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Abstract
This talk will look at mathematical modelling of real, complex fluids in flow

situations – some with serious commercial applications, and some just for fun.
We’ll spend most of the time looking at the chocolate fountain. We’ll experience
one of the key day-to-day tools of an applied mathematician: scaling analysis; and
we’ll answer the question: why doesn’t the chocolate fall straight down?

Introduction
In this talk I want to give you an introduction to the mathematical modelling of real,
complex fluids in flow situations. I’ll use the framework of an undergraduate project
The Fluid Dynamics of the Chocolate Fountain that was done in 2012, but you’ll also
see snapshots of some of my current research along the way.

The chocolate fountain project is probably the best undergraduate project I’ve ever
offered, both in terms of the attractiveness of the subject and the achievement of the
student. In UCL Mathematics, we offer a four-year degree in which final year students
undertake a research project, one-to-one with an academic supervisor. It’s a great chance
for them to find out whether they enjoy research before potentially committing to a PhD
project; and it gives them a chance to show what they can really do, beyond the tight
timescales of an exam paper. The student on this project, Adam Townsend, started over
the summer of 2011 and finished in May 2012, and (uniquely as far as I’m aware in my
department) he even did some experiments to go with his theory.

The main topic of this lecture is mathematical modelling. Faced with a chocolate
fountain, there are two principal aspects we can model: the chocolate, and the fountain.
I’ll talk about the chocolate first.

So what is chocolate? We start with a quote:

Molten chocolate is a complex material – a highly dense suspension of
sugar and cocoa solids in a cocoa butter liquid phase – complicated by the
variation in composition of cocoa butter with source and harvest. [7]
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The next question is, how can we model its fluid properties or rheology?
We start with an experimental measurement. Ideally, we want all the material in our

sample to undergo the same deformation, so that we know we’re measuring the response
of the whole fluid to that. In practice, there’s only one such flow that’s not very difficult
to set up: shear flow, the flow you see between parallel sliding plates.

Dividing the speed of the top plate by the gap between the plates gives us the shear
rate, γ̇. We can measure the force (per unit area) required to make the top plate move
along; the shear stress, σ.

If we then vary the shear rate (use different steady speeds for the top plate), we can
generate a graph of shear stress against shear rate:

You’ll see that I’ve given four different categories of curves. Each of these represents
a broad class of fluids. Let’s have a quick look at each of them.

Straight line through the origin: Newtonian fluid

If the graph is a straight line through the origin, this means that the shear stress is simply
a multiple of the shear rate:

σ = µγ̇.

We call the coefficient µ the viscosity of the fluid, and it is a measure of its thickness.
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Many simple fluids, containing relatively small molecules – air, water, oil, wine,
honey – are Newtonian fluids. There is a huge amount of research into their dynam-
ics, which governs the oceans and atmospheres and much else besides. But I’m more
interested in the other curves: so-called non-Newtonian fluids.

Graph curving upwards: shear-thickening fluid

We can still define the steady shear viscosity at any point on our curve, just by rearrang-
ing the equation we had for the Newtonian fluid: µ = σ/γ̇. But now we find that the
viscosity µ increases as we increase the shear-rate γ̇. This means the fluid gets thicker,
more solid-like, the faster we drive it.

This is fairly strange behaviour, and only a few materials do it: a cornflour-and-
water mixture is one of the most dramatic examples. If you search online for oobleck
you’ll find many excellent videos of people running on this (and then standing still and
sinking). Researchers have been trying to get to the bottom of this extreme version
of shear thickening (known as discontinuous shear thickening) for decades, and have
recently started to approach a theoretical understanding of the microscopic forces at
work.

We try to understand this by creating mathematical models of the physical system,
containing only specific simple pieces of the complexity of real suspensions. Over many
years, a consensus has built up that discontinuous shear thickening needs any model to
include some frictional forces which only happen when particles are squeezed together
very strongly. Then increasing the flow speed can increase the number of particle pairs
which feel these extra, frictional forces and effectively make the suspension feel as
if it has more solids in – bringing on jamming. These are essential ingredients; but my
group’s work [6] has shown that small amounts of friction (of the sort you’d get between
a book and a table, for example) are not enough to cause the jamming: you need forces
of a much larger magnitude. And research is continuing. . .

Whether we understand it or not, the phenomenon is hugely useful: Norm Wagner
and colleagues at the University of Delaware [3] have discovered that Kevlar impreg-
nated with one of these fluids is much more effective than normal Kevlar at stopping
bullets!

Line that stops above the origin: Bingham fluid

The key feature of this class of materials is that the graph of shear stress against shear
rate doesn’t appear to go through the origin. It does, of course: for any material, if you
don’t apply any force to the top plate it won’t move. But the converse isn’t true for these
materials: you can apply a small force to the plate and the material inside will resist
like a solid. It might move a short distance, but it won’t flow and keep flowing. This is
called a yield stress: there is some structure holding the material together that takes a
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finite stress to break it down and start flow. Typical examples include whipped cream,
tomato ketchup, and toothpaste.

Toothpaste needs to have a yield stress for purely aesthetic reasons: we, as con-
sumers, like our toothpaste to sit up nicely on the brush before we put it in our mouths.
I’m working with a group of engineers and a toothpaste manufacturer to understand
exactly where the yield stress comes from: it’s one of the least reliable parts of the
manufacturing process, and there’s a real risk of making a huge batch of toothpaste that
tastes right, has the right chemical composition, does the job but can’t be sold because
it won’t look right on the brush! The paste is a complex mixture of different-shaped
solid particles (smooth ones to make it thicker, jagged ones to clean your teeth) and a
surrounding fluid which is itself very complex, so this is challenging research!

Line that curves downward: shear thinning fluid

The last class of curves is those that curves downwards. This means the viscosity de-
creases when the flow rate increases, and these fluids are called shear-thinning fluids.
This usually happens because some microscopic structure either breaks down, or aligns,
under fast flow, making the system as a whole easier to deform. Many examples are
designed to exhibit this behaviour: paint, for instance. When you carry your loaded
paintbrush from the tin to the wall (very low flow rates), the paint needs to be fairly
thick so it will not drip off. But when you’re brushing it onto the wall (high shear rates)
you need it thinner so it will spread without huge amounts of effort. And finally, once
you stop brushing (back to low shear rates) you need it to thicken up again so that it
doesn’t have time to run down the wall before it dries. Other examples of shear thin-
ning fluids include nail varnish (again, by design), lava and – as it turns out – molten
chocolate, as we can see below.

Graph of viscosity against shear rate for dark chocolate at 40 degrees C. Taken from [2].
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Modelling chocolate
Before we can do any mathematical calculations about the flow involved in a chocolate
fountain (or any other chocolate flow), we need to capture the behaviour of the material
with a governing equation. The constitutive equation is a relation which determines the
stress in a complex fluid from the flow conditions, the temperature, and the whole flow
history. Some materials carry a lot of information with them – for example, in a polymer
melt (e.g. molten plastic, on its way to becoming a moulded product) the molecules can
become aligned by the flow and there is a component of the stress that relates to their
“desire” (actually driven by entropy) to relax back to a non-aligned state [4]. In fact
molten chocolate also does this to some extent [1], but it’s a fairly weak effect so we
won’t take it into account here.

We choose to use a generalised Newtonian fluid model to describe the behaviour
of chocolate. That means we assume that the only complicated thing going on is the
dependence of the viscosity on the deformation rate (shear rate). All that remains is to
choose the form of the function η(γ̇) defining it. There are three standard models we
can look at.

Newtonian fluid This is the simplest possible model, in which the viscosity does not
depend on the shear rate at all

η = µ

It’s not a particularly good model for chocolate, but there are several reasons
for doing it anyway. First, it’s easier than any of the others, so you can try out
calculations before getting bogged down in the difficult calculations. Second, lots
of fluids are Newtonian, so many of these calculations have already been done
in the literature. And finally, it’s a special case of many of the models that fit
better, so it gives us a limit case to check correctness when we do a more difficult
calculation.

Power-law model This is typically the first model anyone uses when they want to in-
corporate non-Newtonian effects without introducing too many new unknown
physical parameters into the model. The amount of shear-thinning is captured
by a single new parameter, the flow index n:

η = kγ̇n−1.

Now we have two parameters, the viscosity scale k and the flow index n. In the
case n = 1 and k = µ we recover the Newtonian model above.

You might wonder why we’re using n − 1 as the power. The reason is that the
physical quantity we can measure directly in experiments is not the viscosity it-
self, but the shear stress

σ = ηγ̇ σ = kγ̇n.
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Casson’s model This more complicated model shows both shear-thinning and a yield
stress, and can only simply be expressed in terms of the shear stress:

σ =
(√

µcγ̇ +
√
σy

)2
if σ ≥ σc,

γ̇ = 0 if σ < σc.

It was the official standard of the International Confectionery Association from
1973–2000, at which point it was observed that it was difficult to use because of
the yield stress, but also inaccurate at low flow rates (where the yield stress is
relevant). They now recommend ad hoc empirical modelling, which in practice
usually means a collection of power-law models for different applications. From
here on we will only use the Newtonian and power law models.

Modelling the Fountain
We chose to split the fountain into three regions, with quite different flow dynamics in
each. Each one has its own story to tell. There isn’t space here for a full discussion of
all of them, but I will briefly summarise what we discovered. The full details have been
published [5] in an academic research paper that is freely available on the web.

Central pipe flow The reality of the pumping flow up the central core (at least in the
fountain we bought) is a screw pump, which induces a complex, fully three-
dimensional rotating flow pattern. We observed that the rotation was almost com-
pletely dissipated before the chocolate came pouring out at the top (and made the
practical decision that an undergraduate project didn’t have time for 3D computer-
based simulations) and discarded physical reality for this part of the flow. Instead
we worked out the flow profile for a purely pressure-driven flow through a pipe.
This was an excellent way to get used to using the non-Newtonian fluid model.
Once we made some sensible assumptions about the flow being steady and in the
direction we would expect, the equations became completely manageable. The
flow is always fastest in the centre of the pipe, and static on the walls; a shear-
thinning model leads to small layers close to the wall where most of the shearing

6



happens, and where the fluid becomes thinner; and a central plug-like region of
thick fluid being transported by the thin lubricating layer.

Dome flow This time when we started from the governing equations, and made all
the same sensible assumptions we’d made last time, we were still left with three
coupled partial differential equations to solve, only one of which was simple. So
we had to use some physical approximations to make progress.

We observed that the thickness of the layer of chocolate on the dome was much
less than the distance it travelled, which was of the same order as the radius of the
dome itself. Then, because of mass conservation – our experiment can’t create
or destroy chocolate, only move it from place to place – we can argue that the
velocity parallel to the dome surface must be much larger than any velocity per-
pendicular to the surface. This is a scaling argument: we argue that some terms
have to be much smaller than others in our equations, and then discard the small
ones to get a slightly inaccurate mathematical formulation that we can solve, and
whose solution is close to what happens in reality.

By the time we’d finished our scaling analysis, the only physics left in our equa-
tions was a balance between gravity pulling the chocolate down the dome, and
viscous forces slowing it down. This same balance appears in all sorts of thin film
flows, including painting, the flow of lava down a volcano, and even the dynamics
of the thin film of tears in your eye.

The end conclusions looked surprisingly similar to what we found in the pipe
flow: increasing the shear-thinning caused a thin lubrication layer close to the
dome, with a layer of more viscous chocolate flowing on top of it.

Falling curtain The falling curtain of molten chocolate is the whole point of the choco-
late fountain. It’s where you dip, after all. It’s also surprisingly difficult, both
practically and mathematically. Practically, we found that the sheet is subject to
instabilities, especially as the chocolate starts to run out and the volume coming
out of the top of the fountain reduces. There is a tendency for the curtain to sepa-
rate into a series of vertical streams, which move around, sometimes reaching the
pool of chocolate at the base and sometimes dripping and rebounding upwards.
This was well beyond the scope of what we could model at the time (though
people have had a go since, including Lyes Kahouadji in Omar Matar’s group at
Imperial College).

Mathematically, even if you assume a smooth, steady flow, it’s still difficult be-
cause there are two free surfaces – when you start, you don’t know the thickness
of the sheet or the trajectory of its centreline. You don’t even know how it leaves
the dome (that thorny issue, known as the teapot effect, turns out to involve some
surface chemistry which is well beyond me). The best we could do, in the end,
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was to take someone else’s computed solution to a similar problem and scale it to
fit our situation. The key conclusion: the most important force acting is surface
tension, which is the reason the curtain falls inwards and not straight down.

Conclusion
This lecture has skimmed the surface of rheology, which is a huge interdisciplinary re-
search area spanning mathematics, physics, chemistry and engineering. On the choco-
late fountain itself, we’ve seen in the central pipe flow that shear-thinning fluids tend to
form a plug-like central flow; on the dome we’ve discovered the joys of scaling analysis
and found that the main things that matter are gravity and viscosity; and in the falling
curtain flow we’ve seen that it’s surface tension pulling the sheet inwards.

Looking at non-Newtonian fluids more broadly, we’ve seen that chocolate fits, with
paints and lava, into the class of shear-thinning materials; but we’ve also seen some
other classes of material. Materials with a yield stress can resist a certain amount of
force before they flow; and shear-thickening materials like cornflour can even be used
to stop bullets.

I hope I’ve whetted your appetite in more ways than one!
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