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What are acoustic signals?

AR UL gl

2
«

25

aul Keane, ta

(Ll

ketones

30

.com



What are acoustic signals?
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There seems to be some debate as to whether Sir Thomas Gresham was a nice man or a nasty man. Either way, he pays my salary.
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Going digital...

Smoothly varying acoustic signals are
sampled

quantised



Sampling and quantisation




N bits

8 bits

8 kHz Sampling frequency (Hz)



The Nyquist sampling theorem

If a signal has a bandwidth of B Hz

then it can be completed reconstructed by
sampling at least 2B Hz.



Companding

8 bits =28 levels = 256 levels ( £128) levels




Companding

Also frequently used as an artistic effect...
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So ...in your device...

Fs u-law or A-law N bits



Fourier representations
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f=3 X 200Hz
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Fourier synthesis and analysis
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Fourier synthesis and analysis

Time Frequency
domain domain

x(t) P—— ()



Nasal cavity

Oral cavity

Pharynx cavity

Vocal chords )

TR

Trachea

Shrikanth Narayanan, Asterios Toutios, Vikram Ramanarayanan, Adam Lammert, Jangwon Kim, Sungbok Lee, Krishna Nayak, Yoon-Chul Kim, Yinghua Zhu,
Louis Goldstein, Dani Byrd, Erik Bresch, Prasanta Ghosh, Athanasios Katsamanis, Michael Proctor, "Real-time magnetic resonance imaging and electromagnetic

articulography database for speech production research (TC)", The Journal of the Acoustical Society of America, vol. 136, no. 3, pp. 1307-1311



https://sail.usc.edu/span/pdfs/narayanan2014realtime.pdf

Mental model of speech

S(f) = G E(f) H(f)

Energy, G



©)

\ \ \ \ \ \ \ \
0.001 0.002 .003 0.004 .005 0.006 0.007 .008 0.009

©)

N N

0.001 0.002 0.003 0.004 0.006 0.007 0.008 0.009



Fred Jelinek

“Every time | fire a linguist, the
performance of my speech
recogniser improves”




General classification architecture
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Feature extraction: MFCCs

signal features
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Amplitude
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Temporal modelling

Path 1: BBBGRRR
Path 2: BGGRRRRRRR

Path 3: BBBBBBGGRR

MFCC(3)
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Markov model

State sequence: 11223
State sequence: 1113 3



Hidden Markov model

Output sequence: BBGR
Output sequence: BBGRR



Putting it all together
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Phone sequence is
usually full of
errors!

Solutions:

Viterbi coding
Nbest sequences
Ngram models
Language modelling

Many many more



Why is speech recognition tricky?
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NIST STT Benchmark Test History—May 2009
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Quo vadis speech recognition?

Huge efforts from Apple, IBM, Microsoft, Google, Amazon, Xiaomi
"Deep learning " and “end to end” recognition

Plenty of problems still to be solved in language though...



Ladle Rat Rotten Hut _D)

as read by Vivian Altman

Wants pawn term, dare worsted ladle gull hoe lift wetter murder
inner ladle cordage, honor itch offer lodge dock florist. Disk ladle gull
orphan worry ladle cluck wetter putty ladle rat hut, an fur disk raisin
pimple colder Ladle Rat Rotten Hut.

Wan moaning, Rat Rotten Hut's murder colder inset, "Ladle Rat
Rotten Hut, heresy ladle basking winsome burden barter an shirker
cockles. Tick disk ladle basking tutor cordage offer groin-murder hoe
lifts honor udder site offer florist. Shaker lake! Dun stopper laundry
wrote! An yonder nor sorghum-stenches, dun stopper torque wet
strainers!” ...

© Exploratorium, www.exploratorium.edu



https://emea01.safelinks.protection.outlook.com/?url=http://www.exploratorium.edu&data=02%7C01%7CR.W.Harvey@uea.ac.uk%7C79c7825f2f9443a7d70d08d638e70cdc%7Cc65f8795ba3d43518a070865e5d8f090%7C0%7C0%7C636758962348262759&sdata=dFWha9ltMjxja9Z/ZK86V7KkG2Qq8qD4Tyz6Mx%2B9y30%3D&reserved=0

Beer is proof that God loves us
and wants us to be happy.

What about visual speech?

Benjamin Franklin, in 1785 writing about his new invention, bifocal
spectacles ...

By this means, as | wear my spectacles constantly, | have only to
move my eyes up or down, as | want to see distinctly far or near,
the proper glasses being always ready. This | find more particularly
convenient since my being in France, the Iglasses that serve me
best at table to see what | eat, not being the best to see the faces
of those on the other side of the table who s?eak to me; and
when one's ears are not well accustomed to the sounds of a
language, a sight of the movements in the features of him that
speaks helps to explain,

so that | understand French better by the help of my spectacles.




McGurk effect




Reasons why lip-reading is tricky?

* Not all speech information appears on the lips
* Tracking the lips is tricky

* Extracting features is tricky

 Even humans find it difficult

But

very useful in noisy situations



Keyword spotting
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Lip-reading performance 2012

word accuracy %
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Summary

* Slow and incremental progress has made speech technology
practical

* Most effective implementations are in the hands of commerce

e Further work needed on
* the connection with machine understanding
* visual speech

* But visual speech implies a whole new modality — vision.



Next lectures:

vision (12th Feb)
learning (19t March)
text (16t April)
creativity (28t May)
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Professor Stephen Cox, UEA

Dr Ben Milner, UEA

The Worshipful Company of IT Professionals
The Exploratorium, San Francisco



Words for speech recogniser

Compressor, compression, expander, compander, Fourier, sampling, Nyquist, Shannon,
analog-to-digital converter, Worshipful Company of Information Technologists, Sir
Thomas Gresham, lip-reading, Benjamin Franklin, bifocals,



