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Toothpaste, Custard and
Chocolate:
Maths gets messy




‘or, How to get this: ‘
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Key component of the chocolate fountain project:

Mathematical
Modelling



What can we model?

The chocolate. ..




What can we model?

The chocolate. . ...and the fountain




Modelling chocolate

Molten chocolate is a complex material — a highly dense
suspension of sugar and cocoa solids in a cocoa butter
liquid phase — complicated by the variation in
composition of cocoa butter with source and harvest.!

How can we model its fluid properties or rheology?

lan Wilson, Report on Chocolate Congress 2010, BSR Bulletin, 2010.
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Measuring stress and rate of strain




Stress and rate of strain
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Custard

» Custard/cornflour suspension shear-thickens
» Continuous Shear-Thickening (CST)

» Moderate suspension concentration
» Smooth, mild viscosity increase
» Discontinuous Shear-Thickening (DST)
» High suspension concentration
» Viscosity increases order of magnitude
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Custard powder: how does it thicken?

Early ideas

» Repulsion? (Doesn't happen in attractive suspensions)

» Cluster formation? (but this fails to get enough viscosity
change)

» Granular expansion? (incorrectly predicts DST for smooth,
hard particles)

» Contact between particles?
Recent progress

» Can get DST from frictional contact plus fluid forces



Custard: My research

Impose contact at fixed separation and friction
Dilute suspensions (years ago):
» Contact reduces viscosity
» Friction increases viscosity weakly
Moderate concentrations (fairly recent work):
» Friction can increase viscosity but not strongly enough
» Hard contacts (which only we can do) destroy DST
Very dense suspensions (current work):
» Creating new models incorporating contact and microstructure

» Aiming to capture shear thickening and correct reversal
response



Custard: Potential applications

Ballistic protection
> Kevlar alone does not stop a bullet at point blank range
> Kevlar treated with shear-thickening fluid can!
Cryopreservation
» If DST transition caused by structural changes, could
potentially inhibit formation of ice crystals in solvent
» Industrial partners Asymptote have recently shown that some
approved cryoprotectants (essentially starch in a glycerol
solution) do show shear-thickening.

» Behaviour in freezing still to investigate
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Toothpaste

Truly complex fluid:
» Polymeric fluid matrix
» Silica particles for abrasion
» Different silica particles for rheology
» Active ingredients, flavours, etc.
Working with UCL engineers & GSK to model processing
» Experiments on rheology and interparticle forces
» Modelling to predict effect of particles

» CFD to scale up to processing flows
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Viscosity against rate of strain: chocolate at 40°C
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Clearly shear-thinning.



Modelling chocolate

Newtonian fluid
o= py

Power-law fluid

Casson’s model
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Modelling chocolate

Newtonian fluid
o= py
pw~~14Pas

For water, u =9 x 10~*Pas.
Power-law fluid
o= kv

Casson’s model

Jo [ Vi Ty oz,
NG ifo <o,



Modelling chocolate
Newtonian fluid
o= py
pw~~14Pas

Power-law fluid
o= kA"

Milk choc, 40°C: k ~65Pas", n=~1/3

(Actually 64.728; 0.3409). p matches at 7 = 10571
Casson's model

Viey + if o >0,
\/_:{\/M_y Vo ifo <o,



Modelling chocolate

Newtonian fluid

o= py
pw~~14Pas
Power-law fluid
o= kA"

k ~65Pas", n=~1/3

Casson’s model
Vo= Viey+ /o, ifo>o,
NG ifo <o,
pe = 3.2Pas, o0, ~4.6Pa

International Confectionery Association 1973-2000.



Modelling chocolate

Newtonian fluid

0 = [y

Power-law fluid

o= kA"
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Pipe flow
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Navier—Stokes equation

Euler equations:
Du
"Dt Pt

Newtonian Navier—Stokes equation:
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General Navier—Stokes equation:
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Pipe flow

In coordinates
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Pipe flow

Assume: steady flow
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Pipe flow

Assume: steady flow
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Pipe flow
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Pipe flow
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Pipe flow

Continuity equation tells us: v, = u,(r)
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Pipe flow

Continuity equation tells us: v, = u,(r)

or

r E(rar,) oy 0z

1 rz
8p [ 0 099+8U:|+Fr

_ Op 10
0= 0z [r@r(rgzr)+

00,
0z

I



Pipe flow

Stresses are a function of velocity so oj; = 0ji(r)
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Pipe flow

Stresses are a function of velocity so oj; = 0ji(r)
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Pipe flow

Gravity acts downwards
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Pipe flow

Gravity acts downwards
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Pipe flow

Assume: No normal stress differences so only o,, = 0, nonzero
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Pipe flow

Assume: No normal stress differences so only o,, = 0, nonzero
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Pipe flow

Pressure gradient is constant, —0p/0z = G



Pipe flow

Pressure gradient is constant, —0p/0z = G
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Pipe flow

Combine forces to form total pressure head H
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Pipe flow

Combine forces to form total pressure head H



Pipe flow

Left to solve

which integrates to give

where the boundary condition was 0,,(0) = 0 by symmetry.



Pipe flow

So we have
Hr
Ozr = 0 = 7
But remember for a power-law fluid,
o= kA"
and recall that in a pipe
. du,
= dr

SO



Pipe flow

So we have Y
duz _ (HN" an
dr 2k

So we solve this with the boundary condition u(a) = 0 and get,

_(H 1n 141/n _ j141/n
Y2 =\ 2k 1+ 1/n



Pipe flow

_(H 1n 141/n _ j141/n 1
u, = ﬂ

1+1/n 3




Pipe flow

Power law (n=1/3) Newtonian (n = 1)
_/HA\L/n p41/n_g141/n  H g2
uz = (55)" 1+1?n Uz = 5p "




Dome flow

Same procedure as before, we take Navier-Stokes

u
— —_V V- F
th p+ o+

and put it into cylindrical coordinates on this geometry

r




Simplifications

1. Flow is within the plane (u, = 0)
2. Flow variation is within the plane

(0uj/0z =0, Dojj/0z =0, Op/0z = 0)
3. Flow is steady

4. Gravity acts downwards



Governing equations
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Rates of strain

Stress tensor for generalised Newtonian fluid is oj; = ()%
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Rates of strain

Stress tensor for generalised Newtonian fluid is oj; = ()%
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Governing equations
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Governing equations
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Scaling considerations

Remember the geometry:




Scaling considerations

Scale in the following way

~

Up
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ug ~ U, u~V, h~ H, r~R, 0/0r ~1/H.

Continuity equation gives size of V
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Governing equations
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Governing equations

Left to solve

__9p_dow _ cosf
- Or ar &
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Balance of gravity and fluid stresses: thin film flow.



Governing equations

Left to solve

__9p_dow _ cosf
- Or ar &

_ 10p oy .
=790 or + pgsinf

Balance of gravity and fluid stresses: thin film flow.

Geometry is reduced to just the slope!
Lava flow; industrial coating flows; tear films in the eye ...



Solution

For our two fluid models:

Power-law: ¢ = k4", k =65, n=1/3

given no-slip on the dome and no-traction at the surface, we
obtain velocity profiles (Y = 0 is the dome, Y = h is the surface):

up = 1230sin%/2(9) [h5/2 —(h— y)5/2] ,



Velocity profiles

At fixed 6 = 7/2,
Newtonian Chocolatey power-law
u(Y) o Y(2h-Y) RS2 — (h— Y)®/2

Dome



Velocity profiles

At fixed 6 = 7/2,
Newtonian

u(Y) o Y(2h-Y)

Chocolatey power-law
h5/2 _ (h _ Y)5/2

Dome

h=3(Y4 — h%)



Film thickness

Fixing flux across the film, we have
for Newtonian fluid,

for chocolatey power-law fluid,

h(#) x sin=3/7 9.



Film thickness

h(0) scsin 20 h(9) o sin3/7 0
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Falling sheet



Falling sheet

Difficult problem:
» Two free surfaces
» How does sheet thickness and distance along the sheet relate?

» What is the position of the sheet in space?



Falling sheet

Difficult problem:
» Two free surfaces
» How does sheet thickness and distance along the sheet relate?

» What is the position of the sheet in space?

Harder problem:
» What happens at the top of the sheet?



Falling sheet




Falling sheet




Teapot Effect

(d)



What causes the Teapot Effect?

Surface tension?

v

v

Hydrodynamics?

v

Air pressure?

v

Wetness of teapot?
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Water bells

Support rod

Fraure 1. Sketch of water-bell and nomenclature.



Falling sheet

pressure difference + surface tension

gravity F,




Falling sheet
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Falling sheet
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What did we learn?

Pipe flow region is a good starter flow for non-Newtonian fluids
Dome flow is thin film flow (like lava domes, coating flows)
Falling sheet is dominated by surface tension

Teapot effect governs the top of the falling sheet
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Falling sheet is dominated by surface tension

Teapot effect governs the top of the falling sheet

Chocolate is a nightmare fluid to model. ..



What did we learn?

Pipe flow region is a good starter flow for non-Newtonian fluids
Dome flow is thin film flow (like lava domes, coating flows)
Falling sheet is dominated by surface tension

Teapot effect governs the top of the falling sheet

Chocolate is a nightmare fluid to model. ..

... but it gets the media attention!






