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Introduction 
 
Outer space has fascinated human beings ever since we developed 
enough intelligence to ask questions about the world that we lived in. 
Long thought to be the realm of the Gods, space was considered to be 
beyond our comprehension, and studying it was even blasphemous. 
However, brave pioneers looked up and started to study carefully what 
they saw. The resulting understanding of the nature of space has had 
profound impacts on human civilisation. As agriculture developed and 
crops had to be sown at the right time of the year, it became profoundly 
important to understand the seasons and the motion of the sun.  
 
Knowing the motion of the sun also led to an understanding, and measurement, of time. Later it was realised 
that there were other heavenly bodies such as the stars, moon and planets and their motion was studied and 
analysed in terms of mathematics. Understanding these was very important in the development of navigation 
(from the earliest seafarers onwards) and (perhaps less usefully) in the growth of astrology.  Research into space 
has both been an enormous stimulus to the growth of science and technology in general, and of mathematics in 
particular. Perhaps the most important example of this is the development of calculus.  Space research has also 
greatly benefited from developments in mathematics. Without mathematics we would never have had the moon 
landings for example. But mathematics linked to space was also the foundation of our ability to predict the 
seasons, eclipses, to navigate on the oceans, and to communicate reliably over vast distances. It is certain that 
mathematics will play a dominant role in the future of all and any technology that goes into space. 
 
Space is now a very big business with a total value of commercial investment on space technology estimated at 
$50 Billion! This fact was recently recognised by HM Government who identified Space Technology as the 
second of the eight great technologies. To give some idea of the scale, in 2016 there were 85 rocket launches 
into space (of which 79 were successful); there were 87 in 2015 and 92 in 2014. Most of these launched satellites 
into near Earth orbit. It is currently estimated that there are 4,256 such satellites in orbit of which 1,419 are still 
active (although there may be secret satellites that we do not know much about. See the Editorial in [1] for more 
details of the scale of this activity). We then can add to this the rarer, but very glamorous, activity of sending 
satellites (and even people) to other bodies such as the moon, Mars, comets, the distant planets and beyond. I 
grew up in the 1960’s and can testify to the huge impact that the moon landings had on my generation, including 
awakening and stimulating my own interest in science and maths!  
 
However it is the day to day work of satellites which is making a huge difference to the modern world. This 
includes the transmission of huge amounts of data, GPS navigation, remote sensing, weather observations, 
relaying mobile phone messages, agricultural monitoring, whale spotting (yes it can be done) as well as giving us 
a window to space from space. It is hard to imagine how we would function without all of this technology in 
space, most of which would not work at all if it was not for the application of a wide variety of mathematical 
ideas. 
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In this talk we will start by looking at the early days of space technology, before we sent anything into space 
itself. We will then look at the technology behind orbital satellites. We will then look at how satellites (and also 
Apollo) were guided beyond the orbit of the Earth to the moon and the planets. Next we will take a look at 
deep space showing how Einstein’s General Relativity not only describes the structure of the universe, but is 
also important in the functioning of GPS satellites. Finally we will come back closer to Earth with a bit of space 
Origami. 
 
Space from Earth 

 
As I said in the introduction, space has been studied since the earliest 
times, but it was the Chinese and the Babylonians that made the first 
serious studies of it using mathematics.  A reason for this was simple; 
it was clear that the heavens governed the seasons, and it was the 
understanding of the seasons that was vital for agriculture. Indeed in 
the book of Genesis we read 
  

And God said, Let there be lights in the firmament of the heaven to divide the day from the night; and let them be for 
signs, and for seasons, and for days, and years. 

 
There are 365 days, in a leap year (every four years) there are 366 days. Close but not quite close enough. The 
Gregorian calendar improved on this by omitting leap years that fall on 100 years. Because 97 out of 400 years 
are leap years, the mean length of the Gregorian calendar year is 365.2425 days, which is much closer to the 
value of 365.2422 and is the one in main use throughout the world. As a result, the seasons can be predicted 
with great accuracy. Further mathematics was needed in order to account for the motion of the Moon and 
(amongst other things) to calculate the date of Easter Sunday, which was defined in 325AD by the Council of 
Nicaea to the first Sunday after the first full Moon occurring on or after the March equinox. It is said that this 
tricky calculation (it is difficult because the period of the orbit of the moon is a complex fraction of the year) 
kept mathematics alive during the middle ages. Similar (but harder) calculations are needed to determine the 
tides, and the need to do these was one of the factors leading to the invention of the analogue computer. 
Mathematics was also employed by the ancients to calculate the dates of solar eclipses. The Chinese realised that 
these occurred with certain regularity and could be predicted by exploiting patterns in number sequences related 
to the regular periods of the Sun and of the Moon. The Chinese Remainder Theorem in number theory. The earliest 
known statement of the theorem, appeared in the 3rd-century book Sunzi Suanjing by the Chinese mathematician 
Sunzi, and asked the question   
 
What numbers have remainder 2 when divided by 3, remainder 3 when divided by 5, and remainder 2 when divided by 7? 
 
I will leave it to you to find the answer. The Chinese remainder theorem led to the mathematical theory of 
congruences. Much later, in the 1801 in his book Disquisitiones Arithmeticae [2] C.F. Gauss, arguably the greatest 
ever mathematician, used the Chinese remainder theorem on a problem involving calendars, namely, "to find the 
years that have a certain period number with respect to the solar and lunar cycle and the Roman indiction." All 
of this shows that pondering the questions of space can not only be helped with mathematics, but also leads to 
great mathematical discoveries. 
 
The observation of space from Earth has had a number of other consequences of direct benefit to humankind. 
One of these has been in telling the time. It is undeniable (though slightly sad) knowing the time at any point in 
the day is of huge importance to the running of a civilised society. The time of the day can be determined by 
looking at the path of the Sun through the sky so that (in the Northern Hemisphere) is rises in the East and sets 
in the West, and is most southerly and highest in the sky at Noon. It was realised early on that the Sun’s 
movements were very regular, and understanding this led to the invention of the sundial which tells the time by 
casting a shadow. The classic sundial design is illustrated below 
 
 

https://en.wikipedia.org/wiki/Sunzi_Suanjing
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A lot of mathematics has to go into the design of this, including the angle of the pointer (or gnomon) which is 
the same as the latitude of the user, and also of the angle of the various lines for the times. More advanced 
sundials, such as the one illustrated at the start of this section (and which can be found at Simon Fraser 
University in Canada) have a more complicated design of gnomon (in the shape of an Analemma) which 
accounts for the fact that the length of the day (measured from Noon to Noon) is not exactly 24 hours but 
varies by up to 15 minutes from the mean value of 24 hours throughout the year. This is why GMT is 
Greenwich Mean Time. My own favourite design of sundial is the Analematic Sundial [3] which has the shape of 
an ellipse (see later) and uses a (vertical) human being to cast the shadow, as shown below.  

 

 
 
An analematic sundial can be found outside the House of Commons in the UK and in many school playgrounds 
(modesty forbids me to say who designed them). Sundials in general were used heavily to tell the time until the 
invention of the mechanical clock, and used correctly they can be very accurate indeed. We get the concept of 
clockwise from the fact that in the Northern Hemisphere, the shadow on a sundial goes clockwise around the dial. 
 
Clocks, observing space, angles, spherical trigonometry, and a lot of maths, have also played a crucial role in the 
development of navigation. I touched on this in the first lecture I gave on What Have Mathematicians Done for Us? 
And I will return to it in a later lecture on Maths Tells Us Where We Are. 
 
Space Close to Earth 

 
Now, in the 21st Century, instead of just looking at space from the Earth, we are also able to look at the Earth 
from space. The reason that we can do this is, of course, that we can send satellites into space with cameras on 
them.  Such satellites are both sent into space, and their location changed in space, through the use of rockets.  
This idea was arguably first proposed as a serious scientific endeavour by Oberth in the 1930s [1] and then 
developed by many others since, including Werner Von Braun working first in Germany, and then America, and 
also Sergei Korolev for the USSR. As is well known the first satellite into space was Sputnik, launched in 1957 
(and causing a great shock to the USA in the process). Much of the same technology is still in use today. The 
launch of a satellite on a rocket consists of a short period of powered flight during which the satellite is lifted 
above the Earth's atmosphere and accelerated to orbital velocity by the rocket, assisted by the 0.5km/s 
rotational velocity of the Earth. Usually such a rocket has multiple stages, with large fuel bearing stages 
discarded early on during the flight. The powered part of the flight finishes when the rocket's last stage burns 
out.  At this point the satellite begins its free flight subjected (at least initially) only to the gravitational pull of the 
Earth.  
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When the rocket is launched, it initially takes off vertically, and then bends in the direction of the Earth’s 
rotation to insert the satellite into a horizontal orbit. Such an orbit is shown above. The essential physics of this 
process was first identified by Galileo. When a body is in a circular motion of radius R and it has velocity V then 
it has a constant centripetal acceleration a towards the centre of the circle which is given by 
    
 
 
 
Now provided that the satellite is close to the Earth it will have an acceleration of                  towards 
the centre due to the action of the gravitational attraction of the Earth.   
 
 
Thus a near Earth circular orbit can be achieved provided that a = g  so that 
 
                                   
 
 
The radius of the Earth is 6371 km, and provided that the satellite is in a near Earth orbit, we can take R to 
equal this value. It then follows that V = 7.9 km per second. This is called the insert velocity and is a very high 
speed, which could only be obtained by using the large rockets developed after the war.  More generally, the 
gravitational acceleration g due to the Earth at an orbital radius of R  is given by 
 
 
 
 
 
where G is the Gravitational constant G = 6.67 E-11, and M = 5.972e24 kg  is the mass of the Earth.  The 
insert velocity is then given by 
 
 
 
 
 
If the insert velocity differs from the value given above then the satellite will typically take an elliptical orbit 
rather than a circular one. 
 
The further away a satellite is, the slower it needs to travel to stay in orbit.  As an example, suppose that a 
satellite orbits in synchrony with the Earth, then it will take 24 hours or 86400 seconds to travel a distance of 
travelling at a velocity of  
  
Matching with the formula for the velocity above, gives the value of   R = 42 000 km 
 
A satellites at this radius from the centre of the earth is then in a geostationary orbit and will appear stationary if 
viewed from the surface of the Earth. This is very useful for a satellite used to relay communications around the 
world, such as the Telstar satellites launched in the early 1960s. The science fiction author Arthur C. Clarke (of 
2001 fame) predicted the use of geostationary orbit for communications satellites in the prophetic paper [4]  
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published in Wireless World. In his honour a geostationary orbit is also known as a Clarke Orbit and the many 
satellites in a geostationary position orbit in the Clarke Belt.  Once in a geosynchronous orbit a satellite can be 
used to communicate rapidly with the Earth both to relay signals starting from Earth (such as TV programmes 
or mobile phone messages) from one side of the planet to another (which could not have been achieved before 
satellites due to the curvature of the Earth), or to transmit data gathered by the satellite itself, such as weather 
information, remote sensing of the land and sea, GPS signals, or images from deep space. In a previous 
Gresham lecture on The Challenge of Big Data I looked at the effect this huge amount of data is having on 
technology and indeed on society. In my next lecture on Maths is coded in your genes I will explain how it is possible 
for such data to be transmitted rapidly and without error over the vast distances of space. 
 
It is unusual for a satellite, or indeed a space vessel, to stay in the same orbit throughout its working life and it 
has to be transferred from one orbit to another, possibly to a planet distant from the Earth. For example, we 
may need to transfer from an initial parking orbit to the final mission orbit. To change the orbit of a space 
vehicle, its velocity must be changed through a series of rocket burns which act as impulses to change the 
momentum of the satellite in its orbit. Such operations require careful mathematical planning to be successful. 
In particular satellites need to be guided, navigated and controlled in order to move on a prescribed trajectory. 
This is typically done by a series of carefully calculated rocket burns, designed in advance by computer 
optimisation methods. I will look at how satellites are tracked in their orbits by using Kalman Filters in my 
forthcoming lecture on Maths tells us where we are. 

During these manoeuvres great care must be taken to avoid using the available fuel for the mission. The amount 
of fuel used is given by the classical rocket equation. In this we have 

 

 

Here, mfuel is the amount of fuel burnt, minitial is initial mass of the spacecraft, Isp is the specific impulse of 
the (rocket) propulsion system (due to the expulsion of a propellant at speeds in the realm of 4000 m/s) and     

is the change in the velocity. It is the velocity change which represents the cost of the manoeuvre.  If this 
is too large then too much of the fuel will be burned. Thus the task of a mission designer is to make the change 
in velocity due to the rocket burns as small as possible. We will now see how this can be achieved at minimal 
cost. 
 
The Solar System and Beyond 
 
Kepler and Newton’s Laws  
 
As I said in the introduction, one of the more glamorous aspects of space technology (and certainly the one that 
we most think about when we think of space) are the missions of Apollo to the Moon and of satellites (such as 
Voyager 1 and 2)  to Jupiter, Saturn and beyond. These journeys cover vast distances, and are accomplished with 
the small amounts of fuel carried on the spacecraft. The only reason that this is possible is due to an 
understanding and application of Newton’s law of gravitation, together with many careful calculations. 
 
The story behind these calculations involves the whole quest to understand the motion of the planets in the 
solar system, and starts with the Greek mathematician Apollonius of Perga in the second century BC. Up until 
his work, the curves studied by the Greeks were either straight lines or they were circles.  Whilst they were able 
to do a lot of geometry with these curves, it greatly restricted the sort of problems that they could study. 
Apollonius’s great breakthrough was to introduce a whole new class of curves obtained by taking sections 
through a cone, leading to the term conic sections. The resulting curves are illustrated below and comprise the 
closed curves of the circle and the ellipse, and the open curves of the parabola and hyperbola. 
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These curves were studied in detail, and the equations for them derived, so that in Cartesian coordinates, the 
equations for the ellipse and hyperbola are respectively  
 
 
 
 
 
Or, in polar coordinates 
 
 
Like many areas of pure mathematics (see for example the work of Radon on shadows in the last lecture), the 
conic sections were an answer looking for a problem. However that problem came with Kepler in the 1610s 
who was studying the motion of the planets. Kepler took data supplied by the astronomer Tycho Brahe and 
used it to investigate the latest theories of planetary motion. At that time there were three competing theories of 
the way that the planets moved in the heavens. The long standing Ptolemaic theory, in which the sun and the 
planets went around the Earth in a combination of circles and epicycles; the recent (and literally revolutionary) 
Copernican theory in which the planets (including the Earth) orbited the sun in circles, and theory of Brahe 
himself in which the planets orbited the sun, which in turn orbited the Earth. Whilst the Copernican theory had 
many advantages over the other theories in terms of its simplicity (and extraordinary elegance and power), 
Kepler found that it didn’t fit the data especially well, and from the point of view of experimental fit, the Brahe 
theory was possibly better. However, Kepler did not abandon Copernicus’ theory, instead he realised that it 
could be improved. The problem he realised was the insistence on circular orbits. The Greeks had chosen circles 
because they saw them (possibly correctly) as the most perfect of all curves, and thus the only possible orbits of 
the planets. What other possible orbit could there be? However Apollonius had worked out the answer 1500 
years before. Kepler realised that if he replaced the circular orbits of the planets by elliptical ones, then 
everything worked perfectly. This was an astonishing fluke. The laws of motion could have had many solutions, 
but, to the great fortune of human civilisation the solution which mattered was one which (in good Blue Peter 
fashion) someone had made earlier. Kepler went on to formulate his three laws of planetary motion, namely that 
the planets moved in elliptical orbits with the sun at the focus, they swept out equal areas in equal times as they 
went round, and that as the orbital distance cubed, so the orbital period squared.  
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These laws allowed very precise calculations of the planetary orbits, which fitted the data perfectly, however no 
one knew at that stage why they were true. This remained the case until in the late 1600s, Sir Isaac Newton 
discovered the laws of motion and the law of gravity. The latter stating that the force acting on a planet from the 
sun was inversely proportional to the distance from the sun squared. Newton then used his newly created theory 
of calculus (together with a lot of geometry) to prove that Kepler’s laws followed directly from his theory of 
gravitation. Again this was a huge fluke, as most problems in applied mathematics don’t have an exact solution 
even if you can write down the equations describing them. A good example is the laws of fluid motion. 
However, again luckily for humanity, Newton’s equations did have a straightforward solution for the case of a 
single planet going around the sun, and this was the ellipse discovered by Kepler. (The law of equal areas 
corresponds to the conservation of angular momentum, and his third law is a direct consequence of the inverse 
square law). So good were Newton’s theories that they were rapidly adopted as the explanation of the solar 
system and many other things as well. Indeed this could easily be argued to be the start of modern science. An 
early success of Newton’s theories came following the discovery of the planet Uranus on 13th March 1781 by 
William Herschel. I am pleased and proud to say that this discovery was made in Bath and you can visit the 
Herschel Museum to see where it all happened. Following this discovery the orbit of Uranus was computed and 
it was found to be close to, but exactly on, the orbit predicted by Newton’s laws. Such was the faith astronomers 
now had in Newton’s laws that instead of rejecting them they assumed that there must be a reason which was 
causing Uranus to deviate from its calculated orbit. It was speculated that this reason was an additional planet. 
Using Newton’s laws again, the two mathematicians John Couch Adams and Urbain Le Verrier working 
independently, calculated where the new planet would be. Following a short hunt, it was located by Johan Galle 
in 1846, and given the name of Neptune. It has now been photographed by the satellites we will describe shortly 
and one of the resulting photographs is shown below. This was an example of how a mathematical model could 
predict something completely new.  
 

 
 
The Three Body Problem 
 
Such is our faith in Newton’s laws that they are now used for large scale calculations, including such delicate 
issues as the fate of the solar system and (indeed) of the whole of humanity itself. This involves calculating the 
orbit not of a single planet going around the sun, but of all of the objects in the solar system. There are a 
number of problems with doing this, all of which are the subject of significant ongoing research. Firstly, there is 
the sheer size of the problem, with not only the calculation of the planets but of all of the asteroids and other 
bodies in the solar system. Secondly, unlike the case of a single planet and the sun (the so called two-body problem) 
which (as we have seen) has an exact solution, as soon as we go to three or more bodies, there is simply no 
closed form solution.  To give some idea of the complexity of the problem, the set of Newton’s equations for a 
problem with N planetary bodies of individual mass m_i , and at position r_i_is given by 
 
 
 
 
 
Thirdly, as well as being essentially impossible to solve analytically, these equations are also hard to solve on a 
computer. The problem is that we usually want to solve these equations for a long time (to calculate the fate of 
the solar system we are talking of Billions of years.  Over such a long period of time, errors made by the 
computer in solving the equations can accumulate over time, leading to very inaccurate solutions. However, 
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recently great advances have been made in the development of numerical methods for which the errors made 
cancel each other out over long times. Such methods, such as the recently studied symplectic methods are 
transforming our understanding of the long-time evolution of the solar system [5]. The final problem with 
solving Newton’s three (or indeed N-body) problem is that the solutions can be chaotic. A typical such orbit is 
shown below and we can see that it is very different from an elliptical orbit. 

 
 
 
We will look at chaos more closely in a future lecture. However, the key fact about a chaotic or 
bit is that it is highly complex, and very hard to predict even with highly accurate numerical 
methods. The first person to recognise this was the very great French mathematician Henri 
Poincare (pictured on the right) who was studying whether the solar system was stable. (The 
answer by the way is maybe.) We now realise that many physical systems (including the weather) 
can be chaotic. This discovery has potentially serious consequences for the future of the human 
race 
 
Lambert’s Problem and the Elliptical Orbit 
 
Whilst, as we have seen, the problem of finding the general orbits of the bodies of the solar system is hard, the 
problem of finding the motion of a satellite within this system is fortunately much easier. This is because a 
satellite is so small that it does not affect the motion of any of the bodies that it comes into contact with. 
Furthermore, a satellite will mostly be influenced by the gravity of the sun, unless it comes close to a planet. We 
will look at this case presently, but will start with the more general case of the satellite moving under the gravity 
of the sun. Whilst this is a modern problem for satellites, it was considered 250 years ago by Johann Heinrich 
Lambert (1728–1777). He was a Swiss mathematician who made a fundamental study into the orbits of bodies 
in the Solar System and his work is still in heavy use today in the direction of satellites.  In celestial mechanics 
Lambert's problem, which he solved, is the problem of determining the orbit in space which takes a satellite 
from two different points in a given time of flight. It has important applications in determining the preliminary 
orbit of the satellite, and allows it to be navigated from one point in the solar system to another.  

 
The figure above the question is to find the trajectory which a body in the solar system takes if it moves from 
the point P_1 to the point P_2 in a given time. This is solved by assuming that the body moves in an elliptical 
orbit with the sun at its focus F (or in the case of a moon shot the Earth will be at the focus), which in turn tells 

https://en.wikipedia.org/wiki/Celestial_mechanics
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us the angle it has to move in its orbit. The known geometry of the orbit allows the calculation of the precise 
parameters of the ellipse that it moves on to be made with relative ease. From these the trajectory can be 
calculated with high precision. More details are given in [6]. 
 
How Some Women Put a Man on the Moon 
 
We now fast forward 200 years to the 1960’s in which a pressing need was to calculate the 
parameters of the orbit of the Apollo space missions to the moon. This had to be done 
without the benefits of powerful modern computers. Indeed the on board computer on the 
spacecraft themselves had (much) less computing power than that of a mobile phone. 
Instead the orbits were calculated in advance by mathematicians using versions of the 
Lambert problem described above. Remarkably (for the time) three of these were African 
American women including the mathematician Katherine Goble the engineer Mary Jackson 
and their supervisor Dorothy Vaughan. Their work is celebrated in the Hollywood film 
Hidden Figures and the book [7]. An example of such an orbit is illustrated below 
 
 

 
 
So far so good, but in the case of Apollo 13 [8] in 1970 the calculations had to be rapidly revised when the space 
craft was severely damaged on the way to the Moon by the explosion of one of its Liquid Oxygen tanks 
followed by the shutting down of the Command Module. Following this the astronauts had to enter the Lunar 
Module which had to then take them back to Earth along an unplanned orbit. It is a huge tribute to the orbit 
calculators at NASA in Houston that the astronauts were able to return safely to Earth.  My teacher at primary 
school involved us all thoroughly in the unfolding drama of this mission and it made a huge impression on me 
at the time. 
 
 
Sling shots and hyperbolic orbits 
 
Whilst the orbits of bodies around the sun are ellipses, it is another type of orbit, the hyperbolic orbit, which 
plays a vital role in long distance travel in the solar system. Suppose that you are on the surface of a body, such 
as the Earth, and throw a projectile into space with a velocity v. Our usual experience is that the projectile will 
slow down due to the effects of gravity, and will eventually reverse its direction before falling back to the Earth. 
However, if you throw the particle with a high enough velocity then it will ‘escape the gravity of the Earth’ and 
will continue to move to infinity (or at least as far as the edge of the universe) on a parabolic orbit. For the 
Earth this velocity is given by  
 
 
 
 
Which is 41% higher than the velocity needed to insert a satellite into a near Earth orbit. (On the event horizon 
of a black hole this velocity is the speed of light of 3 million km/s.). If the velocity v is higher than the escape 
Ve then the body will move on a hyperbolic orbit around the Earth. This orbit is illustrated below, for the case 
of a body (such as a comet) moving around the sun.  
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Roughly speaking a hyperbolic orbit comprises an almost straight section (which approached one of the 
asymptotes of the hyperbola) along which the body has a near constant velocity of approach relative to the sun 
which is v_{infinity} and is  given by the formula 

 

This is called the hyperbolic excess velocity. The body then speeds up as it approached the sun (or any other large 
object) reaching a maximum velocity of v close to the large body. It then swings around the large body and 
leaves on another straight path, approaching the other asymptote of the hyperbola, leaving at a departing 
velocity of v_{infinity}. By doing so it changes its direction of motion. This phenomenon is exploited in the  
sling shot effect  which is used to take satellites to the distant planets by swinging them around other large planets 
on the way. Consider for example a satellite going to Pluto via the large planet Jupiter. If guided correctly it will 
go on a hyperbolic orbit around Jupiter approaching on one asymptote of the hyperbola. As it approaches 
Jupiter at a relative approach velocity of v_{infinity} it will accelerate towards it because of its gravity attraction, 
swing around it on a hyperbolic orbit and then move away at a departing velocity of v_{infinity} (again) relative 
to Jupiter and along the other asymptote. This the angle of its path has changed. However, whilst all of this is 
happening Jupiter is moving around the Sun at an orbital velocity of about 13 km/s. The effect of being dragged 
along by Jupiter not only changes the angle of its path but can also increase its speed significantly without any 
fuel being burnt. Essentially the gravity attraction of Jupiter gives the satellite some additional energy to 
continue its orbit. (As no energy can be gained or lost in the encounter the same amount of energy is lost by 
Jupiter, but as it is so massive its orbit is scarcely affected.) This can all be made very precise mathematically by 
using the known geometry of the hyperbolic orbit. The key parameters of a sling shot around a massive planet 
of mass M are the approach velocity v_{infinity} of the satellite relative to the planet and the (so called) impact 
parameter b (illustrated above) which it the closest approach that the satellite would make to the planet if it were 
not affected by the gravity of the planet. It then follows from Newtonian mechanics that the satellites orbit is 
deflected by an angle            between the lines of approach and departure where 

 

 

Here  

 

where G is the Gravitational constant. The larger this is the more the satellite will be deflected by the sling shot 
effect. 

In a deep space mission then the designers of the trajectory of the satellite may make use of a number of gravity 
assisted sling shots to propel to satellite to the distant planets. Below you can see the orbits of the Voyager 
probes (launched in 1977) as they passed by Jupiter and Saturn on their way to the edges of the solar system and 
beyond (and according to Star Trek the Motion Picture, back again).  
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Similarly, the Galileo probe to Jupiter was launched from the Earth, had a gravity assisted sling shot from 
Venus, returned back to Earth twice to have further gravity assists all of which raised its orbital energy. Finally it 
made it to Jupiter after six years. All it needed to do this was a small excess velocity of 3 km/s above the escape 
velocity needed to leave the Earth’s orbit. (This compares with the much shorter, but fuel wise much more 
expensive, process of launching the satellite directly at Jupiter). A film of the projected orbit of the European 
Space Agency JUICE satellite to Jupiter is given in [9]. 
 
Deep space and back again 
 
As we have seen above, Newton’s laws of motion do a remarkably good job in predicting the motions of 
satellites and the planets. In 1905, possibly one of the most remarkable years in the history of science, Einstein 
published three astonishing papers which transformed science and the way that we look at the world.   These 
were on Brownian motion and Kinetic Theory, the Photo Electric effect in Quantum Theory (see my 
forthcoming lecture on the Quantum Mathematician) and (possibly most famously) his paper on the Special 
Theory of Relativity (SR). In 1915 Einstein followed this with the publication of his wholly remarkable paper on 
the General Theory of Relativity (GR). This latter paper departed from Newtonian mechanics and gave a (new) 
theory of gravity, which explained it in terms of the distortion of space-time by massive bodies. This theory is 
summarised by the Einstein Field Equations which represent how the curvature G of space time is changed by 
the mass tensor T and have the form 
 
 
 
Although these may look simple, they are a short hand for a large number of simultaneous partial differential 
equations, and are very hard to solve. Despite this there were a number of extraordinary predictions of the 
General Theory of Relativity. Two of these were that light should be deflected in a certain way by a massive 
body (such as the Sun) and that the orbit of the planet Mercury should slightly differ from the true ellipse 
predicted by Newtonian mechanics. Both of these predictions were validated by experiment not long after the 
publication of the theory, giving confidence in its predictive powers which went beyond, and differed from, the 
predictions of Newtonian mechanics. Two more predictions were the existence of Black Holes (massive stars 
for which the escape velocity Ve is higher than the speed of light) and of the expansion of the universe. 
Although it took longer to find, there is now extremely strong evidence to support both predictions. Indeed 
massive Black Holes are now known to be at the centre of galaxies such as our own. One year after the 
publication of his theory, Einstein made another mathematical prediction, that of Gravitational Waves.  These 
are ripples in space time which travel at the speed of light. This prediction has taken much longer to verify. This 
is because, despite being created by huge astronomical events, such as the collision of black holes or of neutron 
stars, by the time that they reach us, the ripples through space-time are less than the width of an atom. However, 
in a piece of work that has recently (and very correctly) been awarded the 2107 Nobel Prize for physics (to 
Rainer Weiss, Barry Barish and Kip Thorne), gravitational waves have been detected. This discovery was made 
on the 14th September, 2015, by the bar detectors of LIGO (Laser Interferometry Gravity-Wave Observatory) 
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detector in Louisiana which measured the Gravitational Waves given off by the collision of two massive black 
holes a billion light years away Since 2015 there have been several recordings of gravitational waves, with three 
coming from the collision of black holes, and very recently one from the collision of two neutron stars. A whole 
new era of astronomy using gravitational waves has just started. This is a splendid demonstration that a 
mathematical prediction can come true and have profound consequences. The forthcoming lectures by the 
Gresham Professor of Astronomy will develop this subject further. 
 
We now come back to Earth, or at least close to Earth, with a wonderful practical application of the General 
Theory of Relativity to satellite technology. One of the most important uses of modern satellites is in GPS 
navigation. Most of us will have GPS location devices in our car and/or our smart phones. It is essential for the 
accuracy of GPS systems for the satellites to tell the tome to very high precision as the navigational method 
relies on measuring the time difference between the signals received on the Earth from a number of GPS 
satellites. If Newtonian mechanics were completely accurate then a satellite would tell the same time as on the 
Earth. However, owing to the effects predicted by both the special and general theories of relativity this is not 
the case. Firstly the satellites are travelling at a high speed which causes their clocks to run slow (a prediction of 
special relativity) by about 7 microseconds per day. Secondly the Earth’s gravity is weaker at the satellite than on 
the surface of the Earth. According to the General Theory of relativity this also causes the clocks to run faster, 
by about 45 microseconds per day. The total correction due to relativistic effects is then 38 microseconds per 
day, leading to an improvement in GPS accuracy by tens of metres. I will talk more about this in my 
forthcoming lecture on Maths tells us where we are. 
 
A bit of origami 
 
We finish this lecture by looking at a link between space, maths and the art 
of origami. When a satellite is sent up into space it has to fit inside a small 
rocket. However, when it gets into space then it has to deploy large solar 
panels in order to gain energy from the Sun. The designers of the satellites 
thus have the problem of how to fold a solar panel into a small space. 
Fortunately mathematicians already have the answer to this problem in the 
shape of the mathematical algorithms now used to design origami patterns. 
One of the leading figures behind this is Robert Lang, who is simultaneously 
a mathematician, an origami master and a rocket scientist. Who could ask 
for more. You can find out more about origami and space in [10]. 
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