wample, the illustrated codax depicts
the symbol for 12 above tha symbol o'
for 13 — this roprosants tha number ==
253 (12 twuntias + 13).

THE HEAD FORM

An Interesting feature of the Mayan
numerals % that there was an allematve
foem for each number, 3 pictortal form
ar glyph known 25 the Anad-form, with 2
pictertal representation of the head of 2
san, antmal, bird or dety. Thess
plctures appear cn various pillars: bdow
are the head forms of varioes numbess.

THE MAYAN CALENDARS

in order 1o keep track of the passage of time, the
Mayars amployed two types of calendar, with
260 days and 355 days.

Pan of a Mayan codex

The 260-day calendar was 2 ritual one, used
for forocasting and known as tha tollon, or
“sacred calendar’. it consasted of thirteon months
of twenty days. Each day combined a month-
number (from 1 to 13} with ona of twenty day-
picturas named aftar deities (such as Imix, Ik and
Akbal). Thase two systams than intermashed, as
dustrated — for axampla, tha day 1 Imix was not
followed by 2 Imix and 3 Imox, but by 2 [k and 3
Akbal, atc. — avantually yelding a cycle of 13 x
20 = 260 days.

For their 365-day wmlendar, they modified
their number systam to take account of the
number of days in the calendar year. To do so,
they intreduced an 18 into their 20-basad systam
{since 18 x 20 = 360}, and than added five extra
“nauspicious’ days to make up the full 365 days.
So their counting system was based on the
following scheme:

1kin = 9 day

20 kins = 1 uinal = 20 days

18 uinals « 1 tun = 360 days

20 tuns = 1 katun = 7200 days

20 katuns = 1 baktun = 144,000 days,
and 30 on. Thoy had no probloms in calculating
with such large rumbers

These two calendars operated indepandantly,
and wera also combined o give a ciendar
round, in which tha number of days was tha loast
common maltiple of 260 and 355, which 1s 18,220
days, or 52 calendar yaars. These penods of 52
years ware then packaged into even longer tima
paricds. Tha longest ime paricd used by the
Mayans was tha fong count calendar of 5125

yoars.
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CHAPTER 2

ATy

The revival of mathematical learning
during the Middle Ages was largely
due to three factors:

« the transiation of Arabic classical
texts Into Latin during the 12th and
13th centuries

« the establishment of the earflest
European universities

« the Invention of printing

Tha first of thasa made the works of Euclid,
Archimedas and other Grock wrtars available to
European scholars, the second anabled groups of
lika-mindad scholars to mest and discourse on

~=iywvi1)

Brabers oumenals,
SECAOd Century AD

i

L
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mattors of common interest, while tha last
enablod scholarly works to ba avaiable at

dost cost to the g | populaca in thair own
language.

The first European univarsity was foundad in
Hologna in 1088, and Paris and Oxioed followed
shortly after. Tha cumioulum was in two parts. The
first part, studiad for four years by those aspiring
t0 3 Bachalor's dagroa, was based on the anciant
“trvium’ of grammar, rhatoric and logic (ususlly
Arnstotelian). The second pan, lesding to 3
Mastor's dogroa, was based on tha ‘quadrivium’,
the Grock math ial arts of arithmats
geometry, astronomy and musiz; the works
studied induded Euclid's Blemants and Prolomy's
Alrages.

THE HINDU-ARABIC NUMERALS
We hava seon how the decimal placo-valua

I\’l'q““‘ﬁ!

¥ op d by the Hindu-Arabic
numerals first arose in India and was lter

Gwakor hstrigtion
ADE70

doveiopad by al-Khwarzemi and othar lslamic
scholars working in Baghdad and alsewhara.
Gradually tha numerals

— the modem Hindu script, the

» night to left), stil found today n the

countnies of the Middlc East, and

the West Arabic numerals 1 to 8 and 0 {wrtten
from left to right) that avantually becama the
b y usad through Westorn

]
] diverged into throe saparato typas

[faawsarnse 17a¥3¢acea lvr#'-\vn'-

= | it
"j:l‘:'l'xm"‘f:h‘ mhﬁz;:;‘mm Modern Eavt Arasic East Amabic numarals {writtan from

raruacript]

[t13456a8 90
Em'ywnl!:g:lrnrdl. The origins of our

number sysioms

Eurcpa.

Viewing #o hoavons with a joynt rule

Buat it tock many canturies for tha Westemn
form of the Hindu-Arsbic numernals to becoma
fully cstablshed. Thay were certainly more
convenient to osloulate with than Roman
numerals, bt for practiml use most paopia
contirued 1o use an abacus.

As time prog d the stuation impeoved
with the publication of influantial books that
promoted tham, such 35 thosa by Fbonacci lin
Latin), Pacioi (in halian) and Recorda (in English).
By the tima that printad books had becoma
widely avadlable, the Hindu-Arabic numarals
werg in genaral usa.

THE AGE OF DISCOVERY

The spirit of anquiry and imventivaness of the

Middla Ages and the Renaissance led poopla to

adopt 3 more critica] view 1o ideas that had boon

acoapted for cantunes. it showed itsalf m many

ways:

* tha voyages of discovery to unknown lands

* tha devalopmant and invention of scientific and
mathematical mnstrumonts for a vanaty of
purposes

*tha usa of geometnical parspective i painting
and other visual arts

« tha sclution of cubic and quartic equations

ethe dovelopment and standardization of
mathamatical tarminology and notation

« tha ravolutionary approach to plnatary motion

* tha radiscovery and reintarpratation of classical
toxts

* tha developmant of mechanics

* tha removal of sigebra from its depandance on
geomatry.

These all contributed to the davelopment of a
wiow that the universe is a book written in the
language of mathematics. As instruments
bocame ever moro sophisticated, mathematics
for practical purposes increased — particulardy in
navigation, map-making, astronommy and warfara.



HAONACC

Leonardo of Pisa (c.1170-1240),
known since the 19th century as
Fibonaccl (son of Bonacclo), Is
remembered mainly for his Liber
Abacl (Book of Calculation), which
he used to popularize the
Hindu-Arabic numerals, and for a
number sequence named after him.
His work was crucial in bringing
Arabic mathematics to wider
recognition In Western Europe.

Fibonacd was born in Pisa. After traveliing widcly
throughout tha Mediterranean, he ratumed home
and wrota works expanding on what he had
learned, to help his countrymen deal with
calaslstion and commeroa.

THE LIBBER ABACI

Most of our knowledge about Fibonacci comas
from the prologua of his influantial book Libar
Abaa. The first edtion of this boock appeared in
1202. i covars four main areas starting with the

use of Hindu-Arabic numerals in calculation and
then using them for the mathematics needaed in
business. The largest pant of the book doals with
recrestional mathematics! problems, finshing
with oparations on roots and a little goomatry.

PROBLEMS FROMTHE LIBER ABACI
Fibonscor's Liber A baci contains a wide range of
mathamatical problems, including the following
threa that may ba similsr to ones you remambar
from your school days|
There is a tree, 'y and ¥; of wiich fie below
ground. Ifthe part below ground is 21 paimi,
how il is the troe?
ifa fion can oat a sheep in & hours, 3 legpard
@n aatitin 5 hours, and a bearcan eat itin &
hours, friow long would thoy tako eating it
togotha?
I can buy 3 sparrows for 3 penny 2 turtio-
doves for a penny or doves for 2 ponce cadh.
if fspent30 pence buying 30 binds and bought
at least one bird of eadh kind frow many of
eadh kind did 1 buy?

Ancther problam involves adding powers of 7:
7 ofd women are going to Afome;
oadh has 7 mules; sach mulo camos 7 sacks;
sadh sack contains 7 loaves; sadh loaf has
7 inivas cadh knifo has 7 sheaths
wiat is the fotad number of things?
Ths is reminiscent of a problem from the
Egyptian Rhind papyrus:
Fouses 7; cats 43; mico 343; spdr 2401;
hekat %6,807. Total 9,607
and also of the more recent nursery rhyme:
As | was going to & Ives | mot a man with 7
wives... Kits, cats sacks and wives,

How many ware going to St fves?
Such examplos dramatically illustrate the fact
that the sama math ical idaa can resurface in

different guises over thousands of years.

menth number
of pars
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THE RABBITS PROBLEM
Thae moest famous problem in the Liber Aba is
the problem of tha rabbis:
A farmer ha a pair of baby rabbits Rabats
take two months to readh maturity and thon
gve binh to anothar pair cadh month. How
many pairs of mbbits are there after o yoar?
To solve this, wa note that:
*in months 1 and 2 the farmer has only the
onginal par,
*in month 3, a now pair armivas, so he now has
two pairs,

9=%1+ J5) =161,
which has remarkable and plessing properties:
for example, to find #s square we add 1 (@7 =
2818...), and to find its reciprocal wa subtract 1
(Vg = D518

A rectangle whose sides s intheratiog to 1
s oftan considerad to hava the most plessing
shape — neither oo thin, nor too fat. The
following pixcture shows how tha Fibonacol
numbars can be arranged o as to give rise o 3
spiral pattorry; furthar ractangles can be addad at
will

13
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*In month 4, the onginal pair produces h
paw, and the new pair has not yot produced, so
he now has throa pairs,

*In month 5, the ongmal pair and the new pair
both produce another peir; and so on.

The resul of the problam is that the numbar
of rabbis in cach month follows the so-called
Abonacci sequence:

1,1,2,3,5,8,13,21,34,55,89, 148, .,

in which each successiva number (sftor tha first

two) i tha sum of tha provicus twa; for exampla,

88 = 34 + 55. The answar 1o the problem is the

12th numbar, which = 144,

SPIRALS ANDTHE GOLDEN NUMBER
The ratios of successiva terms of the Fibonacol
0QUENOS are

Yo e %% By
Theso tend to tha ‘goiden number”

Similar spirals ocour through nature — on a
nautilus shell and in tha pattom of secds in a
nfl — for ie, the bar of seads in

such a spiral pattern is often 34, 55 or 88, all of
which are Fbonscci numbars.
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A farmer has a pair of baby rabbits. Rabbits take two months
to reach maturity and then give birth to another pair each
month. How many pairs of rabbits are there after a year?

month number
of pairs

1 1

1
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Fibonacci sequence: 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...,



Fibonacci sequence:
1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
Golden number: 1.618...
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The Aemish mapmaker and
cartographer Gerardus Herocto(

ATOR

A major concem in the 16th contury, an active
poﬂod for voyages of trada, discovery and

(1512-1594) is mainly r

for the Mercator projection, which
proved to be extremely useful for
navigators. This was a projection of
the spherical earth on to & flat sheet
of paper so thet the lines of latitude
and longitude, as well as the paths of

L b i g8, were
represented by straight lines.
Mercator also coined the word “atlas”
for a collection of maps.

was to dovolop mathamatica!
mathods and maps to a6 navigation

Tha basic probiem was that If you were on 3
ship In the middia of the ocean, how could you
il whare you ware, and in which diraction you
should sall to get to your destination? You coula
find your latituda by using astronomical
instrumaents to locate the sun and stars. It was
more problomatic, howavar, to fing your
longitude, and a satisfactory method was not
svaliabla untsl tha and of the 18th cantury.

Moxor () and jodocts Hondius, who peblishod Momaeor's work, on i5e Hile page of an ndion of the
Merator- Hontias Aflss, surroundad by the sools of the canogmphor

72

Fonsion s by trom shapes
and distoene withhe 15"
of beumtrr

Been. |

The Mosmior o projocion Is 3 cyEndric one that distons the stz and shape of amas & from S0 aquaos

Using a magnatic compass, marinars could
stoor 3 lina of constant compass boaring (a
rhume fing), such 3 path crossas all ines of
longitude 3t tho same angle. However, as tho
18th-century Fortuguesa mathematicdan and
graphar Podro Nunes ¢, @ rhumb
ling spirals towards the polk.

cosIT

MERCATOR'S PROJECTION

Meorcator obtained his projection by
projecting tha sphars on to 3 cylinder which was
than unrolled and stretched vaertically so that the
rhumb lines the of
strafching varks wath mmrnm latitudes, and
Increases the further north one goas. This has the
consequance of maggerating areas that are far
from the og; - for pla, Alaska app as

farge as Brarll while Brazil =

The advantages of Marcator's
projoction were that & rapresantod
lines of latitude and longitude as
straight fines meeting &t right
angles, anc that & also represantod
riumb Bines as strasght lines on the
map. If 3 navigstor know the
latitudes and longitudes of the
ship's currant position and the
destinztion, than tha line joining
the two places could be found on
the map, This cnabled the
appropriate  constant compass
bearing to be dotermined, bt

actually five times bigger, and
Finkand has a graster north-south
extant than India which s
incorrect.

Morcator did not presant the
mathamatical basis for his
projection. This was first given by
Edwarc Wright In his influental
Cortaine Errors In Navigtion of
1583, Wright also gave sccurato
mathamatical tables for Its
construction. But It was Thomas
Harriot (1580-1621) who eventualy
discovered tha  fundamental

would not give the shortest Memaor's proposon marked

distance 1o the destination.

2 sep forward for ravigasion

mathematical farmula undarying
Marcator's projoction.
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Central meridian

(selected by mapmaker)

Great distortion in high
latitudes

Examples of rhumb lines
(direction true between
any two points)

Equator touches
cylinder if cylinderis
tangent

Reasonably true shapes
and distance within 15°
of Equator
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The 17th and 18th centurles
witnessed the beginnings of modern
mathematics. New areas of the
subject came Into being — notably,
analytic geometry and the caiculus —
mmm“mm,
were reborn or took on a new lease
of life. Fundamental problems, such
as that of determining the orbits of
the heavenly bodies, were solved or
Investigated with novel techniques.

It was tho age of Newton in England, De and

NING AN

i

CALCULUS AND DISCOVERY
initially, the probl that math
solved were geomatrical, as ware thair answars,
sithough the tedhniques thoy used (including the
loulus} were not ily of this kind, baing
3een as muhods of pmcnodlrg from =
i blom to a g | answer.
Thoiaﬂluwmlywbdwammwmd
mathamatics, with its most striking characteristic
baing s algebraic appearance.
The cbjects of mathematics were now
dascribed by formulas with symbols for

Pascal in France, and Laibniz in Garmany, followed
by a sucoession of Continantal ‘groats”: tho Bamoull
brothers, Eulor, Lagrange and Laplaca.

It was 3iso the age of gatherings - the
formaticn of national sciantific socatios, such as
Londons Royal Sooety and the Academy
of Sciances in Paris, and the founding of scholary
insttutions such as
the St Petersburg et gl
Academy and the |

ianlir;

The arm swopt ou
by a mowing body:
Newion's use of
geometry (right)
contrasts with
Laplace's amalyvical

sppmach (far righ)

If we project the body m, on the
plane of x and y, the differential
(xdy —ydx) /2, will represent the
area which the radius vector,
drawn from the origin of the
coordinates to the projection of m,
describes in the time dt,
consequently the sum of the areas,
multiplied respectively by the
masses of the bodies, is
proportional to the element of
time, from which it follows that in
a finite time, it is proportional to
the time. It is this which
constitutes the principle of the
conservation of areas.

The caiculus is sxade up from two seemingly unrekated strands, now caBed dfferndadon snd
Differentzabion ks concamed with how tast things move or change, and ks used In the

integration.

finding of velocities and tangeats 10 curves.
Itegration Is used to find areas of shages i
m-_lh

uhm—yp—nt-
gradugily realized that thes= two strands are
Intimately related. As both Newton and Lelbriz
expained, they are Inverse processes — If we
“qhﬁnmi-

starting point. :

However, Newton and Leeiz had different.
mottvations, with Newton focusing on motion
and Ledniz concamed with tangents and areas.

varsbles and constants. A man roason for
doing 30 was that tho machinary of the caleulus
could than be zpplied both to them and to
practical  situati This h d the

o O

‘partial differentiation’. The partis! denvativa
3udx is the rate of change of v in the xdirection,
whila the partial derwative 3uy is the mte of
changa of v in tha y-direction.

daval of new
uidhdlnqmmd’iummnmrgﬂgawof
difemntal oquations

This shift towards tha algebrmx type of
dascription also led 1o a good way of discovaring
naw cbjects. Bodsmmnlmhodgobmc
stylo, and I
shout and solved problams in this my
Mvalgnhﬂmebboueﬂaalogunl

guage suitable for tha & sgation of all the
SCRNCSS.

Mochanics and astronomy weea the main
aroas of practical & igation. They both applied
the calculus to functions of more than one
variable, such as

ulx, )= xF +x3F =y
hare, ulx, y) can be thought of s the haight of 3
surface abova the point with coordinates (x, y) in
the plana.

The ewzborl that arose were called partial
diffal b they imvolved

"

Lowts X1V visles $ho Farls Academy of Sciencss, 1671




NAPIE o BRIGGS

In 1614 John Napier (1550-1617), 8th
Laird of Merchiston (near Edinburgh),
introduced logarithms as an ald to
mathematical caiculation, designed

additions and subtractions. Being
awkward to use, they were soon
supplanted by others due to Henry
Briggs (1561-1620), and thelr use
proved an enormous boon to
navigators and astronomers.

Early idaas of logarithms had appeared around

foha Napice

multiply two of them
ona samply adds thar
exponents — 5o, 0
multiply % and 128 we
calossta:

16 x 128 = 28 x 2
= 207 o 27 o 2048,
and writ log, 2048 = 11

NAPIER'S LOGARITHMS
The ides was not doveloped until Napier
produced his Mnfio Loganthmorum Canonis

tha year 1500. Nicolss Chuquet and Michaal Stifel
listed the first fow powers of 2 and noticed that to

Loganthmorum
Genpair definipely,
ufque wius, i utraq
FIEOPAIPIE W A i
sers Logilics Machezul g,

Caal Failme,
e Fm .

Auwthoee ac Invencore,
TOANNE NEPERO,
rckibens,
Lo

Descriptio (A Description of the Admirable Table
of Logarithms). This contsins axtensive tables of
logarithms of the sines and tangents of a1 the
angles from 0 to 50 degrees, in stops of 1 minute;
Napier's use of these logarithms arose because
ha intonded them to bo used as an aid to

loulation by navigatars and

Napiar’s logarithms ara not the ones wo use
now. He then considered two points maoving
slong straight lines. The first travals at constant
spacd for aver, whila the second, representing its
logarithm, moves from Palong a finite fina PQin
such 3 way that its spood at each point iz
proportianal to the distance it still has to travel. In
arder to avoid the wse of fractions ba muktiplicd
all his numbars by ten million.

& follows from Napier's definition that the
logarithm of 10,000,000 is 0. & can also ba shown
log ab=loga +log b—log 1,
for any numbers 3 and & haore, log 1 has the

cumbarsoma value of 161,180,956, which has to
ba sut d in any caloulaty

Napier also constructed from wory a sat of
rods with numbars marked on them (now called
Napior’s bones or rods, which could be usad to

O r{ 2138415647
%

involvad the addition of log 10 = 23,025,842,
Briggs twice visited Edinburgh to stay with
Napior and sort out tha difficu®ies. On retuming
to London, ha devisad a naw form of loganthma,
his logs 10 base 10, writtan Jogy, in which logy 1
= 0 and logy 10 = 1: to multiply two numbers ona
logy ab = logg 3 + logy &
in general, i y = 107, then logy, ¥ = x. In 1617 ha
publishod thesa in 3 small printed pamphlat,
Loganthmorum Chifias Pnma (The First

HENRY BRIGGS
Shortly aftar their invantion, Hanry Briggs, first
Grusham Prof of G y = London,
haard about logarithms and enthused:
Lot Napior] sot my Hoad and hands a Work
I naver saw a Book wihich ploased me bofrar
or made me mora wondor.
Briggs rualizad that Napior's logarithms ware
cumbersoma, and felt that thoy could be
redafined 5o as 10 svoid hawing to subtract the
tarm log I:
I mysif, when expounding this doctrine to

Th d Logarithms).

In 1624, after ha had laft London to becoma
the first Savilan Profassor of Goometry in
Oxdord, Briggs followed this with an axtansive
collaction of logarithms to baso 10 of the intagers
from 1 to 20,000 and 90,000 to 100,000, all
cakulated by hand to fourteen decimal places.
Tha gap in his tables |from 20,000 to 90,000} was
soon filled in, by the Dutch mathematician
Adnaan Vizcq in 1628

s Logarihmi, | Lagarithmi,

jwmww 34 94r31478917,042:6
3020,20995,5198] 35} Kr440,59044, 37020
8771,211¢4,7 190 {§63,93§00,7672
10,9995} 57 JTYRSOFR G2y, 00708
'9.700%15" 3813579733 196,64681
ar81,50390,38384] 39ld45910,64607,0:650
79,99040,0 143 16919,§9991,13796
52359,85936,99 (ga] 41|86127,83876,71574
S42,43509,47935]  3|05232.49290,357
to[1ba00,00000, 2| §Frra S5, 5701

Some of Henry m; logarthos

Tha invantion of logarithms quickly led to tha
daval of math, wcal i basad

my auditors in Gresham Colloge, remarked
that it wowld be mudh more convaniant that 0
should be kept forthe fogarithm of the whole

ane.
A rolated difficulty was that multipication by 10

on a loganthmic scsle. Most notsble amang
thesa was tha siide rule, varsions of which first
appeared around 1630 and wera widely usad for
ovar 300 years until the advent of the podket
calculator in th 1970s.
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constant speed

line 1:

line 2:

10,000,000
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s Logarithmi,

‘ | Logarithmi.

39¢1
;61:

| 0000,000;;},00000 3 II5314.,73917,0422.6
3010,29995,60398
_3jopr71,21274,71966

5440,1 04‘4: 35028
7§63,02§00,767129

4 Eozo,5999133=795
O

- §f0l6989,70004,3 3602
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37} 15682,01724,06700

38

3

5’797,83 5’95 61631
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_77]58450,98040,0 1426

6020,§9991,32796
6127,83846,71974
6232,49299,39790

81019030,89986,99194
9[09542,42599,43932
10] 10000,000006, 00000

63314,68455,57959







NEWION'S SUCCESSORS

The appearance of Newton's
Principia In 1687 caused

distances: to Huygens, In particular,
It was an ‘absurd’ idea that was not
capable of explaining anything.
Preferable to them was some sort of
mechanical theory such as that of
Descartes, In which the planets are
swept along by vortices like leaves In
a whirlpool. But there were two
main areas In which Newton's theory
caused difficultles — the shape of
the earth and the motion of the
moon. Both were Important for
navigation, and in both of them
Newton's views were eventually
vindicated.

In ¥728, the yaar after Nowton’s death, the groat
Franch author, historian and philosopher Voltase
wrote sbout the different world views in France
and England:
in Paris thoy soe the universs as composed of
vortices of subde matter; in London they e
nothing of the kind. For us it is theprassurs of
the moon that muses the tdes of the sea; for
the English it is the soa that gravitates
towards e moon.
Voltzira was well placod to commant, as ha had
tha expertisa of Madama du Chatelet to inform
him. She was the gited mathamatidan who
trarsiated Nowton's Principia into French. Voltsire
continuad:
I Pans you scethe carth shaped fikea lemory
in London it is flamencd on two sdes

A meion {cbéase sphomid)
and 2 lemaon (prolae

5 J

THE SHAPE OF

THE EARTH

Under Newton's
hypotheses, the rotation

of tha carth causes 3 flattening

at tha poles so that the aarth is malon-shaped,
wharaas undar Descartes's vortex and mattar
theory thora is an elongation at the poles, so that
the carth is lemon-shaped.

To decide on the actual shapa of the earth, the
Pans Acadermy sant two axpedations to measure

Enilic de Broweud, Manuise du Chascke:

the size of 2 degrea of latituds: one to Pery, lod by
Charles-Mane de la Candamine in 1735, and the
other to Lapland, headed by Piarme de Maupertuis
n 1735 t was not until 1739 that both
expaditions reportad, and Maupartuis was sbla to
confirm that Newton was night: tha aarth is flatter
3t the poles. This eamed Maupertuis the
nickname of ‘the groat fiattoner”.

Alhough this vindicated Newton's approach,
# turned out that Newton had incorractly
loulated the of fiattaning b of
sssumptions he had made about fuid pressure,
Ithough he ly predicted the nature of the
carth's shape.

THE MOTION OF THE MOON

Although Newton daak woll with the motion of
two bodies moving undar mutual gravitationsl
attraction, tha motion of the moon dopends not
only on the earth but also on the sun. Even today
we have no axact solution of the fhroe-body
problom — the problom of pradicting the future
postions and speeds of three bodies moving
under mutual gravatational attraction.

Without tha influence of the sun the mation of
the moon would be an aliipse. Newton simplified
the problem by sssuming that tha offect of the
sun was to cause the moon's eliptical orbit to
revoive slowly. He caloulated that it would take
eighteon yaars for the orbit to raturn to @s
onginal position, but obsarvation showed that it
tock only ming yoars. As Nawton wrote in Gtor
editions of the Prinapia:

The apme of the moon is about twice as swift.

By the ond of the 17403 Nowton's thoory of
gravitation was undar concentad investigation by
those mathematicians who best understood it
dAlambar, Clairaut and Euler. In 1747 Clairaut,
who had taken part in Msupertuis’s Lapland
expedition, proposed 1o medify Newton's
imverse-square law of gravitation by adding an

Alexis Claade Clairaut

sdditional term o it, while dAlembert and Eular
cama up with other approachas. & scomed that
Nowton's law of gravitation maght be wrong!

Then, on 17 May 1743, Clairaut made a
dramatic retraction:

1 have boen fod to reconcide observations on

the motion of the moon with the thaory of

I itho upposing any offrer
attractve forae than one popotional to the
inverso square of the distance.
Clsiraut had taken a naw spproach to tha
differontial oquations that desonbe the moon's
mation, finding that the provious differences
batween theory and cbservation had bean dua to
the way in whxh these oquations wero
spproximated.

This Jod %o Euler publishing his theory of tha
moon in 1753, which enabled the astronomar
Tobias Mayar to prapare s sat of tables describing
its motion — enabling the moon to ba used as a
‘calestial clock’ This led aventually 1o their
recaiving & share of the prizn awarded by the
Britsh Board of Longtude for disoovering a
practical way of finding longitude ot ses.
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CHAPTER 4

The 19th century saw the
development of a mathematics
profession In which people eamed
thelr illving from teaching, examining
and researching. The mathematical
centre of m moved from France
t0 Germany, while Latin gave way to
national languages for publishing
mathematical work. There was also a
dramatic Increase In the number of
textbooks and journals.

Bocause of this increase in mathematical activity,
mathematicans began to (indeed, nooded to}
specizfize. Whilke one weould uso the term
mathemaiaan in the 18th century, one now had
analysts algebraists, geomoters, number
theorists, loginans and appliod mathematioans
This need for spadialization was avoided only by

[1ON

in aach discipling thera was a revolution {as
well as an evolution) in the dopth, extent, and
oven the vary oxistence of the discplina. But aach
discipling axperianced 3 movemant towards an
inoreasingly abstract style with an increased
emphasis on putting mathamatics on 3 sound
and rigorous basis and  axamining its
joundations. We illustrate thas by considering the
mvolutions in three areas - anafysis, algebra
and geomatry.

FROM CALCULUSTO ANALYSIS

in tha 1820s Augustinlouis Cauchy, the most
profific mathematican of the century, rigorized the
calouhss by basing 2 on the concept of 3 imit He
than usad this idea to develep the arass of resl and
complax analysis. This noresse in ngour
nocessitated tho formulation of a foolproof
defintion of tha real numbars, which in turn led to

tha very greatest: Gauss, Hamilton, Riemann and
Klain

2 study of mfinita sats by Georg Cartor and athers
Joseph Fouriar's work on haat conduction
also gawe rise to infinite

] ARG ol =

=TT processes — in thas case,
"3 infinito serics — theraby
4% stimulating Barnhard
Riamann in his work on
integration. Anaziytical
techniques cama to be
appliad to a wide ranga of
probloms — n alectrcity
and magnetism by William
Thomson (Lord Kebvin} and
Jamus Clark Maxwell, in
hydrodynamics by Goorge
Gabrial Stokes, and in
probabilty and rmumber

- . £ theory by Pafnuty
The Universry of Gottingen, whore Causs, Riomann and Kicen workod. Chebyshev.
uz

ware dscoverad: Hamilton
introduced the algebrs of
quaternions, George BSocle
cragted an sigabes for use in
logic and probability, and
Cayloy studied tha algebra of
rectangular armays of symbols,
called matnices.

FROM ONETO MANY
GEOMETRIES

Over the space of orne hundred
years the study of goometry
was complataly transformed. In
1800 the only “true’ geometry

Revolotions did noe happen ooy In mathemancs: this is 2 miners’ ot tht had been Euclidean geomatry,

wok place in Befgium, 1868

FROM EQUATIONS TO STRUCTURE:
Algabra alse changed d lly through
the th contury. In 1200 the subject was about
solving equations, but by 1900 it had becoma the
study of mathematical structures — sets of
clomants that am combined according to
specified rules, called sxoms.

At the baginning of tha century, Gauss laid
down the basics of number theory and
mtroduced modular anthmaetic, an eary example
of a naw algebrax structurs called 2 group.

A long-standing problem had to do with
finding 3 genaral mathod for sclving polynomial
oquations of dogree 5 or mors, using only
arithmetical operations and the taking of roots.
Nials Abol showod that thero can be no such
gunaral sokution, and Evariste Galois developed
his ideas by mamining groups of parmutations
of the roots of an equation.

The mystigua concaming complax numbars
was at last removed by William Rowan Hamaton,
who daefined them as pairs of real numbars with
cartain operations. Other algebraic stnxcturas

although there wers soma

scattorcd results on spharical
and projective geomeatry. By the end of tha
century, infinitoly mary geometries wera known,
while geometry had become dosely inked to
group theory and placed on a more rigorous
foundation

Gauss studied surfaces and their curvatura,
finding 3 ralationship betwaan curvatura and tha
sum of the angles of a triangle on tha surface,
and this turmad out to be rolsted to the
investigations into tho parallel postulato in
Euclidean geomatry. Nikolai Lobachavsky and
Janos Bolyai independently developed non-
Euchdcan goometry, in which the paraliel
postidata doas not hold.

It took time, howaver, for the sdaas on non-
Euclidean geometry to becoma absorbod, and it
was the mid-century work of Riemann that
showad tha imporntance of tha new idess and
extended the work of Gauss. Through such
shstract tachniques, geometry was also moving
out of two and threa dimansions and into highar
ones. Later, Felix Klain wsod groups to examing
and classify different types of goometry.



BABBAGE o LOV

The central figure of 19th-century
computing was Charles Babbage
(1791-1871), who may be sald to
have ploneered the modern computer
age with his “difference engines’ and
his “analytical engine’, aithough his
Influence on subsequent generations
Is hard to assess. Ada, Countess of
Lovelace (1816-1852), daughter of
Lord Byron and a close friend of
Babbage, produced a perceptive and
clear commentary on the powers and
potential of the analytical engine;
this was essentially an Introduction
to what we now call programming.

A porgon of the 1832 diffosonce eoging: it was 10 lave
the dmewrn of boing able 1o prine bs nsulis, 26 more

ermoes 2roe in printing 20d proofrrading shan in the
orginal cakulations

THE DIFFERENCE ENGINE
Charles Babbage and John Harschal were asked
by the Royal Astronomical Society to produce
naw astronomical tablos. It was this that caused
Babbage %o design has calasating machine

Ha wantod to mechanize tha calculation of 2
formula such as x¥ + x + 41, for different values
af x — this was b illustrative axampla. The core
of his idea ocan ba soen in the following table. In
the socond column are the values of this
exprassion for x = 0,1, 2, ... , 7 in tha third
column are the differences between successwve
tarms of the second (the fire difforances) and in
the fourth column are the diferences batween
sucoassva terms of the therd column (the second
diffioranaas); hera, the second differances are all
the sama

st second
X Fexs 8 gyvomnces  dorncas
[} 4 #
1 4
Y 2
2 47 2
&
3 &3 2
4 & > 2
10
5 L2 ’ 2
& <) = 2
. = 4
7 o

Nota that we can reconstruct the values of the
function in a steplikeo fashion from the shaded
regian containing tha first torm (41), the inisal
first difference (2) and the corstant second
differoncas (2)

Thas tochnigue can ba appled to any
polynomial function, because continwing to take
differonoes aventually yiclds comstant values.
Also many functions of interest which are not
polynomials (ike sin, cos and fogl can be
approximated by polynomishs.

Charles Babbage

The construction of tha dffarence angine ran
nto  engneenng, financial and politeal
difficulties, and corastnaction ended in 1833,

THE ANALYTICAL ENGINE
Habbage wondered whether his difforence
engina could ba made to act upon the results of
its own caloulations, or as he put at:

The engine aating its own tail.
With this in mind, he designed a now engine,
basing its control system on the punched cards
used by Jacquard for his sutomatic loom

The design for his analytical angine allowed
for inputting numbers and holding tham in 2
store. The instructions for the operations to ba
performed on the numbers would be mput
saparately. These operations would be performed
in a part of the computer, cadiad tha mill, and the
results would be retumed to the store and
printed, or used as input for a further calculation,
depending on the control instructions.
importantly, the oparations to be performed
could be made to dapend on tha result of an
carlier caloulstion

Ada, Countess of Lovelsce, was enocouraged
in har intorest i mathematics by Mary
Somervilla and Augustus De Morgan

in her writings on the analytical engine, she
descrbed what it could do and how it could ba
nstructed, and gave what is considerad to ba tha

Ada, Counsess of Loveiae

first computar program. As sha wrota

The distnative charactanstic of the A nafytcal
Engine ... is the introduction info it of the
principle  whidh Jacquard dewvised for
regulating. by means of punched rds, the
most complicaed paterns in the fabnicaton
of brocaded stuffs It is in this that e
distncation botween the mwo engines fies.
Nothing of the sort axists in the Difforsnce
Engine. Wb may sy most apty that the
Anaiytical Engino weoaves algebraical patterns
Just as the Jacquand joom woaves flowers
and leaves.

Although the anslytical engine was newver built,
modern scholarship is of the view that if 2 had
been constructad, 2@ would have worked as
Bzbbage imtanded. The name ADA is now given
to a programmung language developed for the
Unand States Dopartmant of Dafonse.

"












- NIGHTINGALE

TITL Y

Florence Nightingale (1820-1910),
the "lady with the lamp’ who saved
lives during the Crimean War, was
also a fine statisticlan who collected
and analysed mortality data from the
Crimea and displayed them on her
‘polar dlagrams’, a forerunner of the
ple chart. Her work was strongly
Influenced by that of the Beigian
statisticlan Adolphe Quetelet.

Florence Nightingala showed an aarly imarest in
mathematics — at tha ago of 9 sha was
dsplaying data in tabular form, and by the time
she was 20 she was receiving tuition in
mathematics, possibly from James Joseph
Sylvaster.

Nightingale rogarded statistics as ‘the most
important science in the world® and usod
statistical methods to support har afforts at
adminstrativa and scosl reform. Sho was the

200000 0CQOIHROIDBOODHROOIOIDES

ﬁmmbhwuklﬂdhw
Statistical Socisty and an h Y
mdhhmwm

STATISTICAL INFLUENCE

By 1852 Nightingale had established 3 reputation
s an offective administrator and project
managar. Hor work on the professionalization of
nursing lod to her accepting the position of
“Superintendart  of the fomale nursing
establishment in tha Englsh Gancral Mizary
Hospitals in Turkey” for the British troops fighting
in tha Crimaan war. Sha amived in 1854 and was
appalled at what sha found thara. In attempting
10 change attitudes and practices she mado use
of pictorial diagrams for statistical information,
davaloping her polar ares gmphs.

The graphs have twalva sectors, one for aach
month, and reveal changes over the yaar in the
daaths from wounds obtained in battla, from
diseasas, and from other causes. They showed
dramatically the extont of the noadless deaths
amongst tha soldiars during the Crimean war,
and wero usad to persusda medical and othor
professionals that desths could ba peavantad if
sanitary and other reforms wors made.

On har retumn to London in 1858, sha
continuad to Lsa statistics 1o infoem and influance
public health policy. She urged the collection of
the same data, across differcrt hospatals, of:

* tha numbar of patients in hospital

* tha type of traatmant, broken down by aga, sex
and disoase

« tha langth of stay in hospital

* tha recovery rate of pationts.

Sho argued for the incluson in tha 1881
cansus of quastions on the number of sidk pacpla
i a househeld, and on the standard of housing,
233 shoe raalisod the important relationship
batween haalth and housing. in another intiatve
she tred 1o aducate members of the govarnmant

aooe
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in the uscfulness of statistics, and influance the

future by establishing the teaching of the subject

in the unversitias, social improvemants and political reform, all with
For Nightingale the collection of data was  the ssm of saving lives.
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" DIAGRAM or e CAUSES or MORTALITY .
APRIL 1855 10 MARCH 1856. IN THE ARMY IN THE EAST. APRIL 1854 toMARCH 1855,

N
N
Q

The Areas of the blue; red, & black wedges are each measured, from
the cenlre as the commaon vertez.

The blue wedges measured from the cenire of the circle represent areas
for area the deahs from Freveniible or Mitryadle Zymoiwe diseacses; the
red wedges measured from the cenire the dealhs from wounds, & the
black wedges measured from the cenire thedeaths from all other causes.

The Wack line across the ved triangle in Nov? 1854 mariks the boundary
o the deaths Trom all other cawses during the monily.

1 Oetober 1854, & April 1655, the black area comncides wnthy the red,
nJanuary & February 1855, the blue coincides with the black.

The entire areas may be compared by follovring the blue. theved & the
black lines enclosing them .




THE MODERN AC

In our final chapter we meet the

mathematiclans who have:

« examined the limits of what we can
prove and shown why some tasks
are Impossibie to carry out

« lald the foundations of our current

prove things that we could not do
otherwise, while raising questions
about our identity.

PARADOXES AND PROBLEMS

In previous chaptars we have seen 3 doveloping
dasira to place math ics on 3 ok
foundation, with the story going from the
underpinning notions of the calculus to
anthmatic and tha theory of sats. As 20th-contury
mathematicians axamined more carafully the
nature of infinity and the problems connected
with sots thoy met 2 number of problams and
paradoxes. One of the most famous of thase was

The I for Ad d Study, cstablishod In 1930: 25 Nobel Laumases and 38 (cut of 52) Fields

ModaBisis have boen afilizsed with it

C H. Hasdy with bs msasxch studost Mary
Canvwrighe, laser 00 be e fins woman appoined
Prisiden of $he London Mathematical Socioty

jormulated by Bermrand Russall in 1302, and
nacessitated 3 much more thorough treatmant of
the vary foundations of set theory and of the
axact nature of deductve proof.

Another approach was taken by David Hilbart,
whose attempt to make arithmebc seoura was 1o
make it axiomatic an approach that ha had
slroady used with whan dealing with the

increasing genaralization and

abstraction continued o accelarate

dramatically throughowt the 20th

contury. For example, Albert Einstoin

usad the abstract formulations of

geometry and caloulus for his genaral

thoory of relatwity, whia aigebra

b an ab and axi i

subject, being particularly influcnced by

the work of Emmy Noathar. Advances

also continued to be made in rumbar

thoory, with Hardy (and his co-workers

Lital d and R i and

Andrew Wiles making  major
contributions.

Maoarwhile, new arcas of tha

subject cama into being, such as

sigabraic topology and the thoory of ‘Hibart

spaces’, whila machi putath d tha

i of the subj as sp larly

dlustratod by Appel and Haken in thair proof of
the four-colour theoram.

SPREAD AND DEVELOPMENT

The 20th century saw mathematics becoming a
major profession throughout the world, with jobs
n aducation and industry and numarous areas of

e

of g y- b d of defining a8
the basic torms, such as point or line, he gava 3
sat of nies (or axioms) that they had to satisfy.
Akhough Hilben's approach was influantial,
his objoctives wors avantually proved to ba
inable, as d d in the 13305 by
Kunt Godal and Alan Turing, who cbtained 2
numbar of amazing and unoxpected rasults
sbout the limits of what can ba proved or
dadded.

P and app
With mathematics davaloping at such 3 fast
rata, many new journals hava boen croated, and

I and & £ have
b idespread. Most imp among
thesa angs are the | jonal Cong

of Mathematicans, held every four yaars, when
the prestigious Fields madals are

mary th ds of math il

learn about the latest davalopments in thair

subjoct.




ILBERT

On 8 August 1900, David Hllbert
(1862-19423), one of the greatest
mathematiclans of the day, gave the
most celebrated mathematical
lecture of all time. For It was on this

tackle. Trying to solve these problems
helped to set the mathematical

agenda for the next hundred years.

David Hilbert was bomn in Konigsberg in Eastern
Prussia and recsived hs doctorate there in 1895
Afor taaching in Xonigsbarg for a fow yaars, he
was invited by Felix Kiein to join tha faculty at
Gattingan, whera he spant the rast of his life.

His mathematicsl mnge was @ -
from shstract number theory and invariant
thoory, via the caloulus of vanatons and the
study of anslysis (and so<alled ‘Hilbart spaces’),
to potantial theory and the kinetic theory of
gasas.

THE FOUNDATIONS OF GEOMETRY
Foliowang Cantoe’s duction of sat theory and

-

plote: ary that we may formulate
within the systom can bo proved to ba eithar
tnue or falsa
In 1838 Hilbart prod.mod his mﬁunmul
Grundl; dor G (F of

Gomnmﬂ.nw.hdlhmhumm

mathomaticians into the iou:’dmm of
arithmetic, Hilbart bx i ingly snvol
with tha foundations of gecmatry.

Akhough Euclid’s axiom system had worked
well for two thousand yu! it M a

" Hilbort had 2 grand plan. Ho was convinced
that the whole of dassical mathematics could be
similarly axiomatired, and with Paul Barnays ha
m-mwmmmmnmm
mind. But as thoy progressed, thay exper

bor of P Hilbort
mlyldnbmnmnbymmd
that wera ph iprool Hs zam,
mmnmhrmwﬁrdmmdmn
e*consgent the axioms do not lesd to
contradictions
* indepandent no axiom can ba deduced from
tha othars

pected difficulties with the details of thair
amgumants, and # soon bocame apparent that
Hilbart's plan was doomed to failure.

THE HILBERT PROBLEMS
Who of us would not bo glad to [ift the veil
bohind which the fturs fies hidden: to cast 3
glance at the naxt sdvanaes of our science

and at the smcmts of its dovdopmant during

future contunias?
So asked David Hilbart in his famous address at
the Paris Congress, st which ha prascntad his fst
of twenty-throa ursolved problams. We have
dms&'mmdmmpubm the Riemann
frypoth which ived to this day.
Mmmahm.mdwhdiﬂ
ba di d Iztor in this chap

Problem 1: Prove the Continuum hypothesis, that
there is no sat whose mrdinality fies sty
botwoen those of the intagers and the raal
numbers.

We mcall that Cantor proved that infinities can
have differant sizes, and that the sct of real
numbers is strictly largor than the set of intogars
{or fractions). This problom asks us to prova that
no infinite st is larger than the set of integers but
smallor than the sct of resl numbers.

Problom 2= Are fhe awoms of anthmatic
consstent?

Hilbart based his troatment of the consastency of
his g ical axioms on the son that

> | 7

The answer is no. Within two yaars Max Dehn
proved that a regular tetrsbadron cannot be cut
mto piscas that can then be reassemblad to grve
3 cubo with tha same voluma.

Problem 18- What 15 the mo= efficent way o
Sack spheres so that the amount of empty space
between thom is as smail as posabio?

This problem was considered by Harmot and
Kopler. Two ways to stack tha spharas aro cubic
stacking and haxagonal stacking, but neithar is
the most efficiont. It turns out that tho way your
greangrocer stacks oranges is the most afficiant
—tha proportion of empty space is about 0.36,
which is less than tha 0.43 and 0.40 proportions
of the other two. But to prove this ngorously was
horrendows: in 1998 Thomas Halas gave a

mm(ﬁiu,urmlmbw'ym)m
ba similarly axi wod. This problem asks
whathor this latter assumption is valid, or
whather thara could ba, ‘somewhara cut thard’, 3

contradiction that we navar axpactad.

Problem 3: Givan two polfyfredra with the same
wiume, can wo always axt the firs into finitely
mEny pieces that cn then be massembied o
give the seoond?

In 1833, Janos Bolyai provad that if two polygons
have the sama araz, then the first can ba out into
pcas that can be mamanged to gve the sacond;
the following example shows a triangle
mmbhdbgmnsqmﬂupmbhnub

aded proof that irvolved threa

C‘k

whathar 3 similar resui holds in three













EINSTEIN o MINKOWSK

Albert Einsteln
(1879-19565), an iconic
figure of the 20th
century, was the greatest
mathematical

Einstoin was bom in Ulm, Southern Germary
maoving to Munich the next year. Ho was slow in

Albon Hestein — a plague in Ulm

wont to Amenica and from then
on was based at the Instatute
for Advanced Study in
Princaton.

EINSTEIN'S ANNUS
MRABILIS
In 1205, his 'year of wondars’,
Albort Einstein published four
popars of ground-breaking
p First he published
the work that mmduwd
quanta of enargy — that hght
can be absorbod or ammed only in disorcte
mm.lmdndqnmnnmmq Next
was a papar on B ian mation, exp e
of small particl ded in 3

lsarning to speak and showed littla promise in his
chooling. Ha was admitted to Zurch
chnic at his d ot in 1895 to @

coursa for math ics and sou hers and
graduated in 1200. Although one of his |

Y liquid.

His third paper, on the cloctrodynamacs of
mowing bodias, introduced 3 new thoory linking
lllIIII dstance, mass and enargy. B was

with ol ism, but omatted

mMthq:tndlﬂhfmnﬂnfoﬂnal
g and praferred to raad i dantl
nmlﬂ-ﬁ&np!yabwlﬂuﬁmwdn-
and ptions of physics. After grad he
suwofndhn-lfbypauammml
be obtained a postticn in tha Swss Patent Offics
in Bam.
In 1205 Einstain submitted his paper on
memhmwdhm
PP pplication for a o and it
was rojocted] H tion of his work
mmwd-nbmmmmdd'km

ﬂnbndgmw'l’hbammhmathﬂ
spocial theory of refatvity and assumed that ¢,
the speed of Sight, = constant, irraspactve of
whare you are or how you move.

On21 N bar 1905 ha published Does the
inertia of a2 Body Depend Upon fts Energy
Content? This contsins ona of the most famous
equations of all, E = mx’, asserting the
equivalence of mass and cnargy.

MINKOWSKI AND SPECIAL
RELATIVITY

He then hald positions at the Unmwersities of
Zarch, Pragua and Beriin, and announced hes

genaral thoory of ralativity in 1915, Ho was
awarded tha Nobel Prize in 1821 for his work on

quantum theory, rather than relatwaty. in 1333 he

Minkowski was born of German parents in
Lthuania. In 1902 he moved to the University of
Gostingan, where ho became a colleague of
Hilbart. He developad a now view of space and
time and laid the mathematical foundations of

the theory of ralativity. Minkowski describod his
approach as follows:
Msponwwwdmmwidf
am doomed fo fade away into f

Bolow is 3 simplified diagram of space-tima
with only one space dimension going
hmwm“ywwdlmmmln

and onfy 5 kind of umion of the two wail

prasorve an indepandant reality

The kind of union that Minkowski mantions is
now hm a3 spacetime and is a four
di ! non-Euclid y that

P the three di X ofpnvmh
the one of tima. & comes with 2 way of measuring
the distance betwoon two different points of
space-time. Space and tima are now no longar
scparate, as Newion had thought, but are
Immd.Amutddhumkﬂm

wmfy h

i s i of idoas,

should dmn-fomunbw'bgmwﬂrpw

facts. Mathematics, o to peak was o be

mastor and physcal theory could e made to

bow to the mastor.

o y the di of cach point
(x,ntoihuongnul(x'+ £7), but tha
of lace this in spaco-
ummbhm.lu’ —c’ﬂ The minus sign
imphes that avants in space-time, such as the cna
Laballed "hera and now’, are associstod with two
conas. With just ono space dimansion, lh.u
conas ara now triangles, with one rap

mmuum-mwawﬂumm
past.

ki's
appmd\ to lpnu-amn. but later found it
indaod I, when ha was trying
to extend his theory to include gravaty. His
general theory of gravity, building also on
Aomann’s g cal ideas, produced space-
mmmv-mndnam.dhm
of mass and enargy. The curvature increased naar
1o masswe bodies, and it was the curvature of
space-time that controlled the motion of bodies.
The theory pradicted that light rays would ba
bant by the curvature of space-tima producad by
the sun, an affoct that was observed during tha
183 solar eclipse of tha sun.
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HELDS MEDALLITS

the award of Flelds
medals to the most

outstanding young
mathematiclans.

For many years these
were regarded as
the mathematical
equivalent of Nobel
prizes, but recently a
new prize, the Abel
Prize, has been
Instituted and Is
awarded annually.

As parnt of the 400th

annivarsary celabrations of

Columbus’s wvoyage ta

Amarica, 3 World Congress’

of Mathematicians took place 3t the Worlds

CdunbunExpommmChmgomlmFm
ded and tha opening

The Procoedings of #he ins
Internasional Congross in
Zaxich, 1857

ware boycottod by many
mathomaticians,  since
Germans and Austrians
ware axcluded, while the
1382 Warsaw Congress
had to ba postponad for 3
year dwe to the
introduction of martial law
in Poland.

Two medallists have
been unable to attand due
to visa restrictions, while
another has  declinad
the award.

THE FIELDS MEDAL
John Charles Ficlds was 3
mathematics professor at
tha University of Toronto,
and President of the T Cong in 1324
munylmml-“ provided funding for the

dd on The pi state of math ics',
was given by Falix Kigin of Gottingan, one of just
four participants from outsida the USA.

The first official Congress was held in Zinch
in 1897, where it was decided to hold such
imarnational mestings avary three to five years,
and # was 3t the next ona, in Pans in 1900, that
Hilbort presantod his famous lecturs on the future
probk of math ics. Since theso carly
gatherings, mora than a scora of international
congresses have boan held around tha world,
usually every four years.

These mestings ususly take place without
incidant, but thore have boon a fow difficultios
along the way. The 1320 and 1824 Congressos

“Intar |  Meodals for Outstanding
De vas i Math s, now known as
Ficlds Maodals. First awardad in 1536, tha gold
medals ara producad by the Aoyal Canadian Mint
and featura Ardumedes on one sida and an
nscription on tha other.

CONGRESSES AND FIELDS MEDAL WINNERS
In the table we show the country with which aach medallist = mainly sssocistod.

1897: Zianich, Switmrland
1900: Paris, Franca

mannmb“gam

1912 Cambridge, UK

1920 Strasbourg, Garmany

1924 Toronto, Canada

1322 Sologna, haly

1532 Zarich, Switzariand

193& Oslo, Norway Lars Ahlfors (Finland); Jesse Douglas (USA)

1950 Cambnidge, USA Laurent Schwartz (France), Atie Salberg (Norway)

195¢ Amstardam, Netherlands  Kundhiko Kodsira (Jspan/USA), Jean-Piarme Sere (France)

1958 Edinburgh, UK Klaus Roth (UK}, Renc Thom (France}

1282 Stodkhoim, Swedan Lars Hoarmander (Swedan), John Minor (USA)

19655 Moscow, USSR Michae! Atiyah (UK), Paul Cohan and Stophan Smala (USA),
Aloznder Grothendiedk (Germany)

1970 Nics, France Alan Bsker (UK), Hosume Hironaka (Japan),
Sargai Novikov (USSH), John Thompson (USA}

1974: Vancouver, Canada Enrico Bombieri (faly}, David Mumford (USA)

1978 Holsinki, Finland Piarra Deligne (Balgium), Grigory Margulis (USSR),
Charles Fefforman and Danial Quillon (USA}

1283 Warsaw, Poland Alan Connas (France), William Thurston (USA),
Shing-Tung Yau (China)

1985 Sorkaley, USA Simon Donsidson (UK), Gerd Faltings (Germany),
Michael Froedman (USA)

1920 Kyoto, Japan Vladimir Drinfield (USSR, Shigafumi Mori (Japan),
Vaughan Jones (New Zaaland), Edward Wittan (USA)

1984 Zirich, Switzariand Jean Bourgain (Balgium), Pierre-Louss Lions and
Jean-Chrstophe Yoocoz (France), Efim Zelmanov (Russia)

1922 Borlin, Gormany Richard Borcherds and Tmothy Gowers (UK),
Maxim Kontsevich (France/Russia), Curtis MoMulian (USA}

2002: Baijing, China llm {Franca), Viadimir Voevodsky (Russia)

2006: Madnid, Spain Andrai Okout and Gngeri Perclman (Russia),
Tarence Tao (Australia/lUSA), Wandalin Warner (France)

2010: Hydarabad, India Elon Lindenstrauss (Isracl), Ngo 8ao Chau (Vistnam),
Stanislav Smimov (Russia), Cadric Villani (France)

In Juna 2002, o tha ba y of Abel's birth, tha Norwegian Acadermy of
Scienca and Lattors launched the Abel Prize, to be presanted annually by the King of Norway for
outstanding scientific work in the ficld of mathematics.

2008: Jean-Pierre Sarre (Franca)

2004: Michael Atiyah (UK} and lsadare Singer (USA)
2005: Patar Lax {(HungaryUSA)

200€: Lennant Carleson (Swaden)

2007: Srinivasa Varadhan (IndiaUSA}

200€: John Thompson (USA) and Jaoques Tits (Franca)
2008: Mikhail Gromav (Russia)

20%0: JohnTata (USA}

2011: John Minoe (USA)
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