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As I write this, we are in the run-up to Christmas and the “must have” Christmas present is technology that has 
some sort of voice capability.  Amazon Alexa, Apple Siri and Google’s, as yet unnamed, voice assistant but 
probably your car, your oven and your vacuum cleaner, also understand your voice commands.  The term speech 
technology covers everything from creating realistic computer voices, speech synthesis, the removal of noise and 
corruptions, speech enhancement and the original “grand challenge” problem of how to recognise speech or “how 
to wreck a nice peach” as the title has it.  In this lecture I want to focus on speech recognition, but I hope you will 
be able to draw parallels with the other problems. 
  
Fortunately, there has been an enormous and sustained interest in signal processing which allows us to be confident 
in handling real, continuously varying, analogue waveforms, digitally.  On the face of it, it may seem surprising 
that we can replace a continuous audio signal such as speech, with a sequence of numbers at, say 8 kHz (8000 
samples per second) but this is handled by a nice theorem known at the Nyquist criterion: 
 
If the maximum bandwidth of a signal is B Hz, then the signal can be perfectly reconstructed, without error, 
provided the sampling rate is higher than 2B Hz. 
 
For speech, one can truncate the bandwidth to 4kHz and still it remains comprehensible, so the minimum 
sampling frequency for speech is 8 kHz.  The theory relating to the replacement of continuous waveforms with a 
fixed number of discrete1 levels is not so tidy, but human listening experiments tell us that almost all people report 
no loss in quality2 with around 8 bits (256 levels) and the 8-bit, 8kHz signal is still quite commonplace in telephony.   
 
Signal processing theory also provides with a very useful way of working with waveforms that is known as the 
Fourier transform.  The Fourier transform comes in several varieties depending on whether the waveform is periodic 
or not.  If the waveform is periodic then you will usually see it referred to as a Fourier series but, provided one gets 
one’s mathematical definitions right3 then they are all the same idea which is that any signal can be represented as 
a sum of sine and cosine waves.  This frequency domain representation is completely equivalent to the time domain 
but mathematically more convenient.  For example, in the frequency domain, a signal passing through a linear 
system such as a filter, is modelled by a multiplication whereas in the time domain it is a complicated integral 
known as a convolution.  This is quite useful for modelling speech as the speech waveform is often thought of a 
power driving and excitation which is then filtered by the vocal tract.  In the frequency domain this is the 
multiplication of these three quantities – a observation we shall use when deriving features for the pattern 
recognition sub-system. 
   
The basic idea behind conventional pattern recognition, of which speech processing is a form, is to transform the 
input signal into a form that makes it easier to determine the classes.  That intermediate form is usually called a 

                                                   
1 “discrete” meaning separate is almost always the word one needs when speaking of computers.  Unfortunately, it is very commonly 
confused with the word “discreet”.  Computers may or may not be discreet depending on their security settings. 
2 Actually the measurement of quality is a rather interesting subject.  Of course many people will complain about the quality of 
something but here I mean whether their performance on a task reduces by a significant margin. 
3 Technically one needs to define a “generalised function” to be able to consider Fourier series and Fourier transforms in a coherent 
way. 
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feature.  Good features are invariant to all sorts of change that do not matter but vary considerably for the class.  
For example, if we were building a “yes”/”no” recogniser (or classifier) then we would want a feature that does 
not change however quickly or slowly I say the word “yes”, it does not change as I vary the pitch, or accent, or 
stress or …  And this is the problem of speech recognition, the list of things that a feature needs to be invariant 
to, is a very long list indeed.  Fortunately, there has been much work on what makes a good feature for speech 
recognition and, so far, there are two features that dominate: linear predictive coefficients (LPCs) and Mel 
Frequency Cepstral Coefficients (MFCCs)4.   
 
MFCCs5 have quite a long chain of processing.  In the first step there is some simple compensation for the fact 
that the low-frequency sounds tend to be louder than the high frequency ones.  This is known as pre-emphasis and 
usually takes the form a simple high-pass filter.  The signal is then split up into blocks usually known as frames.  
Motivated by some evidence that the ear decomposes sounds into its Fourier components (sine and cosine waves), 
we then compute a Fourier transform on these blocks using a Fast Fourier Transform (FFT) algorithm.  We ignore 
the phase, because the ear is known to be insensitive to phase, and we then sum adjacent components into filter 
channels.  The width of these channels varies as a Mel-scale to mimic the way the cochlea filters sounds.  The next 
step is to apply a logarithm to the numbers.  The log converts multiplication into addition which is handy for 
separating out the effects of, say, the excitation signal (generated by the vocal chords) from the filtering (due to 
the vocal tract, mouth position and so on).  The final step is to apply another Fourier transform to compute the 
spectrum of the spectrum (or cepstrum).  This makes sense for the spectrum is highly repetitive, because the voice 
generates lots of harmonics. The cepstrum is compressive and produces more compact features.  An illustration 
of the process is shown in Figure 1. 
 

 
 

Figure 1: Waveform of the utterance “Sir” (top); log of filter-bank energies (middle) and Mel-Frequency Cepstral Coefficients or 
MFCCs (bottom).  Note how the “S” at the start of the utterance is quite distinctive in the low-order cepstral coefficients. 
 
All of this can be done quite quickly as the only computationally intensive algorithm is the Fourier transform and 
there is a very quick algorithm called the Fast Fourier Transform (FFT)6.  All of this can take place on your mobile 
phone or car radio in real time.  At this point we have converted our time waveform into a set of numbers called 
features.  But, because, people can say words at different rates, there is still the problem that the signal, and hence 
the features, have a variable duration. 

                                                   
4 Although an honourable mention should be made of very recent systems that attempt “end-to-end” recognition.  Such systems 
eschew features and attempt to recognise letters or words directly from the waveform.  Needless to say, such systems require vast 
amounts of training data. 
5 See, for example, S.B. Davis and P.Mermelstein, “Comparison of parametric representations for monosyllabic word recognition in continuously spoken 
sentences,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 28, no. 4, pp. 357–366, 1980. 
6 Many people speculate that the FFT is the algorithm that uses the most CPU cycles in any one day.  In that sense it is thought to be 
the world’s most popular algorithm. 
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To handle the variable duration, one needs a classification algorithm that can be programmed to handle time-
varying waveforms.  In the slides accompanying this lecture we consider three utterances of the word “Sir”.  I plot 
the trajectories of the MFCCs and one can see that each utterance transits through several regions but not 
necessarily at the same time.  As an analogy consider the commuter on the train from Norwich to London which 
travels via Diss, Ipswich, Manningtree, and Stratford.  This railway line is not very reliable, and most commuters 
are familiar with “points at Whitham,” “bridge strikes” again usually at “Whitham”, “slow running goods trains” 
and any number of other excuses.  Despite these problems, no commuter has ever experienced a different order 
of stations.  If we are at Ipswich, then the next station will always be Manningtree.  We need a model that preserves 
the order but allows some flexibility in the duration spent at each section of track.  Such a model is called a Markov 
Model.   
 
Markov models, or probabilistic finite state machines, are general models that allow one to assign probabilities to 
the transition between events.  For speech we will insist that all the transitions are in one direction across the page, 
the “left-to-right” model.  A hidden Markov Model or HMM has one further refinement which is that each state 
of the model has another probabilistic machine which emits features according to some probability distribution.  
In our example of the word “Sir”, the first state might be associate with the “S” sound of “Sir”, the next the “uh” 
sound and the next the “ur” sound.  Each one of the sounds has a characteristic set of feature vectors and the 
model has to emit them according to some learn probability distribution.  So, in that case, we have decided to 
model the word “Sir” with a three-state left-to-right HMM.  We have not stated how we will model the hidden 
distribution, but a mixture of Gaussian distributions is common (a HMM-GMM) or nowadays a Deep Neural 
Network (a HMM-DNN).  The beauty of the HMM is that, given some labelled, or partially labelled, training data 
it is possible to learn all the parameters of the model.  If the model fails to learn then there are well known fall 
backs, such as reducing the complexity of the model or using prior knowledge about similar sounds to “tie” the 
various states together. 
 
So far, we have been assuming that we should build a HMM for each word that we wish to classify. Such systems 
are possible and might be used on very small vocabularies such as though found in cars “Dial 0783987566 now 
please” or certain specialised applications “Hey Siri!” but, general speech recognition is about generating a 
transcript from speech and it is infeasible to build models of every single word.  The solution is to break the words 
down into sub-units called phonemes which are the atomic sounds of speech7.  In a simple classifier we would build 
a model for each phoneme and silence.  We would then be able to classify an acoustic waveform as a sequence of 
phonemes.  Given that this list of phonemes is almost always errorful there are a number of well-developed 
techniques to make this useable. 
 
The first technique is to not only record the most probable sequence of phonemes but also to back-back track to 
produce the N-best sequences of phonemes.  Secondly it would be unusual to work with just mono-phones, many 
practical recognisers word with combinations of phonemes (sometimes called n-grams) such as biphones (pairs), 
triphones (triples) and so on.  Of course, there are more biphones than phones so more training data is required. 
n-grams also help a little the increase in variability due to coarticulation8- the hope is that the n-gram might be able 
to model some of the coarticulation variability.  The third method is to build very comprehensive language models.  
Language models range from simple homophone resolution – is it the “rite stuff” or the “right stuff”?  -- to 
anaphora and cataphora9 resolution which are close to artificial intelligence since they may require an 
understanding of the world. 
 
Putting these technologies together gives a modern speech recogniser.  Human transcription error is around 4% 
Word Error Rate (WER) and modern speech recognition systems are operating around 5% to 6% error rate which 
is very satisfactory.  However modern systems are built around absolutely enormous corpuses of training data.  
Even when trained the recognition cannot be handled on your portable device.  One deployment is to perform 
some feature extraction on your mobile device as features are smaller than the waveform so use less of your mobile 

                                                   
7 Most people would have that British English contains 45 phonemes including silence but, as is often the case in linguistics, opinions 
differ. 
8 Try saying “Get some of that soap”  at normal conversational speed.  How close were you to saying “Guess some ov vat soap”? 
9 Anaphora in a linguistic context are backward references such as “Sam dropped his musket.  It clattered to the ground.”  The “it” 
here refers to the musket.  Cataphora are forward references: “It lay on the ground because Sam would not pick up his musket”. 
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data allowance.  The recognition is done on servers placed around the globe and the synthesized voice is sent back 
to your device.  This also means that the manufacturers can deploy continuous updates to the technology without 
having to inform their users.  These systems are complicated so very substantial teams of people are involved.  I 
believe it is fair to say that, at the time of writing, that all the teams of scientists working the public domain are 
totally dwarfed by the private sector.  Effective speech technology has some considerable commercial value, so 
the race is on to produce highly effective transcription and that race discourages the sharing of information 
between the competitors.  Indeed, it is probably fair to say that no-one now knows how the language models of 
more than one competitor work.  This is a slightly unusual position – patented technology is at least in the public 
domain because the patents have to be published.  Speech technology is only in the public domain to the extent 
that various commercial organisations wish to be so (and there is considerable variability on that).  For the time 
being therefore, academics are leaving speech technology to retire, to work on something else, or go to work for 
a major manufacturer.   
 
That does not mean that speech technology research is dead.  Far from it, not only is the commercial sector very 
vibrant and competitive, there are also a number of areas where the gains are promising but not yet 
commercialised.  I have picked one that I am intimately involved with, lip-reading, but I could have picked accent-
identification, noisy speech recognition, multi-lingual recognition, recognition in “minority” languages and so-on.   
 
Everyone lip-reads to some extent.  Benjamin Franklin having invented the bifocal spectacles realised that his 
French improved when he could see the lips of the people speaking to him and the well-known, McGurk10 effect 
is a very natty illusion that demonstrates unequivocally that all people lip-read.  That said, most people lip-read 
very badly which is because lip-readers cannot see the whole of the vocal instrument11.  Given all we have said 
about speech recognition one would hope very much that lip-reading ought to be able to use the same classifier 
technology (HMMs), same language models and similar architecture.  This turns out to be true, at least in our 
systems developed at UEA.  The main difference is that now we need visual features.  Obviously, those features, 
which in our case capture the shape and appearance of the lips, are quite different from MFCCs or LPCs.  The 
extraction of visual features from scenes is a whole new field of study called “Computer Vision” and will be the 
subject of a later lecture in this series.  Our current system performs rather well which is very gratifying but, 
compared to acoustic recognition it is poor (as with human lip-readers).   
 
The lipreading system is a good illustration of how one tends to solve classification problems – one picks a 
classification architecture that looks well matched to the problem and then a large amount of effort is devoted to 
the engineering of appropriate features.  For the purposes of science this is quite satisfactory since good features 
usually allow the construction of new insights into the signal.  However, it is block on engineering new systems 
since every system needs a “domain expert” who can help design good features.  Furthermore, as the speech 
pioneer Fred Jelinek remarked, domain experts quite often get it wrong12.  More recently there has been a 
revolution in artificial intelligence called “deep learning” which, provided there is available huge amounts of 
training data, allows one to dispense with features.  From an engineering perspective such systems are highly 
attractive since they allow one to get the job done merely by collecting huge amounts of data.  From a scientific 
perspective they are more troubling since the classifier is now a black box and it may not provide much scientific 
insight.  And from a governance perspective the result is yet more troubling since the artificial intelligence has 
little intuition or descriptive power.  These new deep learning machines will be the subject of later lecture in this 
series.   
 
 
 

© Professor Richard Harvey, 2018 

                                                   
10 McGurk H., MacDonald J. (1976). "Hearing lips and seeing voices". Nature. 264 (5588): 746–8 
11 It is commonplace to be told that lip-readers cannot tell the difference between, for example, “bill”, “pill” and “mill” since they all 
start with bilabial phonemes.  In practice I have found that skilled lip-readers can separate these via different cheek roundings.  
However, the words “loch”, “lock” and “log” are very different to distinguish as the difference between them is the final tongue 
position. 
12 His quote is often repeated as “Every time I fire a linguist, my speech recogniser improves.”  While it is possible he meant it as 
casual abuse of linguists, it is more likely that he was observing that elaborate theories are best tested in a classifier if they are to be 
practically useful 

https://en.wikipedia.org/wiki/Nature_(journal)

