
Computing 
 and the Future

Martyn Thomas CBE FREng

Livery Company Professor of Information Technology 
Gresham College (20 October 2016 – 12 June 2018)

�1

Four years ago, I told Gresham College that I was worried
about software

!2

Modern society is dependent on computers. Less than 70 years
after the first successful program … we are on the verge of the

“internet of things”, where almost everything could contain
intelligence and be network connected. …

But all this progress is dependent on a software industry that is
still at the craft stage, 45 years after the phrase “software

engineering” first came into common use.

My lecture programme will explore the state of software today,
how we got to where we are, and what we shall need to do to

shore up the foundations of a digital society that is increasingly
built on sand.

Key points from the lectures
1. Should we trust computers?  

Only with good evidence! Get the evidence first, and only then trust the software

2. A brief history of computing 1948 - 2015  

Hardware development has become professional engineering. Software remains a craft

3. How can software be so hard? 

Software is very complex. It contains the inherent complexity of the application - and more!

4. Computers, people and the real world 

There is no such thing as an “IT Project”. Ask the staff in the front line.

5. Cybersecurity  

Cybersecurity is mainly a problem of badly designed software

6. Big data and the broken promise of anonymity  

It is usually impossible to anonymise data about individuals

!3

Key points from the lectures
7. Are you the customer or the product? 

The data you reveal will be used to make hidden decisions that affect you.

8. Safety-critical systems 

International standards for safety-critical software need urgent revision

9. The dilemmas of privacy and surveillance 

Policing of cyberspace must be effective but shown always to be proportionate

10. What really happened in Y2K? 

Y2K was a genuine threat and nearly a disaster. The lessons have not been learnt

11. Making software correct by construction 

Mathematically formal software development is practical and cost effective

12. Artificial intelligence 

An AI system will one day be able to do everything that a human can—but not in my lifetime.

!4

Key points from the lectures
13. Is society ready for driverless cars? 

Society is not ready — and neither are the technology and regulation

14. Will bitcoin and the blockchain change the way we live and work? 

Distributed ledger technologies are more significant than cryptocurrencies

15. Computer bugs in hospitals - a new killer 

Safety assurance and regulation of medical devices and systems are not fit for purpose.

16. Should we vote online? 

Voting is a uniquely difficult question for computer science and currently unsolved

17. The internet of things 

Our cyber-enabled society needs rigorously engineered foundations or it will fail

18. Computers and warfare 

The threat of cyberwar needs a much stronger and more strategic response

19. Computers and the future
!5

–George Santayana. The Life of Reason: Vol 1 - Reason in Common Sense

“Those who cannot remember the past are
condemned to repeat it.”

!6

Despite the fast-moving technology of computing, it is
rare to encounter a completely new mistake – they are
almost always versions of mistakes that others have

experienced before.

It is important to know the history of one’s profession

Gresham’s Law
(of computing)

Bad software drives out good

“There is almost nothing in this world that some man cannot
make a little worse and sell a little more cheaply. He who

buys on price alone is that man’s lawful prey”

– attributed to John Ruskin (probably wrongly)

!7

Careless software costs lives …

and destroys businesses, and wealth and jobs …

• When a civil engineer designs something – a block of
flats, a bridge, a dam … other people must trust her
competence and methods. Testing would not be enough.

• Designing software that others must trust also calls for
competence and the use of strong methods with scientific
foundations.

• A software engineer should deliver evidence that their
software is trustworthy - evidence from testing alone is
insufficient. Analysis and reasoning are essential.

!8

Testing software shows only that the
tests work …

… if they are run under these conditions, with this version of the software …

!9

It is easy to write programs that work for some
input values and fail for others that fall in the same

ranges.

Most programmers do this all the time.

Don’t ask your Gynaecologist
to fix your teeth

• Professionals specialise. Engineers specialise in engineering
areas (civil, mechanical, electrical, chemical …) and in
application domains (rail, reservoirs, aircraft, nuclear, offshore…).

• Most engineering projects need a team of different specialists

• recognition of the need for specialist skills is a measure of the
maturity of a profession

• Software engineers should specialise too– don’t expect a
database specialist to be able to design secure cryptography, or
a website designer to design a safe control system …. or vice
versa

!10

What does the future hold?

• Many innovative products and services … …

• There could be huge benefits if the software is developed
professionally and shown to be secure and effective …

• … or we can continue as usual and risk losing everything

!11

–William Gibson, quoted in The Economist, December 4, 2003

“The future is already here — it's just unevenly
distributed”

!12

Robots
What is the truth?

Quantum Computing
Artificial Life

!13

Robots: Increasingly capable
“Introducing Handle”

!14

“Hey, buddy, can you give me a hand?”

!15

Increasingly lifelike …

!16

Robots
What is the truth?

Quantum Computing
Artificial Life

!17

What is truth?
(re) creating history

!18

… and even create lip-synchronised video

!19

Robots
What is the truth?

Quantum Computing
Artificial Life

!20

!21

Quantum computing
• Richard Feynman said that much interesting behaviour in the world is quantum, so

detailed simulations of this quantum behaviour will need quantum computing.

• Quantum computation using superposition and entanglement means that N qubits
can represent 2N states.

• IBM has built a 50 qubit machine - it’s currently stable for only about 100 micro-
seconds. Quantum computing is a scientific reality — but an engineering
nightmare

• If we can achieve 3000 - 5000 qubits in a practical computer, we can tackle some
problems that non-quantum computers could never solve — though there is a
theoretical argument that even 400 qubits would exceed the maximum information
that the universe can hold.

• Smaller quantum computers and Peter Shor’s algorithm will break most existing
online security and encryption, perhaps in the next 10 years. Post-quantum crypto
is already important for highly sensitive secrets.

!22

!23

Robots
What is the truth?

Quantum Computing
Artificial Life

!24

Life in silico?
• Caenorhabditis elegans (c. elegans) is a roundworm, about 1mm in

length;

• its entire genome has been mapped and so has much of its
proteome and it is a standard model organism for many biologists.

• The OpenWorm project aims to use the data to create the first
digital life form.

• When someone succeeds, could they run an accelerated
evolution? Where might that lead?

• Is it too soon to start considering the implications and how society
should respond?

!25

No shortage of topics for
future Gresham IT Professors!

• growing adoption of facial recognition (China,
Singapore, Notting Hill …) — despite a false positive
rate of 90%.

• Commercial use of drones

• Brain-computer interfaces

• …

What sort of future do we want for ourselves
and our children?

!26

Conclusion

Digital systems have enormous potential to improve our
prosperity, our leisure, our work, our healthcare and our
overall quality of life but these benefits are threatened by
the poor quality of so much software development and by
the growing cybersecurity threat.

Strong software engineering — using science-based
methods and tools — is practical and cost-effective. We
should expect and accept nothing less.

!27

Questions?
… and thanks for listening for the last three years

!28

“ If men could learn from history, 
 what lessons it might teach us!

But passion and party blind our eyes 
and the light which experience gives is 

a lantern on the stern, 
which shines only on the waves behind us!”

Samuel Taylor Coleridge (1772-1834)

