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Two basic tools from cryptography 

(2) Digital signatures

When somebody sends a message, the receiver can 
be sure who it came from. 
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…so how to avoid double spending.. (ctd)..   

3) We specify that the CORRECT version of the ledger is always the longest one. 

4) We agree that a transaction is CONFIRMED once it is in the ledger and is followed 
by sufficiently many transactions. 

How does this avoid double spending?    

The adversary would need more computational power than the rest of the network 
combined!     



How to design a cryptocurrency?  

Some further details: 

1) Let’s call the people looking for the necessary POWs miners. We better pay 
them for their effort. 

2) If we actually append transactions individually this will cause timing 
problems. Much better to have the miners group transactions together into 
large blocks, and require a POW for each block.  
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How to design a cryptocurrency?  

Some further details: 

3) We can specify the POW for each block of transactions using an agreed on 
hash function.  

Take the data which is the block: 

1001…………010101 10001

For any given k, by a NONCE for the block, we mean something we can append 
to the block, so that when the block and the nonce are fed into the hash function 
we get an output ending with at least k many 0s.  

hash 11011….00000

The POW required is a NONCE (for k which is chosen to make the task hard).  
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…and solutions?   

Many…including:  

Massive energy consumption!   

How secure is it really?   

Transaction rates…  

Proof-of-stake is one approach
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(protocols which are implemented on top of the underlying 
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This makes it twice as easy for our adversary.  
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The first scaling bottleneck  

The underlying communication network has latency, i.e. messages take time to 
travel. 

This is the first scaling bottleneck: network latency means blocks cannot be 
produced too quickly without sacrificing security.   
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The future for cryptocurrencies?   

The human element to all of this makes things especially hard to predict.  

Can high transaction rates be achieved? Yes! But there are different routes…  

Bitcoin remains king

Layer 2

Combination of layers 1 and 2

Stronger solution 

Not realistic or interesting to talk of cryptocurrencies replacing fiat currencies in 
the short term. If the appetite is there, then they will establish new functionalities 

and roles (e.g. in decentralised finance and web applications). 



Thanks for listening 


