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Introduction 
 
Following John Barrow’s lecture on 0 (the nothingness number) and Raymond Flood’s lecture on i (the 
imaginary number), I’m now going to look at two other mathematical constants, π (the circle number) and e (the 
exponential number), before combining them all into what many have claimed is ‘the most beautiful theorem in 
mathematics’.  
 
One person featuring throughout this story is the Swiss mathematician Leonhard Euler, who spent most of his 
life in the Imperial courts of St Petersburg and Berlin.  The most prolific mathematician of all time, Euler 
published over 800 books and papers in over 70 volumes.  Ranging across almost all branches of mathematics 
and physics at the time, these amounted to about one-third of all the maths and physics publications of the 18th 
century.  
 
The ‘Circle Number’ π 
 
First we meet the number π which, as we learned at school, is a little bit more than 3.14 and a little bit less than 
22/7.  It arises in two ways – first as the ratio of the circumference C of a circle to its diameter d – that is, 
 

 π = C/d,   so   C = πd,  or  2πr   where r is the radius. 
 
This ratio is the same for circles of any size – from a pizza to the moon.  But it’s also the ratio of the area A of a 
circle to the square of its radius r, 
 
  π = A/r2,  so  A = πr2,  or  πd2/4. 
 
This ratio is also the same for all circles, as Euclid proved in the 3rd century BC. 
 
We can never write down π exactly – its decimal expansion goes on for ever. But amazingly, it has been 
memorised to over 100,000 decimal places, and calculated to over 20 trillion – but even that’s only a beginning, 
and there’s still a long way to go! 
 
But why does the same number π appear in both the formula for the circumference and the formula for the 
area?  
 
One way to answer this is to take two circles of radius r, one shaded and the other unshaded, and to assume that 
each has circumference 2πr.  We next divide each circle into a number of sectors and rearrange these sectors into 
a shape that looks a bit like a parallelogram – and, as the number of sectors increases without limit, this 
parallelogram increasingly resembles a rectangle with sides of lengths 2πr and r, and with area 2πr × r = 2πr2.  So 
the combined areas of the two original circles must also be 2πr2 – and each one has area πr2, as expected. 



 

2 
 

 
We can also reverse this argument to show that if the area is πr2, then the circumference must be 2πr.  
 
Such ideas are quite old: on the right this approach appears in a Japanese treatise from the year 1698. 
 
Early Values 
 
When did people start to measure circles?  Several early civilizations obtained estimates for the circumference or 
area of a circle, and although they had no conception of π as a number, their results yield approximations to its 
value. 
 
Let us begin with the Mesopotamians, who wrote their mathematical calculations on clay tablets, using a number 
system based on 60. One of these tablets, dating from around 1800 BC, gives the ratio of the perimeter of a 
regular hexagon to the circumference of the circle surrounding it as the sexagesimal number 0;57,36.  If the 
radius of the circle is r, then each side of the hexagon also has length r, and so this ratio of 6r / 2πr (or 3/π) is 
57/60 + 36/3600.  After some calculation, this gives a value for π of 31/8 , or 3.125 in our decimal notation – a lower 
estimate that’s within one per cent of its true value. 
 
Around the same time, an Egyptian papyrus included the following problem: 
 
Problem 50: Example of a round field of diameter 9 khet.  What is its area? 
 
The answer is given in steps.  
 
Take away 1/9 of the diameter, which is 1.  The remainder is 8. 
 
Multiply 8 times 8; it makes 64.  Therefore it contains 64 setat of land. 
 
From this calculation it seems that they found their value for the area of a circle of diameter d by reducing d by 
one-ninth and squaring the result.  This method was probably discovered by experience: other explanations have 
been proposed, but none seems to be supported by historical evidence.  
 
In terms of the radius, this area is 256/81 r2, which corresponds to a value for π of about 3.160, an upper estimate 
that’s also within one per cent of the true value. 
 
Using Polygons 
 
An important new method for estimating π was introduced by the Greeks, and would be used for almost 2000 
years: it involves approximating a circle with polygons.  But although it’s often attributed to Archimedes, the 
method can be traced back a further couple of centuries, to the Greek sophists Antiphon and Bryson.  Their aim 
was to obtain better and better bounds for π by repeatedly doubling the number of sides of a regular polygon 
within or surrounding the circle until the polygons eventually ‘became’ the circle.  
 
Antiphon first drew a square inside the circle of radius r and found its area, giving a rather poor lower bound for 
π of 2.  He then doubled the number of sides, giving an octagon and finding the better bound of 2√2, or 2.828.  
Bryson’s approach was the same, except that he also considered polygons surrounding the circle: this yields 
upper bounds of 4 for the square and about 3.32 for the octagon. 
 
Archimedes became interested in circular measurement around 250 BC, proving that a circle of radius r has area πr2, 
and that a sphere has surface area 4πr2 and volume 4/3πr3. 
 
Unlike Antiphon and Bryson, who’d used areas, Archimedes worked with perimeters.  He first approximated the 
circumference of a circle by the perimeters of regular hexagons drawn inside and outside the circle, and carried 
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out the appropriate calculations to give lower and upper bounds for π of 3 and 2√3 – so in our decimal notation, 
π lies between 3 and 3.464.  
 
He then doubled the number of sides of the polygons, replacing the hexagons by dodecagons and getting the 
better estimates of 3.105 and 3.215.  Three more doublings to polygons with 24, 48, and 96 sides then gave ever 
closer values, with his bounds for polygons with 96 sides presented as 310/71 and 31/7 – or, in decimal notation, 
between 3.14084 and 3.14286, correct to two decimal places.  As Archimedes expressed it:  The circumference of any 
circle exceeds three times its diameter by a part which is less than 1/7 but more than 10/71 of the diameter. 
 
What was happening elsewhere?  In China, an early value for π was given by Zhang Heng, inventor of the 
seismograph for measuring earthquakes.  This was √10, which is about 3.162 – a useful approximation for the 
time. 
 
Around the year 263, in his commentary on the Chinese classic Nine Chapters on the Mathematical Art, Liu Hui 
used inscribed regular polygons to approximate π.  Starting with hexagons and dodecagons, he developed simple 
methods for relating the successive areas and perimeters when one doubles the number of sides, and for 
polygons with 192 sides he obtained lower and upper bounds of about 3.141 and 3.143.  Four more doublings 
led to polygons with 3072 sides and to his approximation of 3.14159. 
 
Even more impressively, around the year 500 Zu Chongzhi and his son doubled the number of sides three more 
times, extending their calculations to polygons with over 24,000 sides and obtaining estimates that give π to six 
decimal places.  They also replaced Archimedes’ fractional approximation of 22/7 by the more accurate 355/113, 
which also gives π to six decimal places.   As we’ll see shortly, this latter approximation wasn’t rediscovered in 
Europe for another thousand years. 
 
After this, everyone got in on the game. 
 
In Italy, in a geometry book of 1220, Leonardo of Pisa (known to us as Fibonacci) cited earlier calculations and 
used polygons with 96 sides to give π = 3.141818. 
 
Then, in 1424, the Persian astronomer al-Kashi, who was working in Ulugh Beg’s observatory in Samarkand,  
used polygons with over 800 million sides to find π to a remarkable 9 sexagesimal (or 16 decimal) places.  This 
remained the best value for almost 200 years. 
 
Meanwhile, European mathematicians from several countries were using similar methods.   In 1579 the French 
lawyer and mathematician François Viète used polygons with over 393,000 sides to find π to 9 decimal places, 
while six years earlier, the German mathematician Valentin Otho had proposed the fraction 355/113 :  as we saw 
earlier, this value was already known to Zu Chongzhi 1000 years previously, and gives π to six decimal places.  In 
1585 the Dutch cartographer Adriaan Anthonisz obtained the same value accidentally: having found the lower 
and upper bounds of 333/106 and 377/120 he then averaged their numerators and denominators to give the result. 
 
Also in the Netherlands, Adriaan van Roomen used polygons with 230 sides (that’s over a billion) sides to find π 
to 15 decimal places. But best of all was Ludolph van Ceulen who used polygons with over 500 billion sides to 
find π to 20 decimal places.  Not content with this, he then used polygons with 262 sides to find π to 35 decimal 
places.  He asked for this latter value to appear on his tombstone in Leiden, and for many years π was known in 
Germany as the Ludolphian number. 
 
Infinite Products 
 
Up to this time, most estimates for π had been bounds on its value.  New approaches were taken by François 
Viète and John Wallis, who obtained exact expressions involving products of infinitely many terms.  
 
In 1579 Viète showed that we can find 2/π by multiplying the cosines of π/4, π/8, π/16, and so on for ever: 
here, the angles are given in radian measure, where π corresponds to 180 degrees, so that the first term is the 
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cosine of 45 degrees.   Noting that this is 1/2√2, he was then able to rewrite his result in terms of expressions 
involving successive square roots: 

 
 2/π = cos π/4 × cos π/8 × cos π/16 × cos π /32 × . . . 
 
  = ½ √2  ×  ½ √(2 + √2)  ×  ½ √(2 + √(2 + √2)) ×  ½ √(2 + √(2 + √(2 + √2)))  ×  . . .    

 
Later, in 1656, another infinite product was presented by John Wallis, the Savilian Professor of Geometry at the 
University of Oxford.  It expresses the number 4/π as 3/2 × 3/4 × 5/4 × 5/6, and so on – the pattern should be 
clear.   
 

4   =    3 × 3 ×  5 × 5 × 7 × 7  × 9 ×  9  × . . . 
π         2 × 4 ×  4 × 6 × 6 × 8 ×  8 × 10 × . . . 

 
Unfortunately, although such products have theoretical significance, they converge very slowly to π and have no 
practical value. 
 
Using the tan–1 (or Arctan) Function 
 
A new and highly productive method for estimating π, which came to be used extensively throughout the 18th 
and 19th centuries, involved the inverse tangent function, usually written as tan–1 x or arctan x:  if y = tan x, then x = 
tan–1 y;   
 
for example,  tan π/4 = 1,  so tan–1 1 = π/4,   and  tan π/6 = 1/√3,  so tan–1 1/√3 = π/6. 
 
We can combine different values of tan–1 – for example, if we add tan–1 1/2 and tan–1 1/3 we get π/4: this can then 
be proved by simple geometry.   
 
Many mathematical functions can be written as infinite series.  For example, we can write tan–1 x as an infinite 
series with only odd powers of x, and with odd numbers as denominators: 
 

tan–1 x  =  x  – 1/3 x3 + 1/5 x5 – 1/7 x7 + . . . ; 
 
this result was already known to Madhava in 15th-century India, but is usually named after the Scotsman James 
Gregory, who rediscovered it 300 years later.   
 
If we now let x = 1, we get a series expression for π/4, a result also due to Madhava, but usually credited to 
Leibniz:   
 

π/4  =  1 – 1/3 + 1/5 – 1/7 + . . . 
  
This is one of the most remarkable results in the whole of mathematics: by simply adding and subtracting 
reciprocals of whole numbers we get a result involving the circle number π. 
 
Unfortunately, the Leibniz series converges exceedingly slowly, and we cannot use it to find π in practice; for 
example, the first 300 terms of the series give π to only two decimal places, while the first half-a-million terms 
give us only five correct.  
 
But we can still use Gregory’s series to estimate π if we substitute values other than 1.  Remembering that tan–1 
1/2 and tan–1 1/3 add up to π/4, we can substitute x = 1/2 and x = 

1/3 into the series for tan–1 x, giving the two 
series shown here.   
  
  π/4  =  tan–1 (1/2) + tan–1 (1/3)  
   = {1/2 – 1/3 (

1/2)
3 + 1/5 (

1/2)
5 – 1/7 (

1/2)
7 + . . . } – {1/3 – 1/3 (

1/3)
3 + 1/5 (

1/3)
5 – 1/7 (

1/3)
7 + . . .}, 



 

5 
 

And because of the increasing powers of 2 and 3 in the denominators, these series converge much faster, 
yielding good estimates for π.  Indeed, in 1861 a certain W. Lehmann of Potsdam used these same series to find 
π to 261 decimal places. 
 
The search was now on to find new tan–1 identities where the series converge even faster.  In 1706 John Machin 
used the addition formula several times over to prove that 
 

π = 16 tan–1 (1/5)  −  4 tan–1 (1/239) , 
   
and then wrote out these two tan–1 x series:  
 

π  =  16 {1/5  –  1/3 (
1/5)

3  +  1/5 (
1/5)

5  –  1/7 (
1/7)

7  +  . . . } 
–  4 {(1/239)  –  1/3 (

1/239)
3  +  (1/239)

5  –  1/7 (
1/239)

7  +  . . .} 
 
 
Both of these series converge rapidly because of the powers of 5 and 239 in the denominators – for example, we 
get the value 3.14 from just first three terms of each series. Also, 5 is an easy number to divide by, and Machin 
was thereby able to calculate π by hand to 100 decimal places, a great improvement on anything that had gone 
before. 
 
Incidentally, John Machin later became Gresham Professor of Astronomy for almost 40 years. 
 
1706 was a good year for π.  As well as Machin’s result, a Welsh maths teacher called William Jones wrote A New 
Introduction to the Mathematicks, in which he introduced the symbol π for measuring circles. In one extract is 
Machin’s series, and just below it is the first ever appearance of the symbol π.  And another extract from the 
same book includes Machin’s value in full – True to above a 100 places; as Computed by the Accurate and Ready Pen of the 
Truly Ingenious Mr. John Machin. 
 
But it was Euler who popularised the use of the letter π – first in a work of 1737, and then in many later writings 
– so that it soon came to be used universally.  
 
One of Euler’s many results involving π was the following tan–1 identity, which enabled him to calculate 20 
decimal places of π in one hour:  

 
π  =  20 tan–1 1/7  +  8 tan–1 3/79 . 

 
It was used again in 1794 by the Slovenian Jurij Vega to calculate π to 136 decimal places, and for many years 
this was the most accurate value known.   But there were persistent references in the literature to an earlier and 
more accurate value, seen by the Hungarian Baron von Zach while visiting Oxford’s Bodleian Library in the 
1780s.  This reference was eventually located in 2014 by BSHM member Benjamin Wardhaugh, and confirmed 
that in 1721 a resident of Philadelphia used 314 terms of the series for tan–1 1/√3, calculated with great accuracy, 
to obtain π correctly to 152 decimal places: 

 
π = 6 tan–1 (1/√3)  =  √12 {1 – 1/3 (

1/3) + 1/5 (
1/3)

2 – 1/7 (
1/3)

3 + . . . }. 
 
This was indeed the world’s most accurate value of π for over 100 years, even though it was largely unknown at 
the time. 
 
But most notorious of all was the value obtained by William Shanks, who in 1873 used Machin’s formula to 
calculate π to an impressive 707 decimal places.  These were later inscribed in a ceiling frieze in the π-room of 
the Palace of Discovery in Paris, where they can still be seen.  Unfortunately for him, and for the Palais, it was 
later found that only the first 527 of these decimal places are correct. 
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Some Weird Results 
 
The 20th century saw a number of discoveries about π – many of them completely bizarre.   
 
In 1914 the Indian mathematician Ramanujan found several remarkable exact formulas for 1/π, including an 
infinite series in which strange numbers, such as 1103 and 26,390, seem to appear from nowhere.  Many years 
later, in 1989, David and Gregory Chudnovsky of New York produced a similar, but even more complicated, 
result with even larger numbers.  Such series converge extremely rapidly and form the basis of some of today’s 
fastest algorithms for calculating π. 
 
A very different type of result was discovered in 1995 by David Bailey, Peter Borwein and Simon Plouffe, and 
caused a great deal of surprise.  It’s a much simpler series, and its importance is that, if we work in a base-16 
number system rather than in base 10, we can calculate each digit of π one at a time without having to re-
calculate all the preceding digits first. 
 
Enter the Computer 
 
By this time, computers had entered the scene, and it was now possible to calculate π to a much greater accuracy. 
 
The first advance was in 1949 when Machin’s series were put to good use on the American ENIAC machine to 
calculate π to 2037 places in 70 hours.  Machin’s result was again used in 1955 to find π to 3089 decimal places in 
just 13 minutes, on the Naval Ordnance Research Calculator.   
 
Meanwhile, progress was being made in England: in 1957 a different tan–1 series was used on the Ferranti 
PEGASUS computer to calculate over 10,000 decimal places in 33 hours, though not all were correct.  Then 
IBM entered the scene, and the number of decimal places rose rapidly while the calculation time plummeted.  
 
1973 saw one million decimal places reached in 23.3 hours on a CDC 7600 machine.  The scene then moved to 
Japan, where the number places increased to 10 million in 1983, 100 million in 1987, and over 500 million in 
1989.  Using very sophisticated tan–1 formulas, and carrying out their calculations in base 16, the Japanese were 
able to calculate the individual digits of π one at a time (as we saw earlier), before translating their results back 
into base 10. 
 
Meanwhile, in New York, the Chudnovsky brothers were developing algorithms for their home-built 
supercomputers to push the numbers even higher, and in 1989 they were the first to exceed one billion places.  
There was then a frantic race with the Japanese group, with a trillion places being achieved in 2002 and 10 
trillion in 2011.  Since then, the number of calculated places has increased to over 20 trillion. 
 
Circling the Earth 
 
We’ll end our discussion of π with a simple puzzle that appeared in 1702, in a book on Euclid’s Elements by the 
Cambridge mathematician William Whiston.  If you haven’t seen it before, you may find its answer surprising. 
 
The circumference of the Earth is about 25,000 miles.  Assuming the Earth to be a perfect sphere, suppose we 
tie a piece of string of this great length tightly around it.  We then extend this string by just 2π (that’s just over 
6.3) feet, and prop it up equally all around.  How high above the ground is the string?  Most people think that 
the resulting gap must be extremely small – perhaps a tiny fraction of an inch – but the correct answer is one foot! 
 
In fact, we get the same answer whether we tie the string around the Earth, a tennis ball, or any other sphere.  
For, if the sphere has radius r feet, then the original string has length 2πr.  When we extend it by 2π feet, the new 
circumference is 2πr + 2π, which is 2π × (r + 1).  So the new radius is r + 1: one foot more than before.  
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The ‘Exponential Number’ e 
 
How fast do things grow?  We often use the phrase ‘exponential growth’ to indicate something that grows very 
fast, but how quickly is this? 
 
This part of the talk concerns the number e = 2.71828… – like π, its decimal expansion goes on for ever.  The 
letter e was first used for this number around 1727 in an unpublished paper of Euler, and its first appearance in 
print was in 1736, in his Mechanica on the mathematics of motion. 
 
Exponential Growth 
 
To illustrate what we mean by ‘exponential growth’, let’s start with a story about the invention of the game of 
chess. 
 
The wealthy king of a certain country was so impressed by this new game that he offered the wise man who 
invented it any reward he wished – to which the wise man replied: 
 
My prize is for you to give me 1 grain of wheat for the first square of the chessboard, 2 grains for the second square, 4 grains for the 
third square, and so on, doubling the number of grains on each successive square until the chessboard is filled. 
 
The king was amazed to be asked for such a tiny reward (or so he believed), until his treasurers calculated the 
total number of grains of wheat.  This is 1 + 2 + 22 + 23 + . . . + 263, which works out at 264 − 1 grains, enough 
wheat to form a pile the size of Mount Everest.  Placed end to end they’d reach to the nearest star, Alpha 
Centauri, and back again! 
 
Let’s see how quickly various other sequences can grow. 
 
A simple form of growth is linear growth, illustrated by the counting numbers n = 1, 2, 3, 4, 5, . . .   Somewhat 
faster is quadratic growth, involving the perfect squares n2 = 12, 22, 32, 42, 52, . . . , and even more rapid is cubic growth, 
involving the cubes n3 = 13, 23, 33, 43, 53, . . .  .  These are all examples of polynomial growth, since they involve 
powers of n. 
 
Alternatively, we could look at powers of 2, or of any other number.  As we saw in the chessboard story, the 
sequence 2n of powers of 2 starts off fairly slowly – 1, 2, 4, 8, 16, 32 – but soon gathers pace because each 
successive term is twice the previous one.  The sequence 3n of powers of 3 takes off even more quickly: 1, 3, 9, 
27, 81, 243. These are examples of exponential growth, where n appears as the exponent. 
 
To compare these types of growth, we can calculate the running times of some polynomials and exponentials 
when n is 10, 30, and 50, on a computer performing a million operations per second.  For polynomial growth, 
such as n5, such a computer takes about 5 minutes when n = 50.  But exponential growth, such as 2n, is much 
faster, as we’ve seen: when n = 50, the computer would take over 35 years, and would be vastly greater than this 
for 3n.  
 
So, in the long run, exponential growth tends to exceed polynomial growth, often by a huge margin.  Algorithms 
that run in polynomial time are generally thought to be ‘efficient’, whereas those that run in exponential time 
normally take much longer to implement as the input size increases, and are considered as ‘inefficient’. 
 
An Interest-ing Problem 
 
Returning to e, what exactly is this number, and how did it arise? 
 
In 1683 the Swiss mathematician Jakob Bernoulli was calculating compound interest.  Given a sum of money to 
invest at a given rate of interest, how does it grow?  The answer depends on how often we calculate the interest.  
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How much is earned if we calculate it yearly?  Twice a year?  Every month?  Every day?  n times a year?  
continuously? 
 
To answer this, suppose that we invest £1 at the unlikely annual rate of 100 per cent.  After one year the amount 
has increased to £2.  But what happens if we calculate the interest twice a year?  After six months the amount 
has increased by 50 per cent to £1.50, and after the second six months this has increased by a further 50 per cent 
to one-and-a half times £1.50, which is £2.25. 
 
Similarly, if the amount is calculated four times a year, then every three months the amount increases by 25 per 
cent, so that by the end of the year it has become £1 multiplied by 1.25 four times – that is £(1 + 1/4)

4, which is 
about £2.44. 
 
And if the interest is calculated n times a year, then after each period of time the amount is multiplied by 1 + 1/n, 
so that at the end of the year it has become (1 + 1/n)

n.  
 
One can draw up a table to show how these amounts increase as we calculate the interest with increasing 
frequency, and we see that, as n increases indefinitely, these numbers tend to a limiting value that corresponds to 
when the interest is calculated continuously.  This limiting value of about 2.81828 is the exponential number that 
Euler called e.  
 
Leonhard Euler (1707-83) 
 
The greatest advances in understanding exponentials were made in the early 18th century.  After Bernoulli, the 
main figure in this story was Euler, who investigated the properties of e and of the exponential function ex.  In 
1748 one of the most important mathematics books ever written, his Introduction to the Analysis of Infinites, brought 
together many of his results from earlier works.  
 
Some Properties of e 
 
Here are some of his main findings.    
 
We’ve just seen that e is the limit of the numbers (1 + 1/n)n as n increases indefinitely, and similarly we can show 
that ex is the limit of (1 + x/n)n for any number x.  
 
But, as Isaac Newton had already discovered, the number e is also the sum of the infinite series shown here, 
where the denominators are the factorials: 1, 1 × 2, 1 × 2 × 3, and so on.  More generally, there’s a similar series 
for ex which converges for all values of x.  These series converge very quickly because the factorials increase so 
rapidly; for example, the first ten terms of the series for e already give e to five decimal places. 
 
We can also consider the graph of y = ex.  One of its most important features is that, at each point x, the slope of 
the graph is also ex – that is, the slope at any point is the y-value – so the curve becomes ever steeper as x 
increases. 
 
John Napier’s Logarithms (1614) 
 
The number e is also intimately linked with logarithms, so let’s look briefly at these.  
 
Since the Middle Ages, ways had been sought for turning lengthy calculations involving multiplications and 
divisions into simpler ones involving additions or subtractions, and in the 16th century, the German Michael 
Stifel and others developed a new method for doing so.  This was to turn geometric progressions whose successive 
terms have a common ratio into arithmetic ones whose successive terms have a common difference.  This process 
was called prosthaphairesis, from the Greek words for ‘addition’ and ‘subtraction’. 
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In 1614 the Scotsman John Napier, Eighth Laird of Merchiston (near Edinburgh), produced his Description of the 
Wonderful Canon of Logarithms, shown here.  This important work contained extensive tables of the logarithms of 
sines and tangents of all the angles from 0 to 90 degrees in steps of 1 minute of arc; Napier’s emphasis on these 
functions arose from his interest in spherical geometry, so that his ‘excellent briefe rules’ (as he called them) 
could be used by navigators and astronomers.  
 
Napier’s logarithms originated from this idea of prosthaphairesis.  He considered two points moving along 
straight lines – an upper one (PQ) of finite length and a lower one (L0L) of infinite length – as follows: 
the upper point moves from P towards Q in such a way that its speed at each point is proportional to the 
distance that it still has to travel; 
the lower point, representing its ‘Naperian logarithm’, starts from L0 and travels at constant speed towards L for 
ever. 
 
So, in successive periods of time, the distances still to be travelled by the first point form a geometric 
progression, and the distances already travelled by the second point form an arithmetic progression. 
 
Napier took 10−7 as his successive time intervals and then multiplied his results by 107 in order to avoid the use 
of decimal fractions which were still largely unfamiliar at the time.  It followed from his construction that the log 
of 10 million is 0, and that as n decreases its logarithm increases (unlike those we use today).  It also followed 
that 
 

log (a × b) = log a + log b − log 1, 
 
so that for each calculation he had to subtract the cumbersome term log 1 = 161,180,956. 
 
Henry Briggs’s Logarithms (1617) 
 
In 1615 Henry Briggs, the first professor of geometry at Gresham College in London, heard about Napier’s logs 
and was wildly excited by them.  He included them in his Gresham lectures, enthusing that Napier had 
set my Head and hands a Work with his new and remarkable logarithms . . . I never saw a Book which pleased me better or made 
me more wonder. 
 
But Napier’s logs were cumbersome to use, and Briggs wanted to redefine them so as to avoid having to subtract 
log 1 in every calculation: 
 
I myself, when expounding this doctrine to my auditors in Gresham College, remarked that it would be much more convenient that 0 
should be kept for the logarithm of the whole sine [namely, 1]. 
 
Briggs twice visited Edinburgh to stay with Napier, and it’s recorded that when they first met they spent the first 
quarter-hour looking at each other in admiration without speaking a word.  The outcome of their meetings was 
that Briggs started to construct ‘logarithms to base 10’, where log 1 = 0, log 10 = 1, log 100 = 2, and so on.  
 
Other values he found by interpolation.  In order to find these accurately, he calculated  the square root of 10, 
then the square root of that, and so on, eventually taking square roots fifty-four times, all to thirty decimal 
places!  Since log 1 = 0, as he’d demanded, Briggs’s logarithms satisfied the simpler fundamental rule: log (a × b) 
= log a + log b. 
 
In 1617 Briggs produced a small pamphlet containing his calculations.  Seven years later, after he’d left London 
to become the first Savilian Professor of Geometry at Oxford University, he followed this with his Arithmetica 
Logarithmica, an extensive collection of logs to base 10 of the integers from 1 to 20,000 and from 90,000 to 
100,000, all calculated by hand to fourteen decimal places.  The gap in these tables, between 20,000 and 90,000, 
was later filled by a Dutch mathematician, Adriaan Vlacq. 
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Exp and log are Inverse to Each Other 
 
The fundamental connection between the functions ex and log x (where e is the base of the logarithms) is that 
they’re ‘inverses’ of each other: in symbols, log ex = x and elog y = y. It follows that if we take x, calculate ex, and 
take the log (to base e) of the result, we get back to x – and if we take x, calculate log (to base e) of x, and take 
the exponential of the result, we get back to x. 
 
This inverse relationship had been noticed by John Wallis back in 1685, and was developed by Euler in his 
Introductio with more available machinery.  Using it, we can show that the multiplicative law for exponentials and 
the basic law of logarithms are essentially the same result.    
 
Notice also that, since y = ex and y = log x are inverses of each other, their graphs can be obtained from each 
other by reflection in the line y = x. 
 
Derangements 
 
Let’s now change pace by looking at two applications of the exponential function – to derangements and to 
population growth.  
 
Around 1710, De Moivre, de Montmort and others posed the following problem: 
Given any n letters, in how many ways can we rearrange them so that no letter is in its original position? 
A more popular form of this problem is: 
If we randomly place a number of messages into addressed envelopes, what is the probability that no message ends up in its correct 
envelope? 
 
Such rearrangements are now known as derangements. For example, when n is 4 there are 4! (or 24) permutations 
of the four letters a, b, c, d, but only the nine are derangements, with no letter in its usual position: 
  

badc,  bcda,  bdac,  cadb,  cdab,  cdba,  dabc,  dcab,  dcba 
 
To investigate this question, we’ll let Dn be the number of derangements of n letters (so that D4 = 9).  The 
following table gives the values of Dn, for all n up to 8. 
 

   n   1 2 3 4  5   6    7      8 
   Dn  0 1 2 9 44 265 1854 14,833 

 
Around 1779 Euler became interested in the derangement problem and used a counting argument to show that 
Dn has the following value, a result that De Moivre had obtained some years earlier.   
 

Dn = n! {1 – 1/1! + 1/2! – 1/3! + . . . ± 1/n!}. 
 
Unfortunately, this value can be time-consuming to evaluate for all but very small values of n – but there’s a 
quicker way.  Because the expression in brackets is just the beginning of the series for e−1, Dn is very close to n!/e.  
In fact, for every n, Dn is the integer closest to n!/e – for example, when n is 8, n!/e is about 14,832.9… while the 
value of D8 is 14,833. 
 
Exponential Growth 
 
We’ll end our present discussion of exponentials by returning to exponential growth.  In 1798 Thomas Malthus 
wrote his Essay on Population, where he contrasted the steady linear growth of food supplies with the exponential 
growth in population.  He concluded that, however one may cope in the short term, the exponential growth 
would win in the long term, and that there’d be severe food shortages – a conclusion that was borne out in 
practice. 
 



 

11 
 

How fast does a population grow?  If N(t) is the size of a population at time t, and if the population grows at a 
fixed rate k proportional to its size, then we have the differential equation dN/dt = kN.  This can be rewritten as 
dN/N = k dt, which can be integrated to give  log N = kt + constant,  or (in terms of exponentials)  N is a 
multiple of ekt, where the multiple turns out to be the initial population N0.  So N(t) = N0ekt – an example of 
exponential growth.  In the same way we can model exponential decay as, for example, in the decay of radium, 
or in the cooling of a cup of tea. 
 
Euler’s Equation 
 
We come at last to the equation which regularly tops the polls among mathematicians as ‘the most beautiful 
theorem in mathematics’ – namely,   eiπ + 1 = 0   (or   eiπ = –1). It’s remarkable for combining five separate and 
important constants – each with deep mathematical significance, and each with its own story.  These are:    
 

1  –  the basis of our counting system 
0  –  the number expressing ‘nothingness’ 
π  –  the basis of circle measurement 
e  –  the number linked to exponential growth 
i  –  the ‘imaginary’ square root of −1. 
 

It also involves the fundamental mathematical operations of addition, multiplication and taking powers, and the 
notion of equality.  As one participant in a poll in Physics World was moved to remark: 
What could be more mystical than an imaginary number interacting with real numbers to produce nothing? 
 
Indeed, at the age of only 14, the future Nobel prize-winning physicist Richard Feynman called it ‘the most 
remarkable formula in math’, while the Fields-medal winner Sir Michael Atiyah has described it as ‘the 
mathematical equivalent of Hamlet’s ‘To be or not to be’: very succinct, but at the same time very deep’.  It has even 
featured twice in The Simpsons, and was crucial in a criminal court case – but those are for another day. 
 
A Near-miss: Johann Bernoulli 
 
Although we’ve called this result ‘Euler’s equation’, it was nearly discovered a few years earlier by Johann 
Bernoulli.   
 
As we’ve seen, the logarithm function log x is defined for all positive values of x – but can it be defined when x 
is negative?  This question caused disagreement between Leibniz who believed the logarithm of a negative 
number to be ‘impossible’, and Bernoulli who used the basic property of logarithms to prove that log (–1) is 0, 
as shown here: 
 

2 × log (–1) = log (–1) + log (–1) = log (–1 × –1) = log (1) = 0. 
 
So log (–1) = 0 – with a similar proof that log (–x) = log x for all x.  
 
In 1702 Bernoulli was investigating the area A of a sector of a circle of radius a – the shaded area bounded by 
the circle, the x-axis, and the line from the origin to the point (x, y) – and found it to be 
 

(a2/4i) × log {(x + iy) / (x – iy)}. 
 
Leaving aside what is meant by the logarithm of a complex number, Euler later observed that when x = 0 this 
formula simplifies to (a2/4i) × log (–1).  Because such a sector clearly has a non-zero area, he deduced that the 
logarithm of –1 cannot be 0, contradicting Bernoulli’s result above.  Moreover, since this sector is a quarter-
circle with area πa2/4, this area must be equal to (a2/4i) × log (–1), and so  log (–1) = iπ. 
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Although Euler wrote down this last result explicitly, he doesn’t seem to have taken exponentials to deduce 
Euler’s equation in the form eiπ = –1.  Indeed, Euler often credited Bernoulli with discovering this value for log 
(−1), but Bernoulli didn’t include it in his 1702 paper or in any later work, continuing to insist that log (–1) = 0. 
 
Euler’s Identity 
 
As we’ll see, Euler’s equation is a special case of a general result that Euler published in 1748 in his Introductio. 
This celebrated result relates the exponential function ex and the trigonometric functions cos x and sin x.  But 
why should the exponential function which goes ‘shooting off to infinity’ as x becomes large, have anything to 
do with these trigonometric functions which forever oscillate between the values 1 and −1?  Indeed, there’s no 
real reason why there should be any such relationship, but there are complex reasons!  Introducing complex 
numbers leads to such connections, and realising this was one of Euler’s greatest achievements.   

 
To see the connection, recall that these functions can all be expanded as series, valid for all values of x.   

 
 ex  =  1 + x/1! + x2/2! + x3/3! + x4/4! + x5/5! + x6/6! + x7/7! + . . . ; 

              cos x  =  1 – x2/2! + x4/4! – x6/6! + . . . ;      sin x  =  x – x3/3! + x5/5! – x7/7! + . . .  . 
 
What happens if we now allow ourselves to introduce the complex number i, the square root of −1, as Euler did 
in 1737?  Let’s take the series for ex, and replace x by ix.  We get: 
 
   eix = 1 + ix /1! + (ix)2 /2! + (ix)3 /3! + (ix)4 /4! + (ix)5 /5!  and so on. 
 
But since i2 is −1, it follows that i3 = −i, i4 = 1, etc., and we can collect terms to give 
  
   (1 – x2/2! + x4/4! – . . .) + i (x – x3/3! + x5/5! – . . . )   
   – the series for cos x plus i times the series for sin x:  that is:   
 
   eix = cos x + i sin x.   
 
This is Euler’s identity, one of the most remarkable equations in the whole of mathematics, beautifully connecting 
these seemingly unrelated functions. Euler gave more than one proof of his identity. As Euler himself 
commented: 
 
  From these equations we can understand how complex exponentials can be expressed by real sines and cosines. 
 
 
Another near-miss: Roger Cotes 
 
At this stage let’s see another near-miss, by the English mathematician Roger Cotes, the first Plumian Professor 
of Astronomy in the University of Cambridge.  Born in 1682 and dying at the age of 33, he introduced radian 
measure for angles, and worked closely with Isaac Newton on the second edition of the Principia Mathematica.   
 
Around 1712 Cotes was investigating the surface area of an ellipsoid.  The details are somewhat complicated, but 
he managed to find two different expressions for the area involving logarithms and trigonometry – and both 
involving an angle φ.  He first proved that the surface area is a certain multiple of log (cos φ + i sin φ), and then 
proved it to be the same multiple of iφ.  Equating these he deduced the identity 
 
   log (cos φ + i sin φ) = iφ,   
 
which gives a connection between logs and trig functions.  If he’d then taken exponentials, he’d have discovered 
Euler’s identity in the form  eiφ = cos φ + i sin φ – but he didn’t.  Another near miss! 
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Consequences of Euler’s Identity 
  
Euler’s identity has many simple, yet profound, consequences.  Here are three of them. 
 
The most important one follows when we put x = π (the radian form of 180°) to give  
  

   eiπ = cos π + i sin π = −1 + 0i = −1,    
 

so eiπ + 1 = 0  (Euler’s equation).  Although Euler must surely have made this deduction, it doesn’t appear 
explicitly in any of his writings. 
 
Next, we note that Euler’s identity gives us a one-line proof of De Moivre’s theorem:  for any number n,   
(cos x + i sin x)n = (eix)n = ei(nx) =  cos nx + i sin nx . 
 
Since Euler had used De Moivre’s theorem to obtain his identity, the two results are, in some sense, equivalent. 
 
Note also that if in Euler’s identity  eix = cos x + i sin x  we replace x by –x, we get   
 
e−ix = cos (–x) + i sin (–x), which is  cos x − i sin x.  Adding and subtracting these two equations now gives   
  
   cos x = (eix + e−ix)/2  and  sin x = (eix − e−ix)/2i . 
 
These remarkable results show how, by allowing complex numbers, we can rewrite the standard trig functions in 
terms of the exponential function. 
 
Who Discovered ‘Euler’s Equation’? 
 
To end with, what should we call the equation eiπ + 1 = 0?  
 
We’ve seen how it can easily be deduced from results of Johann Bernoulli and Roger Cotes, but that neither of 
them seems to have done so.  Even Euler seems not to have written it down explicitly – and certainly it doesn’t 
appear in any of his publications – though he surely realised that it follows immediately from his identity, eix = 
cos x + i sin x.   
 
In fact, we don’t know who first stated the equation explicitly, though it certainly appears in a French maths 
journal of 1813–14. 
 
But almost everybody nowadays attributes the result to Leonhard Euler, so we’re surely justified in naming it 
‘Euler’s equation’, to honour the achievements of this truly great mathematical pioneer, a word that describes him 
so well, and which appropriately includes among its letters our five constants pi, i, o, one, and e. 
 
Euler’s Pioneering Equation 
 
May I conclude by inviting you to the Gresham College launch of this forthcoming book, to be published by 
Oxford University Press on 25 January 2018.  It’ll take place at Barnard’s Inn Hall in High Holborn on 15 
February at 6 pm. 
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