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Toothpaste, Custard and

Chocolate:

Maths gets messy



or, How to get this:



through this:



Key component of the chocolate fountain project:

Mathematical
Modelling



What can we model?

The chocolate. . .



What can we model?

The chocolate. . . . . . and the fountain



Modelling chocolate

Molten chocolate is a complex material — a highly dense

suspension of sugar and cocoa solids in a cocoa butter

liquid phase — complicated by the variation in

composition of cocoa butter with source and harvest.1

How can we model its fluid properties or rheology?

1
Ian Wilson, Report on Chocolate Congress 2010, BSR Bulletin, 2010.



Stress and rate of strain

stress = σ

rate of strain = γ̇ =
∂u

∂y

viscosity = µ =
σ

γ̇



Measuring stress and rate of strain



Stress and rate of strain

















Custard

◮ Custard/cornflour suspension shear-thickens

◮ Continuous Shear-Thickening (CST)
◮ Moderate suspension concentration
◮ Smooth, mild viscosity increase

◮ Discontinuous Shear-Thickening (DST)
◮ High suspension concentration
◮ Viscosity increases order of magnitude



Custard powder: how does it thicken?

Early ideas

◮ Repulsion? (Doesn’t happen in attractive suspensions)

◮ Cluster formation? (but this fails to get enough viscosity
change)

◮ Granular expansion? (incorrectly predicts DST for smooth,
hard particles)

◮ Contact between particles?

Recent progress

◮ Can get DST from frictional contact plus fluid forces



Custard: My research

Impose contact at fixed separation and friction

Dilute suspensions (years ago):

◮ Contact reduces viscosity

◮ Friction increases viscosity weakly

Moderate concentrations (fairly recent work):

◮ Friction can increase viscosity but not strongly enough

◮ Hard contacts (which only we can do) destroy DST

Very dense suspensions (current work):

◮ Creating new models incorporating contact and microstructure

◮ Aiming to capture shear thickening and correct reversal
response



Custard: Potential applications

Ballistic protection

◮ Kevlar alone does not stop a bullet at point blank range

◮ Kevlar treated with shear-thickening fluid can!

Cryopreservation

◮ If DST transition caused by structural changes, could
potentially inhibit formation of ice crystals in solvent

◮ Industrial partners Asymptote have recently shown that some
approved cryoprotectants (essentially starch in a glycerol
solution) do show shear-thickening.

◮ Behaviour in freezing still to investigate











Toothpaste

Truly complex fluid:

◮ Polymeric fluid matrix

◮ Silica particles for abrasion

◮ Different silica particles for rheology

◮ Active ingredients, flavours, etc.

Working with UCL engineers & GSK to model processing

◮ Experiments on rheology and interparticle forces

◮ Modelling to predict effect of particles

◮ CFD to scale up to processing flows













Viscosity against rate of strain: chocolate at 40◦C

Clearly shear-thinning.



Modelling chocolate

Newtonian fluid
σ = µγ̇

...
Power-law fluid

σ = k γ̇n

,,,
Casson’s model

√
σ =

{ √
µc γ̇ +

√
σy if σ ≥ σy√

σy if σ ≤ σy



Modelling chocolate

Newtonian fluid
σ = µγ̇

µ ≈ 14Pa s

For water, µ = 9× 10−4 Pa s.
Power-law fluid

σ = k γ̇n

,,,
Casson’s model

√
σ =

{ √
µc γ̇ +

√
σy if σ ≥ σy√

σy if σ ≤ σy



Modelling chocolate

Newtonian fluid
σ = µγ̇

µ ≈ 14Pa s

...
Power-law fluid

σ = k γ̇n

Milk choc, 40oC: k ≈ 65Pa sn, n ≈ 1/3

(Actually 64.728; 0.3409). µ matches at γ̇ = 10 s−1.
Casson’s model

√
σ =

{ √
µc γ̇ +

√
σy if σ ≥ σy√

σy if σ ≤ σy



Modelling chocolate

Newtonian fluid
σ = µγ̇

µ ≈ 14Pa s

...
Power-law fluid

σ = k γ̇n

k ≈ 65Pa sn, n ≈ 1/3

,,,
Casson’s model

√
σ =

{ √
µc γ̇ +

√
σy if σ ≥ σy√

σy if σ ≤ σy

µc ≈ 3.2Pa s, σy ≈ 4.6Pa

International Confectionery Association 1973–2000.



Modelling chocolate

Newtonian fluid

σ = µγ̇
Power-law fluid

σ = k γ̇n



Modelling the Fountain





Pipe flow



Pipe flow



Navier–Stokes equation

Euler equations:

ρ
Du

Dt
= −∇p + F

Newtonian Navier–Stokes equation:

ρ
Du

Dt
= −∇p + µ∇2u+ F

General Navier–Stokes equation:

ρ
Du

Dt
= −∇p +∇ · σ + F



Pipe flow

ρ
Du

Dt
= −∇p +∇ · σ + F

∇ · u = 0

In coordinates
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Pipe flow

Assume: steady flow
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Pipe flow
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Pipe flow

Assume: no radial flow (ur = 0)
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Pipe flow

Assume: no radial flow (ur = 0)
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Pipe flow

Continuity equation tells us: uz = uz(r)
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Pipe flow

Continuity equation tells us: uz = uz(r)
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Pipe flow

Stresses are a function of velocity so σij = σij(r)
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Pipe flow

Stresses are a function of velocity so σij = σij(r)
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Pipe flow

Gravity acts downwards
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Pipe flow

Gravity acts downwards
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Pipe flow

Assume: No normal stress differences so only σrz = σzr nonzero
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Pipe flow

Assume: No normal stress differences so only σrz = σzr nonzero

0 = −∂p
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Pipe flow

Pressure gradient is constant, −∂p/∂z = G

0 = −∂p

∂z
− 1

r

∂

∂r
(rσzr )− ρg



Pipe flow

Pressure gradient is constant, −∂p/∂z = G

0 = G − 1

r

∂

∂r
(rσzr )− ρg



Pipe flow

Combine forces to form total pressure head H

0 = G −
[
1

r

∂

∂r
(rσzr )

]
−ρg



Pipe flow

Combine forces to form total pressure head H

0 = −
[
1

r

∂

∂r
(rσzr )

]
+ H



Pipe flow

Left to solve
∂

∂r
(rσzr ) = Hr

which integrates to give

σzr =
Hr

2

where the boundary condition was σzr (0) = 0 by symmetry.



Pipe flow

So we have

σzr = σ =
Hr

2

But remember for a power-law fluid,

σ = k γ̇n

and recall that in a pipe

γ̇ =
duz
dr

so

k

(
duz
dr

)n

=
Hr

2



Pipe flow

So we have
duz
dr

=

(
H

2k

)1/n

r1/n

So we solve this with the boundary condition u(a) = 0 and get,

uz =

(
H

2k

)1/n
r1+1/n − a1+1/n

1 + 1/n
.



Pipe flow

uz =

(
H

2k

)1/n
r1+1/n − a1+1/n

1 + 1/n
n =

1

3
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u



Pipe flow

Power law (n = 1/3) Newtonian (n = 1)

uz =
(
H
2k

)1/n r1+1/n
−a1+1/n

1+1/n uz = H
2k

r2−a2

2

-0.02 -0.01 0.01
r

0.01

0.02

0.03

0.04

u

-0.02 -0.01 0.01
r

0.02

0.04

0.06

0.08

u



Dome flow

Same procedure as before, we take Navier–Stokes

ρ
Du

Dt
= −∇p +∇ · σ + F

and put it into cylindrical coordinates on this geometry



Simplifications

1. Flow is within the plane (uz = 0)

2. Flow variation is within the plane
(∂ui/∂z = 0, ∂σij/∂z = 0, ∂p/∂z = 0)

3. Flow is steady

4. Gravity acts downwards



Governing equations

ρ

[
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∂ur
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.



Rates of strain

Stress tensor for generalised Newtonian fluid is σij = η(γ̇)γ̇ij .

γ̇rr = −2
∂ur
∂r

γ̇θθ = −2

r

∂uθ
∂θ

− 2ur
r

γ̇zz = 0

γ̇rθ = γ̇θr = − ∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

γ̇rz = γ̇zr = 0

γ̇θz = γ̇zθ = 0



Rates of strain

Stress tensor for generalised Newtonian fluid is σij = η(γ̇)γ̇ij .

γ̇rr = −2
∂ur
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γ̇θθ = −2

r

∂uθ
∂θ

− 2ur
r

γ̇zz = 0

γ̇rθ = γ̇θr = − ∂

∂r

(uθ
r

)
+

1
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γ̇rz = γ̇zr = 0

γ̇θz = γ̇zθ = 0

So σzz = σrz = σzr = σθz = σzθ = 0.



Governing equations
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Governing equations
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Scaling considerations

Remember the geometry:



Scaling considerations

Scale in the following way

ûθ =
uθ

U
, ûr =

ur

V
, ĥ =

h

H
, r̂ =

r − R

H
.

uθ ∼ U, ur ∼ V , h ∼ H, r ∼ R , ∂/∂r ∼ 1/H.

Continuity equation gives size of V

0 =
∂

∂r
(rur ) +

∂uθ
∂θ

RV

H
∼ U H ≪ R V ≪ U



Governing equations
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Governing equations

Left to solve

0 = −∂p

∂r
− ∂σrr

∂r
− ρg cos θ

0 = −1

r

∂p

∂θ
− ∂σrθ

∂r
+ ρg sin θ

Balance of gravity and fluid stresses: thin film flow.



Governing equations

Left to solve

0 = −∂p

∂r
− ∂σrr

∂r
− ρg cos θ

0 = −1

r

∂p

∂θ
− ∂σrθ

∂r
+ ρg sin θ

Balance of gravity and fluid stresses: thin film flow.

Geometry is reduced to just the slope!
Lava flow; industrial coating flows; tear films in the eye . . .



Solution

For our two fluid models:

Newtonian: σ = µγ̇, µ = 14

Power-law: σ = k γ̇n, k = 65, n = 1/3

given no-slip on the dome and no-traction at the surface, we
obtain velocity profiles (Y = 0 is the dome, Y = h is the surface):

uN =
1

2
Y (2h − Y )

ρg sin θ

µ
.

uP = 1230 sin3/2(θ)
[
h5/2 − (h − Y )5/2

]
.



Velocity profiles

At fixed θ = π/2,
Newtonian Chocolatey power-law

u(Y ) ∝ Y (2h − Y ) h5/2 − (h − Y )5/2

Dome

0.2 0.4 0.6 0.8

Y�h

u

0.2 0.4 0.6 0.8

Y�h

u



Velocity profiles

At fixed θ = π/2,
Newtonian Chocolatey power-law

u(Y ) ∝ Y (2h − Y ) h5/2 − (h − Y )5/2

Dome

0.2 0.4 0.6 0.8

Y�h

u

0.2 0.4 0.6 0.8

Y�h

u

Pipe

r

u

r

u

u(Y ) ∝ Y 2 − h2 h−3(Y 4 − h4)



Film thickness

Fixing flux across the film, we have
for Newtonian fluid,

h(θ) ∝ sin−1/3 θ,

for chocolatey power-law fluid,

h(θ) ∝ sin−3/7 θ.



Film thickness

h(θ) ∝ sin−1/3 θ h(θ) ∝ sin−3/7 θ





Falling sheet



Falling sheet

Difficult problem:

◮ Two free surfaces

◮ How does sheet thickness and distance along the sheet relate?

◮ What is the position of the sheet in space?



Falling sheet

Difficult problem:

◮ Two free surfaces

◮ How does sheet thickness and distance along the sheet relate?

◮ What is the position of the sheet in space?

Harder problem:

◮ What happens at the top of the sheet?



Falling sheet



Falling sheet



Teapot Effect



What causes the Teapot Effect?

◮ Surface tension?

◮ Hydrodynamics?

◮ Air pressure?

◮ Wetness of teapot?









Water bells



Falling sheet



Falling sheet
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Falling sheet
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What did we learn?

Pipe flow region is a good starter flow for non-Newtonian fluids
Dome flow is thin film flow (like lava domes, coating flows)
Falling sheet is dominated by surface tension
Teapot effect governs the top of the falling sheet
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Teapot effect governs the top of the falling sheet
Chocolate is a nightmare fluid to model. . .



What did we learn?

Pipe flow region is a good starter flow for non-Newtonian fluids
Dome flow is thin film flow (like lava domes, coating flows)
Falling sheet is dominated by surface tension
Teapot effect governs the top of the falling sheet
Chocolate is a nightmare fluid to model. . .
. . . but it gets the media attention!




