

Data: The Past, The Present and The Future
Professor Richard Harvey FBCS

24 October 2020

This is the second in series of lectures called “Great Ideas from Computer Science. In the first lecture
I looked at algorithms and we discovered that some rather fantastical things – algorithms which went
from being completely tractable to intractable as the problem increased in size. We also discovered
that often the nub of a successful algorithm is a novel way of representing the data. That is what I
want to look at here.

Data as a concept seems to quite antique and one of the earlier Gresham Professors, Samuel
Pepys, would have used the word as we would today1. Of course the origins are as the plural of
datum meaning a geographical point or reference point. And generations of undergraduates are put
the wheel for writing “the data is” in the singular2. For the purposes of this lecture, I am interested in
the meaning of the word as “digital stuff” and I shall not worry too much about the latinate origins of
the word not whether it is plural or singular.

As far as early computers went, the main problem was jamming data into their puny memories. To
see this in detail it is helpful to consider how a basic computer works. In Figure 1, the computational
part is called the CPU and the part that stores most of the data is called memory3. When the CPU
wants to read some data it sets the read/write line to high or low (depending on who designed the
computer) which instructs the memory to be in read-only mode. The CPU then sets the, let’s say
sixteen, lines on the address bus to a binary number and that number then forms an address. The
memory then switches to that address and sets the data-bus lines to be whatever is stored at that
address. A few nano-seconds later, the CPU reads the value. The number of data lines is called the
“width” of the memory and in early devices it tended to be eight because the CPU was designed to
handle 8-bit numbers.

1 The Oxford English dictionary gives the earliest use of data in “A most plaine and easie way of finding the Sunnes
Amplitude and Azimuth” 1630 and credits Admiral William Batten who was a colleague of Samuel Pepys. Something
that Pepys would have found infuriating since he disliked Batten. Given that Pepys was a Gresham Professor and
Batten was not, loyalty demanded that I searched hard to find an earlier reference to data or at least an earlier
reference to data in the sense of numerical evidence. More information on the etymology of data see [7].
2 A colleague has speculated that we should have a rubber stamp marked “Data are a plural” which we can stamp in
the margins of work by the uneducated or possibly on their foreheads.
3 Memory is rather loose term and a few years ago we would have been quite pedantic about differentiating between
memory that we could only read from (Read Only Memory or ROM) or memory from which we could read and write
from (confusingly called Random Access Memory even though there is nothing random about it) and disc memory (or
disk if you are American). Disc memory stores information even after the power is turned off, unlike RAM, but is
incredibly slow compared to RAM. But nowadays these technologies have all merged into one so let’s park it for a bit.

2

Figure 1: Showing a central processor unit (CPU) and some storage or memory

So, the challenge for software designers was how to fit things into 8-bits or, if not 8-bits, then
multiples of 8-bits. An 8-bit word can hold 28 = 256 combinations which is not very many! Thus, 8-
bit words can be used to hold yes/no quantities (often called logicals by programmers)4. 256
combinations are also just enough to represent the English character set and a few symbols which
can be used to indicate other things – a fact that was discovered much earlier with the invention of
the teleprinter5.

But what about numbers? Clearly you would not find it very congenial if your spreadsheet could only
hold numbers (0, …, 255) which would be the implication of using 8-bit words. So, computer
designers realised that then had to concatenate bytes to hold numerical values. Each CPU has its
own standard for representing things. And for speed and convenience, software that runs on that
type of computer will usually adopt the “native” date types used by that CPU. This means that
translating binary data stored on one machine to another machine can be a hassle and in the 60s,
70s and even 80s many a PhD student wasted hours writing conversion routines6. But what about
numbers that are not whole numbers? Non-integers. Computers have two ways of representing
those: fixed-point numbers which are now not used very much and floating-point numbers which are
ubiquitous. Floating-point numbers were another bête noir of graduate students because there were
many early computers, each with their own definition and, frankly, it was soon discovered that the
numerical analysis of several computers was lousy7.

The idea behind floating point numbers is to represent all real numbers as

±𝑀 × 10𝐸

4 In fact, yes/no quantities only use two states, so an 8-bit word can hold eight logicals although modern systems often
map a logical to the whole word to save the time associated with unpacking the bits.
5 If you have ever wondered why those extra characters are called “control characters” then I am happy to tell you that
they were used for controlling the flow of data down teleprinters (“flow control” became “control” and hence control
characters). So that typists could type control characters, early keyboards contained a control-key (marked CTRL on
the PC) – one held-down the control key and hit the appropriate letter and a control symbol was sent. Try opening a
terminal on your Mac or PC and hit control-G. You should hear the bell associated with an old teletype.
6 And I have not mentioned endianness. If a computer stores the least significant bit of a word at a lower address than
the most significant bit, then it is known as little-endian machine. Big endian mutatis mutandis. If you have an Intel
PC then you are little-endian, if you have a PowerPC Macintosh then you are big-endian. If you have an ARM
processor then you are bi-endian. How modern! If you are racking your brains – the Endians were two tribes in
Gulliver’s Travels who disagreed most violently over a very trivial thing.
7 It was commonplace to run a program called paranoia that ran many floating point calculations and then told you the
disappointing news that your computer, which cost many, many, thousands of dollars, was not rounding properly.

3

Where M is a number called the mantissa and E is the exponent. The more general form replaces
10 with B a chosen base.

Thus, the road distance from UEA to Barnard’s Inn which is 186.6839 km would be represented as
1.866839×103. Sometimes computer floating point numbers use base ten but more often base two.
Clearly when we convert a number like 1.866839×103 to 1.8231×210, truncations can happen but,
with good numerical analysis one can keep these under control. To see this in action I created an
Excel spreadsheet with a thousand random numbers and added them up. It should make difference
whether I sort the numbers from smallest to largest, or visa versa, or leave as it. But it does. In my
example the sums differed by roughly 5×10-7. Not much, but annoying if you are calculating a
moonshot trajectory89. Fortunately, some of the madness of multiple formats for floating point
numbers has dissipated and there is now an international standard known as IEEE 754 which
specifies how floating-point numbers should be stored, rounded and processed.

Early computers had to be programmed at an incredibly low level: move whatever you find at this
memory location to register A; move whatever you find at this other memory location to register B;
apply a logical OR operation to registers A and B and store the result in A; store register A to some
other memory location. This sort of program was very time consuming and irksome to construct
since common operations, such as adding two floating-point numbers together, would take many
hundreds of instructions which had to be typed-in (or input on cards or tape). As computers grew in
power, people realised that it would be a lot easier if we could program them in a high-level language
and that it was feasible to write programs called compilers that converted the high-level language
into machine code10. These high-level compilers tended to insulate programmers from the tiresome
low-level stuff which meant it was possible to be more productive but, like a driver who neither knows
nor cares how an automobile works, there are potential difficulties when things go wrong.

High-level languages introduced the second age of computer data which is when the data are
structured to suit the problem rather than the hardware. This was the time when we started to refer
to data-structures which were semantically related groups of data, usually stored in contiguous
memory locations. The simplest one I can think of is an array, which is a collection of numbers, like
a column of data in Excel and stored one after another in memory. Accessing arrays is fast because,
if we know the address of the first element, then we need only add the offset, which is the width of
the word in each array element, to get to the next element. If we want, say, the fifth element then
we add to the base address, five times the offset and bingo! Arrays are fine if we know in advance
how many elements we want to hold, as we often do in scientific computing, but if we have variable
amounts of data then it’s a bit of faff to check that we have not overrun the end of the end of the
array and, if we have, re-dimension a new array. The solution is a linked list, which is a staple data
structure of undergraduate computer science courses. In a linked list each element holds the data
and a pointer to the next element in the list11. It’s a bit bulky, because of all those addresses, but it
allows complete flexibility. Data structures that can change as the program runs are called dynamic

8 There are summation algorithms that attempt to estimate the error as you go along the list and subtract it at the end
[5]. I’m afraid I did not have time to work out if Microsoft Excel is using one of these compensated summation
algorithms. Given the huge number of people using Excel to add floating point numbers then I should jolly well hope
so!
9 I should also point out that spreadsheets are notorious for creating errors. There is a whole literature on spreadsheet
errors. Some of it is summarised here [8].
10 Actually, there is a zoo of exotic programs that create code: loaders, assemblers; interpreters; cross-compilers and
compilers. Which is to say nothing of the menagerie of programs that allow you to build such things. One of my
favourites is yacc which is unix tool which allows you to compile compilers. Yacc is an acronym, Yet Another Compiler
Compiler, which implies that computer scientists spend rather too long writing compilers for exotic languages.
11 A linked list with two addresses to objects is a tree or binary tree (binary because each node has two children rather
than because its holds binary data).

4

data structures12. In the slides I show how choosing the right data structure can make huge
differences to the performance of algorithms. The example I picked is search, which I also looked
at in the previous lecture on algorithms. I picked search partly so there is a link between the two
lectures but also as a segue to databases.

A word of warning on databases. In the previous lecture on algorithms [1] you may have got the
impression, via Cobham-Edmonds thesis, that pretty much any algorithm which had polynomial
complexity or less was trivial to implement as quickly as we want. That’s not true, and the topic of
databases brings that untruth to the fore: many of the things we need to do to databases look
computationally very tractable, but when we are handling gazzillions of data items, and thousands
of irate Amazon customers trying to search for a present days before Christmas, speed is critical.

Is a database anything more than a great big file of data? All the products on the Amazon website
for example? Well, yes and no. It’s true that when you search for something at Amazon, you are
issuing queries to a database13 but those data need to be stored very carefully on Amazon’s servers
otherwise your query might take hours. The usual first step to creating a database is normalisation
which is a fancy way of splitting the data into tables which might be easier to update. Database
specialists have a horror of inconsistency and errors (data integrity is Queen) and since humans
enter data into databases, errors are rife14.

To make it more concrete I created a simple flat-file database that contains the Gresham College
lectures. A segment is shown in Table 1.
Table 1: A section of an example flat-file database

Title Date Time Lecturer Slides Tech
support

Publicity
and
liaison

Transcript
length

Series

Snow white:
evil witches

19/11/2020 18:00 Joanna
Bourke

powerpoint James Lucia 10 Evil women

Understanding
the universe
with AI

23/11/2020 13:00 Roberto
Trotta

powerpoint James Lucia 6 The
unexpected
universe

Data: the past,
the present
and the future

18/11/2020 18:00 Richard
Harvey

keynote James Claire 4 Great Ideas
from
Computer
Science

The changing
geography of
ill health

25/11/2020 18:00 Chris
Witty

keynote Richard,
James

Lucia 8 Major
debates in
public
health

12 It’s a bit of fine point as to whether a data structure is dynamic or static. On the face of it, it is a simple
categorisation – if the data structure can change size at run time then it is dynamic otherwise it is static. Some early
languages, such as Fortran77 do not easily support dynamic data structures. That said, it is fairly simple to write a
Fortran program that simulates a linked list using a static array for the storage thus creating a dynamic structure from
a static one.
13 https://www.amazon.co.uk/s?k=gresham+college is asking the Amazon database to search through all the titles of
items looking for the words “Gresham” or “college” and return them ranked by, well who knows how they are ranked –
by profitability for Amazon I should think.
14 The study of databases is all about detail. For example, one of the common problem in databases is the problem of
duplicates. Thus, almost all databases have “deduping” algorithms. If those work incorrectly then you will be on the
receiving end of multiple pieces of identical junk mail – the mailing database being realise that Richard Harvey,
Richard William Harvey, R W Harvey, R Hervey and R Hrvy are the same person (the latter version now being how
cool kids now spell my name).

https://www.amazon.co.uk/s?k=gresham+college

5

It all looks very innocuous until one realises that there are at least 2000 lectures online, and each
year there are another 130 to cope with. Normalisations appear to, at first look, make the data
structures look more complicated but they are designed to remove classic “gotchas” of database
design such as the problem of having to update several tables when, for example, a customer’s
address changes. The First Normal Form (1NF) forbids columns that contain multiple values (Tech
support in our example). This seems sensible enough – search is more complex when a column
might return multiple items. Tables 2.1 and 2.2 are my reworking of the data – this time in 1NF. You
might note that I have now introduced something called a key. A key is a unique identifier for each
item in the database: keys are key feature of most databases.

Table 2.1: A section of the database in Table 1 put into 1NF (Table 1)

Key Title Date Time Lecturer Slides Publicity
and
liaison

Transcript
length

Series

JB32020 Snow white:
evil witches

19/11/2020 18:00 Joanna
Bourke

powerpoint Lucia 10 Evil women

RT22020 Understanding
the universe
with AI

23/11/2020 13:00 Roberto
Trotta

powerpoint Lucia 6 The
unexpected
universe

RH22020 Data: the past,
the present
and the future

18/11/2020 18:00 Richard
Harvey

keynote Claire 4 Great Ideas
from
Computer
Science

CW12020 The changing
geography of
ill health

25/11/2020 18:00 Chris
Witty

keynote Lucia 8 Major
debates in
public
health

Table 2.2 A section of the database in Table 1 put into 1NF(Table 2)

Tech
support

Key

James JB32020

James RT22020

James RH22020

Richard CW12020

In the Second Normal Form (2NF), we aim to discover attributes that are not dependent directly on
the key and remove them into separate tables. For example, the lecture series: we do not need to
store the lecture series for every lecture and certainly knowing a lecture series does not uniquely
identify the lecture. So, we would store it in separate tables: one for each series probably.

In the interests of expediency, I will avoid telling you about all the normal forms: there at least six of
them. However, it is worth noting that these ideas all spring from a mathematical model of databases
called the relational model which itself is based on predicate calculus. Databases15 so formed are
known as relational databases and nowadays all databases are relational (they may be other things
too).

15 Ted Cobb, who invented relational databases while at IBM Research Santa Clara, actually used the term data bank
[6] but banks are never popular so we now have database.

6

In terms of practical databases, the field seems to have started in around the 1960s. One of the
early systems was Sabre – the airline reservation system [2]. The system has become so well cited
that a variety of apocryphal stories have grown up around the system including a meeting between
an IBM Sales Executive and CR Smith, the founder of American Airlines on an aircraft in 1953 when
the system was conceived. What is certainly true is that manual booking system was creaking at
the seams – each hub booked seats using card-based boards or swivelling carousels. If you needed
to book a flight you called the hub. What is less well talked about was, at the time, the system was
regarded as a business failure: IBM were mainly interested in selling hardware at very high margins,
and dramatically undercosted the system. The effect of this investment was that by the 1970s
American Airlines was able to provide travel agents with electronic booking systems with the
inevitable accusation, from other airlines, that the system was unfairly prioritising flights from
American Airlines. Lawsuits followed and American Airlines vigorously defended themselves on the
grounds that they had made a risky early investment in technology and were entitled to reap the
rewards. Despite these ups and downs, Sabre is still going strong and remains a market-leader in
airline reservation systems.

Relational databases came after the first large systems and in the late 70s lead to the formation of
one of the software industry’s behemoths, Oracle. Oracle was a champion of a new language, SQL
(usually pronounced by the cognoscenti as “sequel”), that allowed programmers and operators to
frame queries without the pain of having to write loops. For example, the SQL command SELECT
TOP 1 Salary FROM Employee means please go through every row of the database and look at the
entries in the column marked Salary. Find the highest value of Salary and then return the name in
the Employee column.

A few years later the concept of object orientated (OO) programming became popular and there
was much recherché debate about the extent to which relational databases were, or were not, object
orientated. Marketers were very keen for databases to be object oriented but anyone who knew
anything about programming, especially anyone who was trying to teach first-year undergraduates
object oriented programming, realised that OO was over-hyped and indeed for many situations
positively unhelpful (more on this in later lectures). However, one technique that has proved useful
is the so-called Entity Relationship Diagram or ERD. The original graphical presentation proposed
by Chen in 1976 [3] is now no longer common16 but the ideas are gained traction and ERDs form
one of a long list of graphical modelling tools that are now commonplace, not only in computer
science, but in management. If you work in a large organisation you may well have a Systems
architect or an Information architect or possibly a Data architect (possibly you have all three17). Such
people spend hours locked in front of ERDs (DFDs – data flow diagrams) and other traditional
instruments of torture in the hope that they can re-engineer your organization to keep the right data
in the right place at the right time.

As we moved into the 1990s the internet became prevalent and it soon become evident that websites
were great fun for individuals to create but allowed for a lot of individualism, whimsy and required
considerable effort to maintain. And that was an anathema to any organisation that was trying to sell
something. Hence the rise of Content Management Systems (CMS). In a CMS the webserver serves
the page that may either itself be stored in a database or, more likely, builds the page from elements
contained in the database. Because building pages in “on the fly” can lead to slow response time, it
is normal to pre-build common pages and only change them when one of the components changes.
At the heart of almost every substantial website is a database and it is true to say that, without the
foundational work on databases in the 1970s, e-commerce as we know it today would not exist.

16 In my slides I use a form known as the Information Engineering model.
17 All three is clearly best as then they can have meetings with each other and not bother anyone else.

7

One of the enabling technologies of the web was the use of a markup language. Markup here is an
analogy to the publishing process in which an copy editor “marks up” how a document is to be
typeset. Hypertext Markup Language (HTML), which itself was a variant of a more general markup
language, SGML (Standardised Generalised Markup Language), allowed authors to label parts of a
webpage so that the web browser could render them in an appropriate manner. For example, the
HTML this means render the word “this” in a way that denotes emphasis. For most
browsers this would be italic, but for browsers that do not have an italic setting (a speech-reader for
example) they would be able to do something else. HTML was the ultimate expression of substance
over style – fancy graphic design was ditched in place of semantic tags such as which
were read by the browser but not passed onto the user. An obvious extension was to realise that
the same idea could be used to label data.

Figure 2: XML description of a simple memorandum

EXtensible Markup Language (XML) generalises the idea of semantic markup and is frequently used
to avoid the horror of data becoming separated from its meaning. To see how this works, consider
Figure 2 in which I have defined two files. The first is the Document Type Definition (DTD) and is a
description of what a memo should look like. In this case it must have a to-field, a from-field, a
subject and a body. Each one of those elements can contain #PCDATA which is XML for parsed
character data. On the right-hand side is the memo. There is some gobbledegook at the start, but
otherwise it looks like a human readable description of a memo. This is powerful idea and when you
are watching this lecture you might like to ponder the visual scene in front of you is created by a
coder in a box in Barnard’s Inn London which is analysing the scene and writing an XML description
of what it sees. Your decoder in your PC, phone or Smart TV has the MPEG DTD and is able to
render a reasonable approximation of the scene. Depending on how much money you spent on
your decoder, and your bandwidth, your version will be more or less accurate.

XML means that the old problem of discs and discs of meaningless data should a thing of the past:
the metadata sticks with the data18. When we were all working on MPEG-7, the retrieval standard,
it was fashionable to state that data processing was all about the metadata and the metadata were
more valuable than the data. That is clearly an exaggeration but the converse may well be true: data
without metadata is meaningless. One advantage of XML is, as we can see on the slides where I
give an example of how a computer stores a Powerpoint slide (it’s compressed XML), it is human
readable. This has also led to something of a movement in data science which is to keep data in
human readable formats with XML encoding. Given that disc storage is cheap this is
understandable, but it can lead to very uncomfortable amounts of data bloat especially as we enter
the decade of “big data”.

18 Data as metadata is one of the senses of the word pre-1630 – Medieval scribes used to refer to their annotations as
data.

<!DOCTYPE memo

[

<!ELEMENT memo

(to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT subj (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE memo []>

<memo>

<to>Simon Thurley</to>

<from>Richard Harvey</from>

<subj>Your lecture</subj>

<body>I thought your lecture on the Tudors

was excellent Simon. Not as excellent as

mine on data though!</body>

</memo>

8

Big data is a phrase coined by a team of consultants at the McKinsey Global Institute which is the
research arm of McKinsey & Company. Since the original authors declined to provide a definition of
“big” since then a number of less than satisfactory descriptions have been used. The three “v”s of
big data state that big is characterised by high volumes of data, that may be rapidly changing
(velocity) and coming from more sources than before (variety). Given the annoying imprecision
about what big data are or what the three “v”s mean, yt is very difficult to be confident that big data
is anything other than a meaningless buzzword useful only for corporate powerpoint slides and grant
proposals. However, what is true is that the prevalence of machine learning and the cheapness of
collecting and storing data can lead to surprising insights. In a previous lecture on Higher Education
[4], I cited a result from a London university that had two entrances to their building. They discovered
that students who came in one door were less likely to drop-out than those who came in the other
door. That is a typical big data application: the automated gates were connected to a large database
so each entry and exit could be labelled and connected, via a relational database, to the table of
student grades. The analysts then ran a clustering algorithm and out popped the result19.

Thus, the story of computer data has come full circle. We started with flat files of unstructured data,
showed have the strictures of computers forced us to jam the data into structures. As computers
progressed, data structures morphed from being a straightjacket to a tool for algorithm design and
thought. The further discipline of a database allows very fast processing of data and encourages yet
more analysis of organisations, their processes and data flows. Such analyses are improved by a
range of formal and semi-formal tools for data analysis which in turn leads to improved ability to
handle unstructured data and the connecting of large data sources and the formulation of the next
chapter in data which is data science.

© Professor Richard Harvey 2020

Bibliography

[1] R. Harvey, "An introduction to Algorithms," 20 October 2020. [Online]. Available:
https://www.gresham.ac.uk/lectures-and-events/algorithms-intro. [Accessed 17 Nov 2020].

[2] R. V. Head, "Getting sabre off the Ground," IEEE Annals of the Hisotry of Computing, no.
October-December, pp. 32--39, 2002.

[3] P. P.-S. Chen, "The Entity-Relationship Model - Toward a Unified View of Data," ACM
Transactions on Database Systems, vol. 1, no. 1, pp. 9--36, 1976.

[4] R. Harvey, "The Digital University and Other Mythical Creatures," 11 Feb 2020. [Online].
Available: https://www.gresham.ac.uk/lectures-and-events/digital-university. [Accessed 17 Nov
2020].

[5] N. J. Higham, "The accuracy of floating point summation," SIAM Journal on Scientific
Computing, vol. 4, no. 4, pp. 783--799, 1993.

[6] E. F. Cobb, "A Relational Model of Data for Large Shared Data Banks," Communications of the
ACM, vol. 13, no. 6, pp. 377--387, 1970.

[7] J. Furner, ""Data": the data," in Information Cultures in the Digital Age: a Festschrift in Honor of
Rafael Capurro, Wiesbaden, Springer VS, 2016, pp. 287--306.

[8] J. Borwein and D. H. Bailey, "The Reinhart-Rogoff error - or how not to Excel at economics," 22
April 2013. [Online]. Available: https://theconversation.com/the-reinhart-rogoff-error-or-how-not-
to-excel-at-economics-13646. [Accessed 17 Nov 2020].

19 If you want to know why one set of students performs better than the other … well you will have to watch the
lecture!

9

