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In the 1990s …

• A growing number of warnings, books and headlines 
about the Millennium Bug.

• This was a software problem that could be a common 
point of failure for a huge number of systems

• There were fears that power and water would be cut off, 
banks and company systems would fail and bank 
accounts would be wiped out 

• Survivalist sects and some religious groups predicted 
Armageddon …
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Slowly, action was taken

• Government, UN / World and industry committees 
were formed

• Companies launched projects to check and repair 
their systems. 

• Auditors questioned the continuing business basis 
for audits
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https://www.wired.com/2009/12/1231-y2k/



And then … ?
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Hoax? Scam? 
• The six Year 2000 problems 

• When and how was the threat recognised?

• What needed to be done, and how?

• What failures do we know were prevented?

• What failures actually occurred?

• Why were the failures less serious than had been feared?

• What did it all cost?

• Have the right lessons been learnt?
10



The six Year 2000 problems 
• 2-digit years in programs and data

• Real-time clocks in PCs and PC software

• Clocks in Programmable Logic Controllers

• The first century Leap Year since 1600!

• Special uses of dates

• Fixed centuries in print routines, on printed 
cheques and other stationery and even cast in 
stone …
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This was a Business Problem
• Most commercial data processing systems use dates

• In 1996, a UK Government Report estimated there were 7 Billion 
embedded systems worldwide. 

• Tests in 1997 showed typical embedded system failure rates of 
5%, rising to 50% or higher in complex systems.

• Customers and suppliers might fail

• There could be liabilities, but insurance was not available

• The world shared the deadline and needed the same resources
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Two digit years were 
widely used to save 
space – and still are

But you may need 
the century if you 

have to do 
arithmetic

The six Year 2000 problems #1 
2-digit years in programs and data



Alan Greenspan told Congress: 

I'm one of the culprits who created this problem. I 
used to write those programs back in the 1960s and 
1970s, and was proud of the fact that I was able to 
squeeze a few elements of space out of my 
program by not having to put a 19 before the year. 
Back then, it was very important.  It never entered 
our minds that those programs would have lasted 
for more than a few years. As a consequence, they 
are very poorly documented. If I were to go back 
and look at some of the programs I wrote 30 years 
ago, I would have one terribly difficult time working 
my way through step-by-step.
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What systems were affected?
Almost everything that used dates

• Anything that calculated someone’s age, checked 
expiry dates of passes or licences, sell-by or use-by 
dates, calculated trends or averages, checked 
maintenance periods and last-maintained dates …

• PCs, security equipment, barcode systems, 
switchboards, lifts, vending machines, entry 
systems, barcode systems, safes and time locks, 
vehicles, building management systems, factory 
equipment, medical equipment, process monitoring 
… and much more
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The six Year 2000 problems #2
Real-time clocks in PCs  / PC software

• The early IBM PCs did not maintain the date when switched off. 
The IBM PC XT added a Real Time Clock but it did not update the 
century.

• DOS assumed that system dates were between 1980 and 2099, 
otherwise it reset the date to 1 April 1980.

• Different BIOSs handled the Y2K rollover differently: when tested, 
many PCs displayed 1 April 1980 on the first boot after Y2K. 
Some failed spectacularly – the Award v4.50 BIOS required a new 
ROM BIOS chip

• Lots of PC software (including Windows 95) would fail.

• Rack-mounted PCs were widely used as controllers
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The six Year 2000 problems #3
Programmable Logic Controllers

• PLCs replaced hard-wired control logic in the 1980s

• They controlled industrial plant, including safety shutdown 

• They were typically programmed in Ladder Logic

• PLCs were often part of larger, bespoke systems that 
contained other clocks, or linked to SCADA systems

• The documentation was often poor
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The six Year 2000 problems

#4  The first century Leap Year since 1600!
#5   Special uses of dates

#6   Fixed centuries in print routines, 

on printed cheques and other stationery, 

and even cast in stone …
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When and how was the threat 
recognised?

• M&S Stock Control 
found 90 year old beef

• Mary Bandar, the 104 
year old infant in 1992

• 999 day retention for 
backup tapes
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What needed to be done?
Awareness: 

• Even by 1995, UK Government Survey found only 15% of 
senior managers were fully aware and only 8% of companies
had assessed the scale of their risk.

• 1996: TaskForce 2000

• 1997: Action 2000 (budget grew to £17m)

• 1997 most Audit Firms required Y2K compliance for audit 
clients

• 1999 UN / World Bank International Y2K Cooperation Center
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What needed to be done?
BSI Standard for Date Handling: 

• Rule 1: No value for current date will cause any 
interruption in operation.

• Rule 2: Date-based functionality must behave 
consistently for dates prior to, during and after year 
2000.

• Rule 3: In all interfaces and data storage, the century 
in any date must be specified either explicitly or by 
unambiguous algorithms or inferencing rules.

• Rule 4: Year 2000 must be recognized as a leap year. 
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What needed to be done?
Project scope

• inventory, evaluation, remediation, implementation 
and asset management. 

• The biggest IT project most companies had ever done

• Fixed deadline, shared with the world – with earlier risks

• Many companies could not even locate all source code!

• Shortage of staff – Cobol skills, legacy systems

• Staff turnover as salaries increased dramatically

22



What needed to be done?
Fixing 2-digit years

• Date expansion to 4 digits:

• Best solution but expensive: needs big changes to many 
connected systems simultaneously

• Windowing: Guess the century from the 2 digit year

• Cheaper: only change date routines. Error-prone. Connected 
systems must use the same windows. Trouble ahead when 
windows end!

• New Systems: best for suppliers and consultants!

• Most companies could not resist adding new facilities

• IT projects usually over-run …
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What needed to be done?
Testing

• Basic testing was easy: 

• Set the system date to 2001 and see what happens.

• Set the system date to Dec 31 1999 and watch the roll –
over to Jan 1 2000.

• Test other key dates
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What needed to be done?
A few of the things that went wrong 

• An Aluminium Plant in Western Australia failed 
catastrophically.

• Chrysler tested the rollover (at Sterling Heights)

• The security system shut down and wouldn’t let anyone in 
or out. The time clock systems failed. We couldn’t pay 
anyone. Chrysler Chairman: “We got a lot of surprises”.

• Many Racal credit-card systems failed in December 
1999 despite a major Y2K programme by Racal. 
Retailers claimed $5m losses.
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What failures were prevented?

• UK Rapier anti-aircraft missile system failed in test

• Swedish nuclear plant tested the rollover and the computers shut down the 
reactor –in summer not January 2000!

• Millennium Dome: error messages scrolled off the console too fast to read!

• BP Exploration found a fault in all its offshore oil platforms: “finding this one 
fault justified our entire Y2K programme”.

• 10% of VISA swipe-card machines were found to fail (1.3 million worldwide).

• Many thousands of faults were corrected that would have caused failures. 
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What failures actually occurred?

• Despite a professional Y2K programme (checked 
by me!), the RVR systems on all NATS airfields 
failed at 4am on Jan 1 2000 (no risk created)

• The UN Y2K Co-ordination Center reported many 
faults, though far fewer than had been feared, some 
serious, some trivial some amusing.

• for example … …
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Some IY2KCC Reported Failures
• 15 nuclear reactor shut-downs (in Spain, Ukraine, Japan and the 

USA).

• Many credit card systems rejected valid cards.

• The oil pumping station in Yumurtalik shut down, cutting off 
supplies to Istanbul.

• There were power cuts in Hawaii and cable television feeds 
failed.

• The Kremlin press office could not send e-mail. 

• In New Zealand, an automated radio station kept playing the New 
Year's Eve 11pm news hour as most recent.

• Birth certificates for British newborns were for 1900. 

• Many more examples included/referenced in the lecture transcript
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Why were the failures less 
serious than had been feared?

• A huge number of errors had been found and fixed

• Software and equipment suppliers fixed the most widely-used 
products in time

• Failures did not cascade because:

• The biggest supply chains contained the best-resourced and most active 
companies, so systems were updated

• Systems proved to be less tightly-coupled than had been feared.

• Later companies and countries caught up because of far better tools 
and fixes that others had already made

• The threat had been exaggerated: it was a serious threat but made 
too dramatic by headline seekers and those with their own agendas
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What did it all cost?
• Globally, perhaps  $300B to $500B

• There were benefits beyond the avoidance of failures:

• Most companies learnt a lot about their dependence on IT, 
their IT inventory and their supply chains.

• Professionalism of in-house IT improved

• Board-level representation of IT because more common

• Many systems were replaced, upgraded and improved
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Have the right lessons been learnt?

• The problem was caused by poor software engineering. 
Abstraction, information-hiding and object orientation 
could have made the necessary changes far simpler

• Software is still developed with cost and speed-to-
market given priority over security, modularity, 
robustness and other software engineering criteria

• Testing is still the main method for software 
assurance, even though we know it cannot find most 
defects.
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Have the right lessons been learnt?

• Y2K could have caused huge numbers of systems to fail 
almost simultaneously. Such threats should be 
systematically avoided 

• GPS is another single point of failure. 

• Redundancy and loosely coupled supply chains provide 
important resilience 

• Redundancy is increasingly seen as wasted resource

• Just-in-Time supply chains are very tightly coupled
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Have the right lessons been learnt?

• Y2K showed the power that regulation and audit 
standards have in compelling board-level action

• There is no political will to use regulation to drive 
improvements in the quality and security of software
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Conclusions

• Y2K was not a hoax or a scam (though some 
suppliers took advantage of Y2K to compel 
unnecessary system upgrades)

• Y2K should be seen as a near miss. A signal 
event. A serious threat that was caused by poor 
software engineering but avoided by focused 
attention, considerable hard work and 
international co-operation.
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The threats are greater today
• Supply chains are far more complex and more 

tightly coupled

• We continue to introduce dependencies on single 
points of failure (e.g. GPS and widely-used software 
components and subsystems) 

• Cyberattacks are a serious and growing threat

• Almost all software developers still do not use 
rigorous engineering methods, so the amount of 
vulnerable software increases every month.
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Some people point to the Y2K problem 
to argue that we shouldn’t trust expert 

warnings about climate change!

What should we learn from Y2K?
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