
CRYPTOCURRENCIES: Protocols for Consensus

Andrew Lewis-Pye, LSE

Two basic tools from cryptography

(1) Hash functions

Data Hash function 256 bit string

Acts (essentially) like a random string generator.

This means you are unlikely ever to find two inputs which hash to the same value.

Two basic tools from cryptography

(1) Hash functions

Data Hash function 256 bit string

Acts (essentially) like a random string generator.

This means you are unlikely ever to find two inputs which hash to the same value.

Two basic tools from cryptography

(2) Digital signatures

Alice

000101010010101010000
100101111010010101010
100101000010010111101
010101010101010101010
010101010101001010101
010100101010101001010
101010101000000001010
101111111111010101010
010101011111001010101

01010010101

000101
010010
101010
000100

Bob

Eve

Two basic tools from cryptography

(2) Digital signatures

000101010010101010000
100101111010010101010
100101000010010111101
010101010101010101010
010101010101001010101
010100101010101001010
101010101000000001010
101111111111010101010
010101011111001010101

01010010101

000101
010010
101010
000100

Alice

Bob

Eve

Two basic tools from cryptography

(2) Digital signatures

000101010010101010000
100101111010010101010
100101000010010111101
010101010101010101010
010101010101001010101
010100101010101001010
101010101000000001010
101111111111010101010
010101011111001010101

01010010101

000101
010010
101010
000100

0101010100101
0101010101010
1000001011110
0101010010001
0100101010010
1010010101010
1010101010100

10101

Alice

Bob

Eve

Two basic tools from cryptography

(2) Digital signatures

000101010010101010000
100101111010010101010
100101000010010111101
010101010101010101010
010101010101001010101
010100101010101001010
101010101000000001010
101111111111010101010
010101011111001010101

01010010101

000101
010010
101010
000100

0101010100101
0101010101010
1000001011110
0101010010001
0100101010010
1010010101010
1010101010100

10101

Alice

Bob

Eve

Two basic tools from cryptography

(2) Digital signatures

000101010010101010000
100101111010010101010
100101000010010111101
010101010101010101010
010101010101001010101
010100101010101001010
101010101000000001010
101111111111010101010
010101011111001010101

01010010101

000101
010010
101010
000100

Alice

Bob

Two basic tools from cryptography

(2) Digital signatures

When somebody sends a message, the receiver can
be sure who it came from.

000101010010101010000
100101111010010101010
100101000010010111101
010101010101010101010
010101010101001010101
010100101010101001010
101010101000000001010
101111111111010101010
010101011111001010101

01010010101

000101
010010
101010
000100

What is achieved:

Alice

Bob

How to design a cryptocurrency?

The whole point of Bitcoin is that it should be decentralised. First of all, though, let’s
consider how things might work with a central bank…

We could have a ledger for each coin…

This is coin
1

Owned first
by John

Owned
next by

Alice

Owned
next by
Frank

Updated
version of

ledger

How to design a cryptocurrency?

The whole point of Bitcoin is that it should be decentralised. First of all, though, let’s
consider how things might work with a central bank…

We could have a ledger for each coin…

This is coin
1

Owned first
by John

Owned
next by

Alice

Owned
next by
Frank

Updated
version of

ledger

How to design a cryptocurrency?

The whole point of Bitcoin is that it should be decentralised. First of all, though, let’s
consider how things might work with a central bank…

We could have a ledger for each coin…

This is coin
1

Owned first
by John

Owned
next by

Alice

Owned
next by
Frank

Updated
version of

ledger

How to design a cryptocurrency?

The whole point of Bitcoin is that it should be decentralised. First of all, though, let’s
consider how things might work with a central bank…

We could have a ledger for each coin…

This is coin
1

Owned first
by John

Owned
next by

Alice

Owned
next by
Frank

Updated
version of

ledger

How to design a cryptocurrency?

The whole point of Bitcoin is that it should be decentralised. First of all, though, let’s
consider how things might work with a central bank…

We could have a ledger for each coin…

This is coin
1

Owned first
by John

Owned
next by

Alice

Owned
next by
Frank

Updated
version of

ledger

How to design a cryptocurrency?

What this process (with the central bank) achieves:

(1) Only Alice can spend her coin.

(2) She cannot spend it twice.

How to design a cryptocurrency?

Now what happens without the central bank?

This is coin
1

Owned first
by John

Owned
next by

Alice

Owned
next by
Frank

Updated
version of

ledger

(1) Only Alice can spend her coin.

(2) She cannot spend it twice.

How to design a cryptocurrency?

Now what happens without the central bank?

This is coin
1

Owned first
by John

Owned
next by

Alice

Owned
next by
Frank

Updated
version of

ledger

(1) Only Alice can spend her coin.

(2) She cannot spend it twice.

How to design a cryptocurrency?

…so how to avoid double spending?

1) Let’s (have all users) keep a universal ledger of all coins.

2) We could specify a Proof-Of-Work (a hard computational task) for each
transaction, and only append transactions to the ledger once the corresponding
POW has been completed.

…so now, when Alice wants to spend her coin, she sends the transaction out into
the network of users who all start tying to provide the corresponding POW. Once
somebody completes the POW the transaction is appended to the ledger.

How to design a cryptocurrency?

…so how to avoid double spending?

1) Let’s (have all users) keep a universal ledger of all coins.

2) We could specify a Proof-Of-Work (result of a hard computational task) for each
transaction, and only append transactions to the ledger once the corresponding
POW has been completed.

…so now, when Alice wants to spend her coin, she sends the transaction out into
the network of users who all start trying to provide the corresponding POW. Once
somebody completes the POW the transaction is appended to the ledger.

How to design a cryptocurrency?

…so how to avoid double spending?

1) Let’s (have all users) keep a universal ledger of all coins.

2) We could specify a Proof-Of-Work (result of a hard computational task) for each
transaction, and only append transactions to the ledger once the corresponding
POW has been completed.

…so now, when Alice wants to spend her coin, she sends the transaction out into
the network of users who all start trying to provide the corresponding POW. Once
somebody completes the POW the transaction is appended to the ledger.

How to design a cryptocurrency?

…so how to avoid double spending?

1) Let’s (have all users) keep a universal ledger of all coins.

2) We could specify a Proof-Of-Work (result of a hard computational task) for each
transaction, and only append transactions to the ledger once the corresponding
POW has been completed.

…so now, when Alice wants to spend her coin, she sends the transaction out into
the network of users who all start trying to provide the corresponding POW. Once
somebody completes the POW the transaction is appended to the ledger.

How to design a cryptocurrency?

…so how to avoid double spending?

1) Let’s (have all users) keep a universal ledger of all coins.

2) We could specify a Proof-Of-Work (result of a hard computational task) for each
transaction, and only append transactions to the ledger once the corresponding
POW has been completed.

…so now, when Alice wants to spend her coin, she sends the transaction out into
the network of users who all start trying to provide the corresponding POW. Once
somebody completes the POW the transaction is appended to the ledger.

How to design a cryptocurrency?

…so how to avoid double spending.. (ctd)..

3) We specify that the CORRECT version of the ledger is always the longest one.

4) We agree that a transaction is CONFIRMED once it is in the ledger and is followed
by sufficiently many transactions.

How does this avoid double spending?

How to design a cryptocurrency?

…so how to avoid double spending.. (ctd)..

3) We specify that the CORRECT version of the ledger is always the longest one.

4) We agree that a transaction is CONFIRMED once it is in the ledger and is followed
by sufficiently many transactions.

How does this avoid double spending?

How to design a cryptocurrency?

…so how to avoid double spending.. (ctd)..

3) We specify that the CORRECT version of the ledger is always the longest one.

4) We agree that a transaction is CONFIRMED once it is in the ledger and is followed
by sufficiently many transactions.

How does this avoid double spending?

How to design a cryptocurrency?

…so how to avoid double spending.. (ctd)..

3) We specify that the CORRECT version of the ledger is always the longest one.

4) We agree that a transaction is CONFIRMED once it is in the ledger and is followed
by sufficiently many transactions.

How does this avoid double spending?

How to design a cryptocurrency?

…so how to avoid double spending.. (ctd)..

3) We specify that the CORRECT version of the ledger is always the longest one.

4) We agree that a transaction is CONFIRMED once it is in the ledger and is followed
by sufficiently many transactions.

How does this avoid double spending?

How to design a cryptocurrency?

…so how to avoid double spending.. (ctd)..

3) We specify that the CORRECT version of the ledger is always the longest one.

4) We agree that a transaction is CONFIRMED once it is in the ledger and is followed
by sufficiently many transactions.

How does this avoid double spending?

How to design a cryptocurrency?

…so how to avoid double spending.. (ctd)..

3) We specify that the CORRECT version of the ledger is always the longest one.

4) We agree that a transaction is CONFIRMED once it is in the ledger and is followed
by sufficiently many transactions.

How does this avoid double spending?

How to design a cryptocurrency?

…so how to avoid double spending.. (ctd)..

3) We specify that the CORRECT version of the ledger is always the longest one.

4) We agree that a transaction is CONFIRMED once it is in the ledger and is followed
by sufficiently many transactions.

How does this avoid double spending?

The adversary would need more computational power than the rest of the network
combined!

How to design a cryptocurrency?

Some further details:

1) Let’s call the people looking for the necessary POWs miners. We better pay
them for their effort.

2) If we actually append transactions individually this will cause timing
problems. Much better to have the miners group transactions together into
large blocks, and require a POW for each block.

How to design a cryptocurrency?

Some further details:

3) We can specify the POW for each block of transactions using an agreed on
hash function.

Take the data which is the block:

1001…………010101 10001

For any given k, by a NONCE for the block, we mean something we can append
to the block, so that when it’s fed into the hash function we get an output ending
with k many 0s.

hash 11011….00000

How to design a cryptocurrency?

Some further details:

3) We can specify the POW for each block of transactions using an agreed on
hash function.

Take the data which is the block:

1001…………010101 10001

For any given k, by a NONCE for the block, we mean something we can append
to the block, so that when the block and the nonce are fed into the hash function
we get an output ending with at least k many 0s.

hash 11011….00000

The POW required is a NONCE (for k which is chosen to make the task hard).

What are the limitations?

Many…including:

What are the limitations?

Many…including:

Massive energy consumption!

What are the limitations?

Many…including:

Massive energy consumption!

How secure is it really?

What are the limitations?

Many…including:

Massive energy consumption!

How secure is it really?

Transaction rates…

…and solutions?

Many…including:

Massive energy consumption!

How secure is it really?

Transaction rates…

Proof-of-stake is one approach

Scalability

The problem The solutions

The second bottleneck

The first bottleneck

(all or many nodes verify all transactions)

(network latency means blocks can’t be produced too fast)

Layer 0

Layer 1

Layer 2

(underlying infrastructure used by the protocol)

(solutions at the level of the protocol itself)

(protocols which are implemented on top of the underlying
cryptocurrency)

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

When a miner finds a block it takes time
to propagate across the network.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

When a miner finds a block it takes time
to propagate across the network.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

When a miner finds a block it takes time
to propagate across the network.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

When a miner finds a block it takes time
to propagate across the network.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

When two blocks are found almost simultaneously, this splits the network…causes
a fork.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

When two blocks are found almost simultaneously, this splits the network…causes
a fork.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

When two blocks are found almost simultaneously, this splits the network…causes
a fork.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

Now only half the network is working to find POWs above each side of the fork.
This makes it twice as easy for our adversary.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

With Bitcoin this happens quite infrequently.. but..

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

With Bitcoin this happens quite infrequently.. but..if we were to produce twice as
often it would happen twice as much.

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

If we produce a block every 5 seconds, then we would have forks within forks
within forks etc! Chaos would ensue..

The first scaling bottleneck

The underlying communication network has latency, i.e. messages take time to
travel.

This is the first scaling bottleneck: network latency means blocks cannot be
produced too quickly without sacrificing security.

The second scaling bottleneck

So long as all (or many) users have to verify all transactions, this severely limits the
rate at which they can be processed.

In a decentralised Web 3.0, one couldn’t reasonably have many users verifying all
actions of all users!

So scaling solutions dealing with this bottleneck aim to reduce the verification
tasks of individual users without sacrificing (too much) security.

The second scaling bottleneck

So long as all (or many) users have to verify all transactions, this severely limits the
rate at which they can be processed.

In a decentralised Web 3.0, one couldn’t reasonably have many users verifying all
actions of all users!

So scaling solutions dealing with this bottleneck aim to reduce the verification
tasks of individual users without sacrificing (too much) security.

Scalability

The problem The solutions

The second bottleneck

The first bottleneck

(all or many nodes verify all transactions)

(network latency means blocks can’t be produced too fast)

Layer 0

Layer 1

Layer 2

(underlying infrastructure used by the protocol)

(solutions at the level of the protocol itself)

(protocols which are implemented on top of the underlying
cryptocurrency)

The future for cryptocurrencies?

The human element to all of this makes things especially hard to predict.

The future for cryptocurrencies?

The human element to all of this makes things especially hard to predict.

Can high transaction rates be achieved? Yes! But there are different routes…

Bitcoin remains king

Layer 2

Combination of layers 1 and 2

Stronger solution

The future for cryptocurrencies?

The human element to all of this makes things especially hard to predict.

Can high transaction rates be achieved? Yes! But there are different routes…

Bitcoin remains king

Layer 2

Combination of layers 1 and 2

Stronger solution

Not realistic or interesting to talk of cryptocurrencies replacing fiat currencies in
the short term. If the appetite is there, then they will establish new functionalities

and roles (e.g. in decentralised finance and web applications).

Thanks for listening

