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Changing the Frequency 
changes the pitch



What makes sounds 
harmonious?



Harmonious Sounds

String Length Frequency Name

!
" 𝑙 2𝑓 Octave higher

2𝑙 !
" 𝑓 Octave lower

!
" 𝑙

"
! 𝑓 Perfect 5th higher

#
$ 𝑙

#
" 𝑓 Perfect 4th higher

Suppose a string of length 𝑙 produces a sound of frequency 𝑓.



Some Musical Notation

C D E F G A B C D E F G A B C D E F G A B



Semitones

C D E F G A B C D E F G A B C D E F G A B

F#

Gb



Octaves

C D E F G A B C D E F G A B C D E F G A B

12 semitones in an octave; 7 notes in the diatonic scale



Fifths

C D E F G A B C D E F G A B C D E F G A B



Fourths

C D E F G A B C D E F G A B C D E F G A B



Circles and Spirals

The Problem
• Start at 𝑓
• 7 octaves: 128𝑓

• 12 fifths: !
"

!"
𝑓 ≈ 129.7𝑓.



Cents
• 100Hz to 200Hz is an octave, but so is 200Hz to 400Hz. 

• Ratio %!
%$

of two frequencies is equal to 𝑐 cents, where 
𝑓"
𝑓!
= 2&/!"((.

1200 log# 𝑟$ 𝑟# = 1200 log# 𝑟$ + log# 𝑟# = 1200 log# 𝑟$ + 1200 log# 𝑟# = 𝑎$ + 𝑎#.

• Frequency ratio 𝑟 corresponds to 1200 log"𝑟 cents (¢). 
• Suppose ratio 𝑟! that is 𝑎!¢, is followed by ratio 𝑟" that is 𝑎" ¢.
• Ratio of the outcome is 𝑟!𝑟", but the new cent value is: 
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The Pythagorean Scale
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• After 12 pitch classes, next is almost the 
same as one you have – hence 12 “notes”.

• 53 perfect 5ths ≈ 31 octaves more closely 
(3.6 cents)

• Can never complete the circle: "!
%
-"&

implies 3. = 2./0.



What went wrong?
• Singing “in a womanish manner 

with tinkling”… “as if imitating the 
wantonness of minstrels” (1132)

• Licentious modulations! 
Mountainous collections of 
cacophonies! 

• Instruments with fixed keys by 
c1400 (shown: spinetta, 1540) 

• “English” harmonies: 3rd and 6th.



Just Intonation
• Pure major 3rd: 5/4 (386¢). Pure minor 3rd: 6/5 
• Pythagorean major 3rd: 81/64 (408¢). 
• Bartolomeo Ramos de Pareja in 1482 suggested 

“just-intonation.”
• C to E, F to A, G to B are pure major thirds.
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• over 22¢ away from a pure perfect 5th.



A practical solution
• Organ makers adjusting lengths of pipes to 

temper the ratios of their fifths –
temperament or participata

• 4 pure 5ths #
"

$
= *!

!,
; want pure 3rd: 4× 1

$
= 5.

• Want “tempered” 5th to be 𝑥 such that 𝑥$ = 5.
• New “G” is 697¢; the pure “G” is 702¢.
• Called Mean-Tone Temperament

Franchinus Gaffurius
Practica Musicae (1486)



Mean-tone Temperament

• Suppose we use mean-tone 
temperament to tune our keyboard 
instrument.
• In D major, the key between F and G 

needs to be F#, a major third above D.
• In D♭major, the key between F and G 

needs to be G♭, a perfect fourth 
above D♭. 
• You can’t do both!

C   D   E   F   G   A   B





Nicola Vicentino (1511-1575) and his Archicembalo



Equal Temperament
• Simon Stevin (1548-1620), a strong 

proponent of equal temperament.
• Make all twelve tones equally spaced.
• Psychologically challenging! 
• Each semitone must be $! 2 times the last.

Cent Values Third 
(5/4)

Fourth 
(4/3)

Fifth 
(3/2)

Octave 
(2)

Pure 386 498 702 1200

Pythagorean 408 498 702 1200

Mean-Tone 386 488 697 1200

Equal 400 500 700 1200



• Described pipes in 
1584 treatise.

• +$)
1((

for perfect 5th.

• This is 699.65¢.

The Pitch-Pipes of 
Chu Tsai-Yu



Practical Solutions
• Vincenzo Galilei (1520 – 1591) 

• Used Boethius’ 18:17 semitone (99¢)

• Perfect 5th is 693¢

• Strings from nut to bridge, say 1m. 

• Nut to 1st fret: 1/18th total, ≈5.56cm

• 1-2nd fret: !!"× 1 − !
!" = !#

$%& ≈5.25cm

• 2nd -3rd fret:  ≈ 5.00cm etc



Other Solutions
• Andreas Werckmeister (1681)

“Well-Temperament” 
• Did Bach use it??



The Mathematics of 
Frequency

• Mersenne measured frequency by 
doubling lengths repeatedly until he could 
see and count vibrations.

• Vincenzo Galilei discovered for 
vibrating strings that 

pitch ∝ √(Tension)
• Galileo Galilei stated further 

laws.
• Mersenne’s own experiments 

led to Mersenne’s laws:

𝑓 =
1
2𝑙

𝑇
𝜇



Why are 
these ratios 
harmonious?



• April 1668: “with Lord Brouncker to the 
King’s Head Taverne by Chancery Lane, 
[..] I did hear of Mr Hooke and my Lord 
an Account of the reason of concords and 
discords in musique, which they say is 
from the equality of vibrations, but I am 
not satisfied in in, but will at my leisure 
think of it more.”
• Next day: “by coach to Duck Lane, to 

look out for Marsanne, in French, but it 
is not to be had”.
• January 1669: [I am] “in the right way of 

unfolding the mystery of this matter, 
better than ever yet”.



The Wave Equation
• Take a string fixed at both ends (eg a violin string). 
• Disturb it at time 𝑡 = 0. The vertical displacement 𝑦 at a point 𝑥 along 

the string depends both on 𝑥 and 𝑡.
𝜕#𝑦
𝜕𝑡#

=
𝑇
𝜇
×
𝜕#𝑦
𝜕𝑥#

• Jean-le-Rond D’Alembert (1717-1783) found a method to solve this.

• Solution is wave 𝐴 + wave 𝐵
𝐴 𝑡 + 2𝑙 = 𝐴 𝑡
𝐵 𝑥 = −𝐴 𝑙 − 𝑥

• Periodic with period 2𝑙.Wave 𝐴 → Wave 𝐵 ←



Fourier’s breakthrough

• ANY periodic function can be 
broken up into a combination of 
sine waves!
• Every solution of the wave 

equation for string fixed at both 
ends is a sum of sine waves of 
period 2𝑙 (if 𝑙 is the length of the 
string).
• Corresponds to frequencies 
𝑓, 2𝑓, 3𝑓 etc.

• Instruments have different 
combinations of these waves.

• Initial “transient sound” is also 
important.



Other instruments
• Flute: open at both ends so 

pressure there equals ambient 
pressure. Same solutions as 
string. 
• Clarinet: closed at one end. 

Maximum pressure at closed 
end, favours odd multiples of 
fundamental frequency.

• Drums: two dimensional wave 
equation.



Overtones and harmonies

• A note played on a musical 
instrument has: 
• a fundamental frequency 𝑓
• overtones, or harmonics, that 

are integer multiples of 𝑓.

• Harmonics of 2𝑓 are harmonics of 𝑓.
• #

"
𝑓 (a perfect 5th) has many harmonics in common with 𝑓.



And finally…

• Understanding how notes are 
made allows us to create aural 
illusions.
• See work of Roger Shepard  and 

Diana Deutsch.
• Create tones out of harmonics 

spaced one octave apart with 
middle pitched ones, not lowest, 
being loudest. 

Video created by Howard Freeland
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