
Number Theory :
The Queen of 
Mathematics

Robin Wilson

Open University and Oxford, 
and Gresham College, London



Some prime figures
Euclid

Fermat

Euler     Gauss

Gauss:  Mathematics is the queen of the sciences 
and number theory is the queen of mathematics 



What is number theory?
Number theory is the branch of mathematics 

that’s primarily concerned with 
our counting numbers, 1, 2, 3, . . .  . 

Particularly important are prime numbers, 
the ‘building blocks’ of our number system, 
whose only factors are themselves and 1: 

prime:   11,  13,  17,  19
non-prime:   15 = 3 × 5,   18 = 2 × 9 = 2 × 3 × 3, 

91 = 7 × 13,   323 = 17 × 19
2047?    30,031?    4,294,967,297 ? 



Some questions
• Is  4,294,967,297  prime?
• Are any of the numbers 11, 111, 1111, 11111, . . . 

perfect squares? 
• In which years does February have five Sundays?
• How many right-angled triangles with whole-number 

sides have a side of length 29?
• Can one construct a regular polygon with 100 sides 

if measuring is forbidden? 
• How many shuffles are needed to restore the order 

of the cards in a pack with two Jokers?
• How do prime numbers help to keep our credit cards 

secure? 



Four topics

Prime numbers
Euclid’s theorem; Dirichlet’s theorem; Mersenne primes; 

Fermat primes; a problem in geometry

Perfect squares
results on squares; right-angled triangles; two results of Fermat 

Clock arithmetic
modular arithmetic; calendar problems

Fermat & Euler’s theorems
counting necklaces, shuffling cards; protecting your credit cards



Prime 
numbers

Every number 
can be written 

in only one way 
as a product of 

primes.

60 = 2 × 2 × 3 × 5   (or  2 × 5 × 3 × 2,   etc.)
But 1 is not a considered a prime:  

6  =  2 × 3   =  2 × 3 × 1   =  2 × 3 × 1 × 1  . . .



Euclid’s theorem 
(Elements, Book IX, Prop 20)

The list of primes goes on for ever



Euclid’s theorem
The list of primes goes on for ever



Euclid’s theorem
The list of primes goes on for ever

For suppose that the ONLY primes are 
p1, p2, p3, . . . , pn,  and consider the number 

N =  (p1 × p2 × p3 × . . . × pn) +  1.

Then N cannot be divided by any of these primes. 
So N must be a new prime,  or a product of new primes.

This contradicts the fact that we could list them all.

Examples:  
• If the only known primes were  2, 3, 5 and 7, 

then  N = (2 × 3 × 5 × 7) + 1  =  211   (a new prime) 
• If the only known primes were  2, 3, 5, 7, 11, 13, 

then  N = (2 × 3 × 5 × 7 × 11 × 13) + 1 
=  30,031  =  59 × 509   (two new primes)



Generalising Euclid’s result
Using Euclid’s method, we can prove that: 

There are infinitely many primes of the form 4n + 3:
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, . . . 

We can also prove that:
There are infinitely many primes of the form 4n + 1:

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, . . . ,
. . . but not of the form 4n + 2, because these are all 

divisible by 2.



Dirichlet’s theorem (1837)

So we can prove that: 
There are infinitely many primes of the form 4n + 3:

and also that:
There are infinitely many primes of the form 4n + 1:

but not of the form 4n + 2.

Dirichlet’s theorem:  If a and b have no factors in common, 
then there are infinitely many primes of the form an + b. 

For example, when a = 10 and b = 9:
there are infinitely many primes of the form 10n + 9

– that is, there are infinitely many primes ending with 9
[19, 29, 59, 79, 89, 109, 139, . . .]   



Mersenne primes
Mersenne numbers are numbers of the form 2n – 1.

Some Mersenne numbers are prime: 
22 – 1 = 3,   23 – 1 = 7,   25 – 1 = 31,   27 – 1 = 127,  . . . 

Others are not:
24 – 1 = 15, 26 – 1 = 63, 28 – 1 = 255, 29 – 1 = 511, . . .

Is it true that 2n – 1 is prime if and only if n is prime?
If n is not prime, then nor is 2n – 1.

But if n is prime, must 2n – 1 be prime? 
NO:  if n = 11,  then 211 – 1 = 2047 = 23 × 89.

All recently found primes are Mersenne primes. 
51 Mersenne primes are known:  the latest (2018) is  

282,589,933 – 1 with almost 25 million digits. 



Perfect numbers
A number N is perfect if it’s the sum of all its proper factors.  

6 is perfect  because 6 = 1 + 2 + 3,
28 is perfect  because 28 = 1 + 2 + 4 + 7 + 14,

The next two perfect numbers are  496 and  8128,
and then there are no more until  33,550,366.

Now 6 = 2 × 3 = 21 × (22 – 1);     28 = 4 × 7 = 22 × (23 – 1);
496 = 16 × 31 = 24 × (25 – 1);    8128 = 64 × 127 = 26 × (27 – 1);

33,550,336 = 4096 × 8191 = 212 × (213 – 1) 

Euclid:  if 2n – 1 is prime, then N = 2n–1 x (2n – 1) is perfect. 
Does this give us all perfect numbers?

Euler: It gives us all even perfect numbers
but no-one knows whether there are any odd perfect numbers.



Fermat primes

F(0) = 21 + 1 = 3  
F(1) = 22 + 1 = 5

F(2) = 24 + 1 = 17  
F(3) = 28 + 1 = 257

F(4) = 216 + 1 = 65,537

But is  F(5) = 232 + 1 = 4,294,967,297 prime?

Let F(n) = 2N + 1, where N = 2n

Conjecture:  F(n) is prime for all n



Fermat primes

F(0) = 3,     F(1) = 5,     F(2) = 17,     F(3) = 257, 
F(4) = 65,537.

But is F(5) = 232 + 1 = 4,294,967,297 prime?

Euler:  No, it is  641 × 6,700,417
Moreover, no other Fermat primes 

have ever been found . . . 

Let F(n) = 2N + 1, where N = 2n

Conjecture:  F(n) is prime for all n



Constructing 
triangles

Constructing an equilateral triangle
Given the line AB,  draw the circle 

with centre A and radius AB,
and the circle with centre B and radius BA.

These circles meet at the point C.
Draw the lines AC and BC.

Then ABC is an equilateral triangle.



Constructing
hexagons

Constructing a regular hexagon
Draw a circle with centre O and radius OA.

With the point of the compasses at A and radius 
OA, mark the point B on the circle.
Repeat to get the points C, D, E, F .
Then ABCDEF is a regular hexagon.



Which polygons can we draw?
We can draw regular polygons with n sides 

when n = 3,  4,  5,  6,  8,  10,  12,  15,  16,  20,  24,  . . .
but not when   n = 7,  9,  11,  13,  14,  18,  19,  . . . 

Gauss then drew n = 17, and proved: 
One can draw a regular polygon 

with n sides if and only if n is
a power of 2 × unequal Fermat primes.

[3, 5, 17, 257,  65537]

Yes:   30 = 2 × 3 × 5,   32 = 25,   34 = 2 × 17,   40 = 23 × 5,  . . .
No:    35 = 5 × 7,   36 = 22 × 32,   37,   . . .  ,  100 = 22 × 52.

So we cannot draw a regular polygon with 100 sides.   



Perfect squares

12 = 1,  22 = 4,  32 = 9,  42 = 16,  
52 = 25,  62 = 36, 72 = 49, 82 = 64, 

92 = 81, 102 = 100
No squares end in 2, 3, 7 or 8.

Adding the first few odd numbers 
always gives a square  
(1 , 1+3, 1+3+5, . . . )



Perfect squares
Every square has the form  4n or  4n + 1.

N even:  N = 2k,  so  N2 = 4 × k2.
N odd:  N = 2k + 1, so  N2 = 4 × k(k+1) + 1.

So  11,  111,  1111,  11111,  . . .  aren’t 
squares, as they have the form 4n + 3. 

Moreover, if N is odd,  

then N2 has the form 8n + 1.



Right-angled triangles

Examples:   32 + 42 = 52;   52 + 122 = 132;   152 + 82 = 172

Can we find all examples with whole-number sides?
We’ll ignore scalings:   302 + 402 = 502;   62 + 82 = 102

so we assume that a, b, c have no factors in common. 

Answer:    a = x2 – y2,   b = 2xy,   c = x2 + y2,
where x > y,  x and y have no common factors, 

and one is even and the other odd.

Pythagoras:  If the sides
are a, b, c, then

a2 + b2 = c2



Listing all right-angled triangles
a = x2 – y2,   b = 2xy,   c = x2 + y2,

where x > y,  x and y have no common factors, 
and one is even and the other odd.

Examples:  x = 2, y = 1:   a = 3, b = 4, c = 5:  32 + 42 = 52

x = 3, y = 2:   a = 5, b = 12, c = 13:   52 + 122 =  132

x = 5, y = 2:   a = 21, b = 20, c = 29:   212 + 202 = 292



Right-angled triangles with a side of 
length 29

a = x2 – y2,   b = 2xy,   c = x2 + y2

Example:   x = 5,  y = 2:   
a = 21,  b = 20,  c = 29 :    212 + 202 = 292

How many right-angled triangles with whole-number 
sides have a side of length 29?

Either  29 = x2 + y2,  so x = 5, y = 2:   a = 21,  b = 20,  c = 29 
or  29 = x2 – y2 = (x + y) (x – y) = 29 × 1,

so   x + y = 29,  x – y = 1,   giving   x = 15,  y = 14,    
and    a = 29,  b = 420,  c = 421 . 



Sums of squares

Which numbers can be written
as the sum of two squares?

Fermat’s 4n + 1 theorem:
Every prime number 

of the form 4n + 1 
(such as 5, 13, 17, 29, 41, . . .) 

is the sum of two squares 
(and in only one way).

5 = 22 + 12,   13 = 32 + 22,   17 = 42 + 12,   
29 = 52 + 22,   41 = 52 + 42,  . . . 



Fermat’s ‘last theorem’
We’ve found a, b, c, so that 

a2 + b2 = c2.
Can we find a, b, c, so that 

a3 + b3 = c3 ?
or  a4 + b4 = c4 ?  or . . . 
Fermat believed that:

For any n > 2,  an + bn = cn
has no solutions.

Proved by Andrew Wiles, 
1995.



Clock arithmetic
9 o’clock + 6 hrs = 3 o’clock:    9 + 6 ≡ 3 (mod 12)
10 o’clock + 7 hrs = 5 o’clock: 10 + 7 ≡ 5 (mod 12)
8 o’clock + 4 hrs = 12 o’clock:  8 + 4 ≡ 0 (mod 12).

a ≡ b (mod n)  if a and b leave the same 
remainder when divided by n : 
that is, if a – b is divisible by n. 

Thursday + four days = Monday
Saturday + three days = Tuesday

Sunday = 0;   Monday = 1;   Tuesday = 2;   
Wednesday = 3;   Thursday = 4;   Friday = 5;   
Saturday = 6.    Working (mod 7), we have

4 + 4 ≡ 1 (mod 7);  6 + 3 ≡ 2 (mod 7)



Finding 
the day 
of the 
week

(C. L. Dodgson: 
Lewis Carroll)



Lewis Carroll’s method
Add the following four numbers:

Century number.   Divide the first two digits of the year by 4,  
subtract the remainder from 3, and double.

Year number.  Divide the last two digits of the year by 12, 
and add the quotient, the remainder, 

and the number of times 4 divides into the remainder.

Month number.  Carroll’s method gives:
Jan: 0     Feb: 3     Mar: 3     Apr 6     May: 1    Jun: 4     Jul: 6     

Aug: 2     Sep: 5    Oct: 0    Nov: 3     Dec: 5

Day number:   This is the day of the month.

[Finally, subtract 1 if the date falls in January or February 
of a leap year.]



Lewis Carroll’s method
28 September 2020

Century number
Divide 20 by 4: remainder 0;  
subtract 0 from 3 to give 3, 

and double to give 6
Year number

Divide 20 by 12 giving 1, 
remainder 8;  4 divides 8        

2 times, giving 1 + 8 + 2 = 11

Month number   Sep = 5

Day number 28
The sum is  6 + 11 + 5 + 28

= 50 ≡ 1 (mod 7) =  Monday

Add the following numbers:
Century number.   Divide the first 
two year digits by 4,  subtract the 

remainder from 3, and double.

Year number.  Divide the last 
two year digits by 12, and add 
the quotient, the remainder, 
and the number of times 4 
divides into the remainder.

Month number. 
Jan: 0     Feb: 3     Mar: 3     Apr 6     
May: 1    Jun: 4     Jul: 6     Aug: 2     
Sep: 5    Oct: 0    Nov: 3     Dec: 5

Day number:   This is the day of 
the month.



Five Sundays in February?

The five Sundays must be 1, 8, 15, 22, 29 February,
so the year must be a leap year. 
Now 1 January 2001 was a Monday, 
so 1 February 2001 was a Thursday,

1 February 2002 was a Friday  (as 365 ≡ 1 (mod 7)),

1 February 2003 was a Saturday,

1 February 2004 was a Sunday.
Also, the cycle of days repeats every 28 years

as (28 × 365) + 7 ≡ 0 (mod 7),  so the years are

2004,  2032,  2060,  2088. 



Fermat’s 
‘little theorem’

For any number a and any prime number p, 
ap – a is divisible by p

for example, 837 – 8 is divisible by 37

Another version (divide by a) is:    
ap–1 – 1 is divisible by p

for example, 252 – 1 is divisible by 53,  
or  252 ≡ 1 (mod 53)



Counting necklaces
For any number a and any prime p, 

ap – a is divisible by p

How many different coloured necklaces 
with p beads and a colours are there, 

using at least two colours?
There are ap possible strings of beads, 

or ap – a when we exclude the 1-colour 
ones (such as RRRRR). 

So there are  (ap – a)/p different ones, 
and so ap – a  is divisible by p.

RBRRY 
= BRRYR
= RRYRB 
= RYRBR
= YRBRR 



How many shuffles are needed to restore 
a pack of cards to its original order?

Now  the card in position x → position 2x (mod 53),
and after n shuffles → position 2nx (mod 53).
So  2nx ≡ x (mod 53), giving  2n ≡ 1 (mod 53).
But, by Fermat’s theorem,  252 ≡ 1 (mod 53).  

So the pack is restored after 52 shuffles. 
[mod 53:  22 ≡ 4 , 24 ≡ 16, 213 ≡ 30, 226 ≡ 52]



Shuffling a pack with two Jokers

We now have 54 cards, and in the same way we get
2n ≡ 1 (mod 55).

But 55 isn’t a prime number, so we can’t use Fermat’s 
theorem to give us n = 54 shuffles. 

But if 55 divides 2n – 1, then so do 5 & 11. 
So 24 ≡ 1 (mod 5)  and  210 ≡ 1 (mod 11).
So 220 ≡ 1 (mod 5)  and  220 ≡ 1 (mod 11), 

so 220 ≡ 1 (mod 55).
So the pack is restored after 20 shuffles. 



Euler’s theorem
If p does not divide a, 

then ap–1 – 1 is divisible by p:
so ap–1 ≡ 1 (mod p). 

But what can we say if p isn’t prime? 
Euler’s theorem:  aφ(n) ≡ 1 (mod n) ,  

where φ(n) counts the numbers up to n
with no factors in common with n:

e.g.   φ(10) = 4  [1, 3, 7, 9]; φ(12) = 4  [1, 5, 7, 11];
φ(p) = p – 1;    φ(pq) = (p – 1) × (q – 1) : 

e.g.  1073 = 29 × 37,  so   φ(1073) = 28 × 36 = 1008.



RSA public key cryptography
Alice wishes to send a secret message to Bob.

Bob first selects two primes, p, q, calculates N = pq. N = 29 × 37 = 1073
and chooses e so that gcd (e, φ(N)) = 1. φ(N) = 1008, e = 11

He publicly announces e and N, but not p and q.
The numbers e and N are then the public key, known to all. 

Alice now converts her message to numerical form and calls it M. 

Knowing e and N, she calculates  E ≡ Me (mod N)  and sends it to Bob. 

Using the fact that gcd (e, φ(N)) = 1, Bob calculates m and n for which

me + n φ(N) = 1, and so me ≡ 1 (mod φ(N)). 11m ≡ 1 (mod 1008)
Now, by Euler’s theorem, Mφ(N) ≡ 1 (mod N), so m = 275
so Em ≡ (Me)m = Mme = M1 −nφ(N) ≡ M (mod N).

Bob calculates  Em (mod N)  to retrieve Alice’s original message M.  
M ≡ E275 (mod 1073)



RSA public key cryptography
Alice wishes to send a secret message to Bob.

Bob first selects two primes, p, q, calculates N = pq.     
N = 29 × 37 = 1073, φ(N) = 1008, 

and chooses e so that  gcd (e, φ(N)) = 1.   e = 11 
He then publicly announces e and N, but not p and q.   

The numbers e and N are the public key, known to all. 

Alice now converts her message to numerical form 
and calls it M.  Knowing e and N, she calculates  

E ≡ Me (mod N)  and sends it to Bob. 



RSA public key cryptography
Alice calculates  E ≡ Me (mod N)  and sends it to Bob. 

Using the fact that gcd (e, φ(N)) = 1, 

Bob calculates m and n for which 
me + n φ(N) = 1,  and so me ≡ 1 (mod φ(N)). 

11m ≡ 1 (mod 1008),  so m = 275 
By Euler’s theorem,  Mφ(N) ≡ 1 (mod N), 

so     Em ≡ (Me)m = Mme = M1 −nφ(N) ≡ M (mod N).

Bob calculates  Em (mod N)  to retrieve Alice’s 
original message M.           M ≡ E275 (mod 1073)
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