

Treasures from the deep earth

- Mineral deposits and their links to volcanoes

April 17th 2019

Prof Richard Herrington

Head of Earth Sciences, NHM

Thanks to Prof Sir Steve Sparks FRS

and research colleagues...

The Earth's tectonic plates

Hotsprings associated with volcanoes North Island, New Zealand

Key tectonic settings for Earth's volcanoes

Sibay massive sulphide deposit, Urals

- 110 Mt @ 1.6% Cu, 0.4% Zn, 0.4g/t Au
- 470m deep open pit and underground working
- Output currently around 1.5 million tons ore per year

Diavik diamond mine, Canada

 39 million tonnes of kimberlite containing 95 million carats of diamond

Photos: Rio Tinto

Kambalda Nickel Australia

- Massive Ni-Cu sulphide ore Kambalda
- The region has resources of more than 90 million tonnes of ore at a grade of >2.5% Ni
- Related to Archean (2700 million year old) komatiite lava flows

Photos: CSIRO

Diverse water sources in the Earth's crust

Seafloor high temperature vents

Mid Atlantic Rift crosses Iceland

Seafloor spreading causes extension and volcanism

Pillow lavas forming under the ocean - Iceland

Extensional settings - sub-seafloor circulation of seawater

Deep ocean black smokers

Black smoke = fine grained sulphide minerals

Black smoker chimneys develop on the seafloor

- High temperature heated seawater rises onto the seafloor at > 350° C
- Minerals including metal sulphides are zoned around the open core of the chimney

(after Meg Tivey)

Anatomy of the sulphide deposits – TAG – Mid Atlantic

From Hannington et al. 1995

Nautilus Minerals have permits for offshore sulphide deposits in PNG

Yaman Kasy, Russia – a well preserved 420 million year old example

Faults

Yaman Kasy - Simplified Geology

Herrington et al. 2005

Primary deposition features seen in the Yaman Kasy deposit After Little et al. 1997

Vent fauna

Sulphide talus breccia

Sulphideoxide sediments

Vent chimney

Hydrothermal crust

Arc volcanoes and giant copper deposits

Porphyry Copper Deposit

Subduction (convergent)

Magma also generated at subduction zones

World's largest porphyry copper mine Bingham Canyon likely sits under a volcano like Soufriere Hills, Montserrat

LEGEND

- Volcanic rocks
- // Intrusive rocks
- Ppc Park City Fm.
- Pkdc Kirkman-Diamond Creek Fm.
- Pfp Freeman Creek Fm.
- Pcp Curry Peak Fm.
- Pbm Bingham Mine Fm.
- Pbp Butterfield Peaks Fm.
- Fault
- Thrust Fault
- ---- Fold axis
- Bingham Canyon
 Cu orebody
- Pb-Zn halo (Mine: ❖)
- ___ Outer limit of Au-As

Landtwing et al. 2010

Los Bronces Porphyry, Chile

Thin quartz-sulphide veinlet in altered porphyry host rock

La Paloma (Los Sulfatos) 213 metres of core @ 7.42% Cu

Los Bronces Porphyry, Chile

Anhydrite-chalcopyrite cemented porphyry breccia

Miarolitic Cavities – this means melt and fluid together

Amazonite feldspar and quartz crystals, Pikes Peak, USA

Fluid inclusions found in porphyry crystals

Audétat et al., 2000. Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Econ. Geol., 95: 1563-1581.

Magma Mingling (Hybrid Rocks)

Magma mingling often the trigger for eruption – also brings in more sulphur!

Porphyry copper deposits linked to strato-volcanoes

Porphyry magma evolution

- Porphyry Cu deposits form above intrusions which come off the tops of these magma chambers. Fluids rise through intrusions
- Fluids dissolved in the magma come out of solution, metals get concentrated in the fluids
- Magmas rise through the crust to form magma chambers, which grow incrementally
 - Magmas stall at the base of the crust (density contrast), where they cool, crystallise and fractionate (become more **felsic**)

From: Wilkinson 2013

Hydrothermal flow around porphyry – stratovolcano systems

Hydrothermal environment

Magmatic-hydrothermal environment

(from Hedenquist et al. 1996)

Hotsprings associated with volcanoes

Wairakei_geothermal_power_station, New Zealand

Champagne Pool, Rotorua, New Zealand

North Island, New Zealand

Epithermal Au-Ag – Boiling as a precipitation mechanism

- Gold-in deep waters (prior to boiling and gas loss) 10 mg/kg
- Hot spring waters contain <0.1 mg/kg Au

(from Hedenquist et al. 1996)

Gold-rich pipe scale from geothermal pipes

Diamonds – gem quality stones

Alluvial Diamonds: River Gravels

Historically diamonds recovered from river gravels – particularly gem-quality

Diamonds from kimberlite

Diamonds in a drill core from Aber Resources A-154 kimberlite pipe in northern Canada - extremely rare occurrence!

Geographic distribution of known diamond deposits Relationship to cratons

Geographic distribution of known diamond deposits - Relationship to thickest crust

'Clifford's Rule'

- This relationship, first formalized by Clifford (1966) and known as Clifford's Rule:
 - Diamondiferous kimberlites erupted through the oldest Archean portions of the cratons
 - Non-diamondiferous kimberlites erupted through younger cratonic rocks
- 'Clifford's Rule' is best shown in the Kaapvaal craton, where all of the diamondiferous kimberlites are "oncraton" and all of the "off-craton" kimberlites are diamondfree.

Diamonds – history from inclusions

- Mineral inclusions in diamonds have revealed much about how they have formed
- Indicate that they have formed up to 800 km below the surface

Diamonds – stability field in the mantle

(After Tappert & Tappert 2011)

- Diagram showing stability field for diamond in the lithosphere
- Note that the asthenosphere (convecting mantle) is too hot to preserve diamonds

Kimberlite volcano

From Kjarsgaard (2007)

Formation of kimberlites

From Sparks et al (2006)

Kimberlite host rock

From Shirey et al. (2013)

Ekati mine Canada

Multiple kimberlite pipes

Diverse styles of kimberlite pipes

Mantle plumes, volcanoes and ores

- In the geological record we have evidence for times when 'plumes' from the deep mantle have given rise to mineral deposits
- This demands that very primitive, deeply sourced melts are able to penetrate up through the crust

Lightfoot et al. 2005

Sulphide deposits in komatiite lavas

- Very special case Komatiite lava hosted magmatic sulphides
- Extremely hot lava flows in Precambrian ability to get to the surface of the hot early Earth and form flows
- These lavas thermally erode the rocks they erupt on to assimilating the footwall rocks

After Hill et al. (1990)

Komatiites – very high temp lavas

- **Distinctive** 'spinifex texture' forms as olivine or pyroxene grows in very high temperature lava (up to 1700 °C) as it quenches
- Impossible to erupt now on Earth

Komatiite volcanoes

Nickel-Copper sulphide deposits in lava flows

As a very primitive magma evolves, one phase can segregate from another = immiscibility

- like oil separates from water

Experiments have simulated this process

This phenomenon is linked to:

- a) Temperature changes (cooling)
- b) Changes to the chemistry of the lava (e.g. add sulphur or silica)

Scanning electron microscope image of the immiscible silicate and sulfide melts after quenching *From Shushkanova & Litvin 2008*

Komatiites forming today on lo

Evidence for volcanoes on Europa

Patterned surface ice – points to a liquid ocean below?

Evidence for volcanoes on Europa

Similar ice patterns seen in the Arctic

Evidence for volcanoes on Europa

In the ocean beneath – there is a good chance of volcanoes and hydrothermal vents – sulphide deposits? maybe life?

Mars has huge volcanoes

No longer active but may equate to early earth volcanoes

Summing up

- Volcanoes are the manifestation of a geologically active planet, evidence of a planet both maturing and recycling material between the mantle and the crust
- Magmatic processes underlying volcanoes are often responsible for recycling and concentrating metals and other elements into economic concentrations
- Water is key component in many of the geological processes linked to formation of volcanoes
- Water helps to drive some crustal volcanic systems and in many cases is essential for the formation of many the useful mineral deposits formed
- Planetary exploration offers some answers to early Earth questions