
What Really Happened in
Y2K?

Martyn Thomas CBE FREng
Livery Company Professor of Information Technology

1
@greshamcollege #GreshamIT

In the 1990s …

• A growing number of warnings, books and headlines
about the Millennium Bug.

• This was a software problem that could be a common
point of failure for a huge number of systems

• There were fears that power and water would be cut off,
banks and company systems would fail and bank
accounts would be wiped out

• Survivalist sects and some religious groups predicted
Armageddon …

2

3

4

5

6

Slowly, action was taken

• Government, UN / World and industry committees
were formed

• Companies launched projects to check and repair
their systems.

• Auditors questioned the continuing business basis
for audits

7

8

https://www.wired.com/2009/12/1231-y2k/

And then … ?

9

Hoax? Scam?
• The six Year 2000 problems

• When and how was the threat recognised?

• What needed to be done, and how?

• What failures do we know were prevented?

• What failures actually occurred?

• Why were the failures less serious than had been feared?

• What did it all cost?

• Have the right lessons been learnt?
10

The six Year 2000 problems
• 2-digit years in programs and data

• Real-time clocks in PCs and PC software

• Clocks in Programmable Logic Controllers

• The first century Leap Year since 1600!

• Special uses of dates

• Fixed centuries in print routines, on printed
cheques and other stationery and even cast in
stone …

11

This was a Business Problem
• Most commercial data processing systems use dates

• In 1996, a UK Government Report estimated there were 7 Billion
embedded systems worldwide.

• Tests in 1997 showed typical embedded system failure rates of
5%, rising to 50% or higher in complex systems.

• Customers and suppliers might fail

• There could be liabilities, but insurance was not available

• The world shared the deadline and needed the same resources

12

13

Two digit years were
widely used to save
space – and still are

But you may need
the century if you

have to do
arithmetic

The six Year 2000 problems #1
2-digit years in programs and data

Alan Greenspan told Congress:

I'm one of the culprits who created this problem. I
used to write those programs back in the 1960s and
1970s, and was proud of the fact that I was able to
squeeze a few elements of space out of my
program by not having to put a 19 before the year.
Back then, it was very important. It never entered
our minds that those programs would have lasted
for more than a few years. As a consequence, they
are very poorly documented. If I were to go back
and look at some of the programs I wrote 30 years
ago, I would have one terribly difficult time working
my way through step-by-step.

14

What systems were affected?
Almost everything that used dates

• Anything that calculated someone’s age, checked
expiry dates of passes or licences, sell-by or use-by
dates, calculated trends or averages, checked
maintenance periods and last-maintained dates …

• PCs, security equipment, barcode systems,
switchboards, lifts, vending machines, entry
systems, barcode systems, safes and time locks,
vehicles, building management systems, factory
equipment, medical equipment, process monitoring
… and much more

15

The six Year 2000 problems #2
Real-time clocks in PCs / PC software

• The early IBM PCs did not maintain the date when switched off.
The IBM PC XT added a Real Time Clock but it did not update the
century.

• DOS assumed that system dates were between 1980 and 2099,
otherwise it reset the date to 1 April 1980.

• Different BIOSs handled the Y2K rollover differently: when tested,
many PCs displayed 1 April 1980 on the first boot after Y2K.
Some failed spectacularly – the Award v4.50 BIOS required a new
ROM BIOS chip

• Lots of PC software (including Windows 95) would fail.

• Rack-mounted PCs were widely used as controllers
16

The six Year 2000 problems #3
Programmable Logic Controllers

• PLCs replaced hard-wired control logic in the 1980s

• They controlled industrial plant, including safety shutdown

• They were typically programmed in Ladder Logic

• PLCs were often part of larger, bespoke systems that
contained other clocks, or linked to SCADA systems

• The documentation was often poor

17

The six Year 2000 problems

#4 The first century Leap Year since 1600!
#5 Special uses of dates

#6 Fixed centuries in print routines,

on printed cheques and other stationery,

and even cast in stone …

18

When and how was the threat
recognised?

• M&S Stock Control
found 90 year old beef

• Mary Bandar, the 104
year old infant in 1992

• 999 day retention for
backup tapes

19

What needed to be done?
Awareness:

• Even by 1995, UK Government Survey found only 15% of
senior managers were fully aware and only 8% of companies
had assessed the scale of their risk.

• 1996: TaskForce 2000

• 1997: Action 2000 (budget grew to £17m)

• 1997 most Audit Firms required Y2K compliance for audit
clients

• 1999 UN / World Bank International Y2K Cooperation Center

20

What needed to be done?
BSI Standard for Date Handling:

• Rule 1: No value for current date will cause any
interruption in operation.

• Rule 2: Date-based functionality must behave
consistently for dates prior to, during and after year
2000.

• Rule 3: In all interfaces and data storage, the century
in any date must be specified either explicitly or by
unambiguous algorithms or inferencing rules.

• Rule 4: Year 2000 must be recognized as a leap year.

21

What needed to be done?
Project scope

• inventory, evaluation, remediation, implementation
and asset management.

• The biggest IT project most companies had ever done

• Fixed deadline, shared with the world – with earlier risks

• Many companies could not even locate all source code!

• Shortage of staff – Cobol skills, legacy systems

• Staff turnover as salaries increased dramatically

22

What needed to be done?
Fixing 2-digit years

• Date expansion to 4 digits:

• Best solution but expensive: needs big changes to many
connected systems simultaneously

• Windowing: Guess the century from the 2 digit year

• Cheaper: only change date routines. Error-prone. Connected
systems must use the same windows. Trouble ahead when
windows end!

• New Systems: best for suppliers and consultants!

• Most companies could not resist adding new facilities

• IT projects usually over-run …

23

What needed to be done?
Testing

• Basic testing was easy:

• Set the system date to 2001 and see what happens.

• Set the system date to Dec 31 1999 and watch the roll –
over to Jan 1 2000.

• Test other key dates

24

What needed to be done?
A few of the things that went wrong

• An Aluminium Plant in Western Australia failed
catastrophically.

• Chrysler tested the rollover (at Sterling Heights)

• The security system shut down and wouldn’t let anyone in
or out. The time clock systems failed. We couldn’t pay
anyone. Chrysler Chairman: “We got a lot of surprises”.

• Many Racal credit-card systems failed in December
1999 despite a major Y2K programme by Racal.
Retailers claimed $5m losses.

25

What failures were prevented?

• UK Rapier anti-aircraft missile system failed in test

• Swedish nuclear plant tested the rollover and the computers shut down the
reactor –in summer not January 2000!

• Millennium Dome: error messages scrolled off the console too fast to read!

• BP Exploration found a fault in all its offshore oil platforms: “finding this one
fault justified our entire Y2K programme”.

• 10% of VISA swipe-card machines were found to fail (1.3 million worldwide).

• Many thousands of faults were corrected that would have caused failures.

26

What failures actually occurred?

• Despite a professional Y2K programme (checked
by me!), the RVR systems on all NATS airfields
failed at 4am on Jan 1 2000 (no risk created)

• The UN Y2K Co-ordination Center reported many
faults, though far fewer than had been feared, some
serious, some trivial some amusing.

• for example … …

27

Some IY2KCC Reported Failures
• 15 nuclear reactor shut-downs (in Spain, Ukraine, Japan and the

USA).

• Many credit card systems rejected valid cards.

• The oil pumping station in Yumurtalik shut down, cutting off
supplies to Istanbul.

• There were power cuts in Hawaii and cable television feeds
failed.

• The Kremlin press office could not send e-mail.

• In New Zealand, an automated radio station kept playing the New
Year's Eve 11pm news hour as most recent.

• Birth certificates for British newborns were for 1900.

• Many more examples included/referenced in the lecture transcript
28

Why were the failures less
serious than had been feared?

• A huge number of errors had been found and fixed

• Software and equipment suppliers fixed the most widely-used
products in time

• Failures did not cascade because:

• The biggest supply chains contained the best-resourced and most active
companies, so systems were updated

• Systems proved to be less tightly-coupled than had been feared.

• Later companies and countries caught up because of far better tools
and fixes that others had already made

• The threat had been exaggerated: it was a serious threat but made
too dramatic by headline seekers and those with their own agendas

29

What did it all cost?
• Globally, perhaps $300B to $500B

• There were benefits beyond the avoidance of failures:

• Most companies learnt a lot about their dependence on IT,
their IT inventory and their supply chains.

• Professionalism of in-house IT improved

• Board-level representation of IT because more common

• Many systems were replaced, upgraded and improved

30

Have the right lessons been learnt?

• The problem was caused by poor software engineering.
Abstraction, information-hiding and object orientation
could have made the necessary changes far simpler

• Software is still developed with cost and speed-to-
market given priority over security, modularity,
robustness and other software engineering criteria

• Testing is still the main method for software
assurance, even though we know it cannot find most
defects.

31

Have the right lessons been learnt?

• Y2K could have caused huge numbers of systems to fail
almost simultaneously. Such threats should be
systematically avoided

• GPS is another single point of failure.

• Redundancy and loosely coupled supply chains provide
important resilience

• Redundancy is increasingly seen as wasted resource

• Just-in-Time supply chains are very tightly coupled

32

Have the right lessons been learnt?

• Y2K showed the power that regulation and audit
standards have in compelling board-level action

• There is no political will to use regulation to drive
improvements in the quality and security of software

33

Conclusions

• Y2K was not a hoax or a scam (though some
suppliers took advantage of Y2K to compel
unnecessary system upgrades)

• Y2K should be seen as a near miss. A signal
event. A serious threat that was caused by poor
software engineering but avoided by focused
attention, considerable hard work and
international co-operation.

34

The threats are greater today
• Supply chains are far more complex and more

tightly coupled

• We continue to introduce dependencies on single
points of failure (e.g. GPS and widely-used software
components and subsystems)

• Cyberattacks are a serious and growing threat

• Almost all software developers still do not use
rigorous engineering methods, so the amount of
vulnerable software increases every month.

35

Some people point to the Y2K problem
to argue that we shouldn’t trust expert

warnings about climate change!

What should we learn from Y2K?

36
@greshamcollege #GreshamIT

	What Really Happened in Y2K?
	In the 1990s …
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slowly, action was taken
	Slide Number 8
	And then … ?
	Hoax? Scam?
	The six Year 2000 problems �
	This was a Business Problem
	Slide Number 13
	Alan Greenspan told Congress:
	What systems were affected?�Almost everything that used dates
	The six Year 2000 problems #2�Real-time clocks in PCs / PC software
	The six Year 2000 problems #3�Programmable Logic Controllers
	The six Year 2000 problems�
	When and how was the threat recognised?�
	What needed to be done?�Awareness:
	What needed to be done?�BSI Standard for Date Handling:
	What needed to be done?�Project scope
	What needed to be done?�Fixing 2-digit years
	What needed to be done?�Testing
	What needed to be done?�A few of the things that went wrong
	What failures were prevented?
	What failures actually occurred?�
	Some IY2KCC Reported Failures
	Why were the failures less serious than had been feared?�
	What did it all cost?
	Have the right lessons been learnt?�
	Have the right lessons been learnt?�
	Have the right lessons been learnt?�
	Conclusions
	The threats are greater today
	Some people point to the Y2K problem to argue that we shouldn’t trust expert warnings about climate change!��What should we learn from Y2K?�

