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If you have ever experienced the frustration of working in a hotel with poor wifi you will be aware of 
how critical a connection to the internet is to everyday life.  But the internet is a surprisingly recent 
idea. Transatlantic telephones calls had been a reality since the mid 1920s, but it was not until the 
early 1960s that one could buy a modem (a modem, or modulator/demodulator is a device that 
converts digital signals from computers into signals that can travel down telephone wires optimised, 
usually, for voice communication).  Early modems such as the Bell 1011 or, in the UK, the Datel 1A, 
had data rates of a few hundred bits per second and they could only connect one computer to 
another (or point-to-point as it is often called). 
 
Such point-to-point networks were not useless – large corporations often used temporary or leased-
line connections to allow bureau computing2 or to provide access to the mainframe from remote 
sites. Early home users could use modems to dial-up bulletin boards which would then store the 
information which others could see when they logged in – a sort of non-realtime Mumsnet.  While 
technically these architectures are networks, they are constrained by the carrier which in this case 
was the telephone network.  Telephony had evolved over many years to provide highly optimised 
lines for voice communication between two people.  Once the call was set-up, the telephony 
company provided a permanent circuit between the two parties for as long as they were prepared 
to pay for it.  The mention of money at this point is deliberate – almost all the telephone companies 
in the world had devised a business model which assumed that consumers wanted, needed, and 
were prepared to pay for a what is called a “circuit switched” network. 
 
There seems to be some agreement that Norman Abramson and a small team of engineers at the 
University of Hawaii first realised that computer communication was fundamentally unsuited to 
circuit switching.  Their discovery was forced on them by geography.  At the time the University of 
Hawaii had one computer, an IBM 360, but four sites on three of the islands.  There were no cables 
between the sites so it was going to have to be radio.  Fortunately, there were a couple of unused 
spectrum bands so, one them was designated for transmission from the main computer, and the 
other band was to be used for the “back channel” – communication from the remote terminals back 
to the main computer [1].  And this is where the interesting bit starts. 
 
Of course, all electronic communication is inherently unreliable – there is interference, electrical 
noise and so on.  When we are speaking on the telephone it is simple for us to say “I’m sorry, could 
you say that again”3 but how can this work with computer data?  Two approaches are commonplace, 
and often used together.  The first is called Forward Error Correction and is a fascinating idea.  Can 

 
1 There seems to be some doubt about what the Bell 101 modem looked like.  Some websites show a lady in fifties 
garb next to two boxes the size of fridges – I suspect that was not the Bell 101.  Either way, by the time modems were 
needed, there were the size of a couple of shoe-boxes.  Fancy ones, like the Datel made electrical connections to the 
line whereas the early US modems often used “acoustic couplers” which were rubberised cups that coupled speakers 
and microphones to a standard headset. 
2 Bureau computing is where is powerful machine in one location is used to the work needed in another location.  The 
Lyons Electronic Office (LEO) computers ran the payroll for Ford UK for example [6].   
3 It is a pet peeve of mine how frequently one has to say that on cellular telephone calls.  The mobile telephone after 
years of work has considerably poorer performance than a landline which is one of many indignities of our age.   
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we add a small amount of data to the original message such that the receiver can, firstly, detect that 
an error has occurred and, secondly, correct it.   
 
A formal way of doing this was developed by Richard Hamming and published in 1950 [2]4.  
Hamming picked up on the idea of a parity digit which is additional bit added to data.  If the number 
of ones in the data is odd then we set that additional digit to one so that the total number of ones in 
the augmented data is even (this is even parity).  Hamming worked out that by adding parity digits 
computed on subsets of the data it was possible to formally prove that one could detect all n-bit 
errors and, this was the surprising thing, correct them.  An alternative, and less form of error 
detection is just to add the number of ones in the data (this is called a checksum).  If on reception 
the checksum does not match the data then likely an error has occurred.   In human communication 
we tend to check data by applying a semantic check so, when Army HQ receives a message from 
the front that reads “send three and fourpence, we are going to a dance” we know the message is 
highly unlikely.  Unlike humans the forward error correcting codes developed by Hamming need 
know semantic knowledge and are based on pure Mathematics5.   
 
The second idea is ARQ or Automatic Repeat ReQuest protocols.  ARQs come is several varieties 
but the basic idea is that the receiver uses the back channel to ask the transmitter to resend material 
that it has missed.  In its simplest form, every block of data is acknowledged with an ACK signal or, 
if we are employing some form of FEC, a NACK (meaning we have received some data but can see 
it is not correct in some way).  In the earliest computer connections both of these ideas, FEC and 
ARQ, were pretty soon established and indeed were known about before the invention of the 
programmable electronic computer.  
 
Alohanet was unorthodox in that, firstly, it was engineered for computers to send bursts of 
information, or “packets” as they were called (Abramson argued that most computers would want to 
transmit large bursts of information quite quickly and then there would be long periods of silence).  
He turned out to be right about that, and of course circuit-switching is fundamentally unsuited to that 
sort of communication.  The second unorthodoxy was the idea that all the nodes would communicate 
on the same frequency.  This was literally heresy – even in relatively free-and-easy radio channels 
such as CB radio or Marine VHF there are strict calling and communication protocols to avoid people 
speaking over each other.  How the heck were computers meant to avoid this? 
 
The conventional approach would have been to have either to have assigned each a node a 
separate frequency (frequency division multiplexing or FDM) or a time slot on the same channel 
(Time Division Multiplexing or TDM).  FDM was ruled out because there was only one frequency 
available for the back channel and fortunately there were no radio engineers around to design an 
FDM system6 to work within that single channel.  TDM means all the computers have to synchronise 
their clocks which was possible but tiresome because the sync signal has to be transmitted and 
there are different transmission delays to account for in the system. It also meant most of the slots 
would be empty most of the time because most of the time the computers were not wishing to 
communicate. 
 
The ALOHANET solution was to allow any of the stations to transmit when they liked.  If the data 
was received uncorrupted, then the receiving stations sent back an ACK.  If there was no ACK then 
the transmitter backed-off for a random amount of time and tried again.  Repeat until some limit.  

 
4 Claude Shannon, who shared an office with Hamming at Bell Labs, introduced a teaser preview of the result in his 
famous “A Mathematical Theory of Communication” paper in 1948 [7]. 
5 Actually they are really are pure Mathematics in the sense that most of the developments in this area rely on an area 
of Maths known as Galois Field theory (specifically GF(2)). 
6 It’s not that hard to design and FDM system but by “fortunately” I mean that the lack of the obvious solution meant 
that they had to invent something which has proved to be incredibly useful 
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This very simple algorithm turned out to be very efficient and as we shall see is the basis for the 
ARPANET, ethernet and the internet as we know it today. 
 
The problem is sometimes known as the Byzantine generals problem7 although, in its full complexity, 
some of the generals are known to be either unreliable or turncoats.  In our simple version there are 
two generals each with a platoon on a hill.  Their enemy lies in a valley between them.  To attack 
and win they need to coordinate and attack at once.  General 1 sends a messenger to the other 
general with the order to attack.  Has the messenger been intercepted by the opposition forces and 
killed? Or maybe their message has been delivered corrupted to “retreat”?   Although in this case 
the problem cannot be solved with zero error, I hope you can see that an ACK message improves 
things enormously – if General 1 and 2 were to use an ALOHA protocol then General 1 sends 
“Attack;” if he or she receives “Attack acknowledged” back in a reasonable time then there is some 
confidence that the message got through.  If there is no response, then General 1 resends the 
message.  If we receive “Retreat acknowledged” then we know there has been dirty work at the 
crossroads and we send the message again.  Now clearly this does not circumvent all the 
sneakiness of Byzantine generals but, reverting to ALOHANET, it is good enough.   
 
In network parlance when two transmitters transmit at once we usually refer to a “collision”.  
Depending on the medium, radio waves, wires, optics and so on it may be possible to spot a collision 
just by listening to one’s own transmission or it may be necessary to design an ARQ to tell 
transmitters that a packet has been correctly received.  Either way, the two transmitters need to be 
persuaded to “back off” and retry at a different time.  If they are both running the same deterministic 
back-off algorithm then it’s like one of those awkward moments when both people speak at the same 
time, and both try again to speak at the same time.  ALOHA introduced the idea of a random back-
off time.   
 
Meanwhile, in mainland USA, the Advanced Research Projects Agency (ARPA), now DARPA, had 
been funding a few universities to get connected via a network called ARPANET. The first 
connections took place in 1969 and used a protocol called NCP or Network Control Program.  
However, the internet as we know it today did not really come into being until (i) there was created 
an iron bureaucracy to run it8 and (ii) there was a more flexible protocol known as TCP, the Transport 
Control Protocol.  However before describing TCP, we ought to briefly look at the way that packets 
are formatted and addressed: this is IP the internet protocol. 
 
IP specifies that every packet of information contains two parts: a header and the payload.  Together 
they form a packet or datagram9.  A datagrams is not just any collection of data, the critical feature 
is that it contains enough information to be routed from the source to destination computer without 
any additional chit-chat between the computers.  A good analogy is that it is like a postcard – it 
contains both the address and the information and, like a postcard, it is sent off into the network and 
the network manages to route to the receiver without have to hold-open a circuit.  Unlike a telephone 
call, it is designed for a connectionless network.  As soon as one decides to send data via 
datagrams, users essentially lose control of the routing information – in principle parts, or all, of that 
angry email you sent to your elected representative may have travelled via Manchester, Milwaukee, 
Moscow or Mecca.   
 

 
7 One of the important contributors to this problem Leslie Lamport wrote that he wanted to get away from the previous 
name which was the Chinese generals problem.  In the full version of the problem some of the generals might be 
either unreliable or renegades so it’s easy to cause offence.  Albania was closed at the time so he decided on 
“Albanian Generals” only to be told that there were a great number of Albanian immigrants in the USA.  Hence 
Byzantine generals (https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/) 
8 It is fair to say that the instigators of the internet’s management practices would be horrified to referred to as a 
bureaucracy – they saw themselves merely as custodians of good ideas – more on this in a moment.   
9 The word datagram is a hybrid of the words data and telegram.   

https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
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The specification of these datagrams was published in September 1981 in a document known as 
an RFC (Request for Comment).  RFC 791, edited by one of the founders of the internet John Postel, 
defines IP, the internet protocol.  The essence of RFC 791 is to define the format of a header that 
contains two 32-bit blocks that give the source and destination of the packet.  The header also tells 
intermediate computers on the route (routers as we now call them) whether this packet can be split, 
or fragmented, into smaller ones.  This was a critical feature in the 1980s: buffer memory was 
expensive so it was unreasonable to expect all routers to be able to handle very long packets.  The 
standard demanded that all systems be able to handle packets of up to 576 bytes10.  Since the 
header has a maximum size of 64 bytes this effectively imposed a minimum standard on routers of 
being able to handle data of 512 bytes.  
 
One of the successes of the internet has been the standardisation process.   It is fair to say that the 
process of computer standardisation can be nauseatingly slow.  The FORTRAN language for 
example was devised in 1954.  It was standardised in 1978 and that was not particularly slow!  The 
internet is not like that.  The Internet Engineering Task Force (IETF) which governs the internet has 
had a few iterations on its structure (it’s now a subset of the Internet Society which carries the risk 
insurance) but the essential ideas are the same – standards, information11 and experimental 
documents are published as RFCs.  Once published, they stay published although subsequent 
RFCs may render previous ones obsolete or “deprecated”.  One feature of the RFC process is that 
it is fast.  
  
As I am sure you have noticed IP says nothing about what should be the payload in a packet nor 
does it guarantee to deliver a packet.  It certainly does not guarantee to deliver packets in the order 
in which they were sent.  For this, higher level protocols are needed.  These are usually specified 
as packets which themselves fit into the payload section of IP packets.  As a computer will be running 
multiple applications, all communicating in different protocols, there is usually a need for some 
internal addressing – these “ports” are equivalent of the numbers of flats, or apartments, in a large 
block at the same address.  One of the simplest protocols is called UDP, the User Datagram Protocol 
(RFC 768) and is the most basic packet-within-a-packet protocol.  UDP has two additional numbers, 
the source port and destination port, which are used by the networking software in your computer 
to route the packets once arrived, a length parameter (which tells the networking software how much 
data is to come) and a checksum.  The checksum breaks the rule of packet-within-a-packet because 
it is computed not only over the port addresses but also the IP addresses so it provides some 
additional robustness against corruption12. 
 
UDP is a connectionless protocol that delivers packets, or not, in any order.  Programmers may 
want that model but most of us want to establish a connection with a remote computer and then 
send information reliably, and in order.  For that we need TCP – the Transmission Control Protocol 
– as described in RFC 793 also dated from September 1981.  TCP and IP go together and as they 
are the indispensable duo (the Morecombe and Wise of the Internet) people often mix them up or 
refer to them jointly as TCP/IP.  The aim of TCP is to give the programmer the impression that there 
is a continuously connected wire between two computers (even though the reality is lumps of 
packets flying about all over the place).  This is called a virtual circuit.  It is the protocol used by your 
web-browser when it communicated with www.gresham.ac.uk to download this transcript.  As with 
UDP, the TCP header contains the source port and destination port numbers, recall these help with 
routing withing your PC, but it also includes three extra fields: a sequence number (TCP gives the 
impression of providing data in sequence); an acknowledgement number and a window.  As we saw 
earlier with ALOHANET, acknowledgement is one of the tactics used to cope with any Byzantine 
generals that might be hanging around.   

 
10 Postel called bytes Octets to, I assume, avoid confusion with computers that were not using 8-bit words.   
11 And April Fool’s Day jokes.  
12 The checksum is said to be computed over a “pseudoheader” and is example of one of several forward error control 
mechanisms within the basic architecture of the internet. 

http://www.gresham.ac.uk/
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In TCP a connection can either be closed; listening or established.  Once the connection is 
established then are a variety of states possible since each computer is essentially signalling that 
they are ready to send data or ready to receive.  These are necessarily fiddly as, given we are 
dealing with the internet, communication can be broken at any time so there is a lot of to’ing and 
fro’ing.  To give a flavour of this I have included the basic hand-shaking protocol from RFC 793 for 
establishing a connection.  If I was to convert this into human terms then there are two people who 
want to talk.  Initially B is listening.  A says “I want to talk, and I shall number by packets from 100”.  
B says “I acknowledge your need to talk, and I shall number by packets from 300.  My 
acknowledgement is labelled with 101 because 100 was your first packet so I’m now waiting for the 
next which is 101”. A says “OK.  I acknowledge your acknowledgment.  I am at 101 and you are 
301”. Then A says “Here is the data”… 
 
 
 
    TCP A                                                TCP B 

 

  1.  CLOSED                                               LISTEN 

 

  2.  SYN-SENT    --> <SEQ=100><CTL=SYN>               --> SYN-RECEIVED 

 

  3.  ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK>  <-- SYN-RECEIVED 

 

  4.  ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK>       --> ESTABLISHED 

 

  5.  ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED 

 

          Basic 3-Way Handshake for Connection Synchronization 

 
 
 
TCP start-up is designed as a triple handshake because the connection may break at any time 
leaving, for example, A expecting to send data to B who has gone offline. 
 
There are several observations that follow immediately from TCP/IP.  Firstly, it is bulky (think of all 
of that header data) which tends to encourage longer packet sizes for efficiency.  Secondly it is too 
complex for hardware13 so as soon as you connect your computer to the internet it is using up CPU 
cycles running the TCP/IP stack.  Thirdly, there seem to be a number of questions left unanswered 
which relate to exactly how zillions of these packets are managed.  How do computers know the 
addresses of remote machines, or even their own address?  How is communication managed so 
that the internet doesn’t collapse under the weight of everyone screaming for attention at the same 
time? And finally, given that anyone along the route can see everyone’s packets (a technique called 
packet sniffing), how to we prevent everyone seeing everyone else’s data? 
 
The first one is relatively easy to deal with: there is another set of protocols associated with naming.  
In the early years of the internet the University of East Anglia asked for and got, for free, a Class B 
internet address so that every computer in UEA will have an address that starts with 
139.222.xxx.yyy.  Computers at UEA are either statically assigned to particular addresses by a 
human (the network guy) or, more likely, when a new computer comes up on the network it asks 
UEA’s domain name server (DNS) for an address which it is assigned dynamically.  Routers also 
consult the DNS so they can build routing tables which allow address fields in packets to be over-

 
13 There are some specialised devices known as TCP Offload Engines (TOEs) which are used in Gigabit and 10Gb 
ethernet network interface cards (NICs) but they themselves can cause problems due to the difficulties of dealing with 
updates.  These are described in, among other places, a paper with the amusing title “TCP Offload is a dumb idea 
whose time has come” 
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written with new addresses if necessary.  This Network Address Translation, or NAT, is now a 
routine fixture of the internet as IP version 4 did not allow enough space in the packets for the 
addresses, so addresses have to be shared.  The NAT system routes all the packets from all 
computers through smaller number of addresses by modifying the IP address fields and using 
different port numbers – it’s a complex bodge and doesn’t work for all protocols hence the pressure 
to switch to IP version 6 which has larger addresses.   
 
The second question is about congestion control, and it arose because in October 1986 the internet 
stopped working.  Three nodes in relatively close proximity, the Lawrence Livermore Lab, Berkeley 
and Livermore Berkeley were connected using 32Kbits per second links.  Suddenly the link speed 
dropped to 40 bits per second.  At first, the operators they suspected there was a bug in their 
relatively new version of TCP which was running under Unix14.  It turned out that there was a bug 
but not in the sense that we know it – the software was running as demanded, but TCP was getting 
its knickers in a twist. 
 
TCP is an example of a “self-clocked” protocol.  The transmitter sends a burst and waits for an ACK.  
Once it receives an ACK, then it can send another burst.  But how long should those bursts be?  If 
we restrict them to one packet, and we are on a satellite connection, then it might take a second or 
more for the ACK to arrive – one packet every second is ridiculously slow.  What if we send a great 
big burst of data?  Well, that jams up the network so it cannot be effectively time shared so, if we 
have low bandwidth networks either we deprive everyone else space or our jumbo packet is dropped 
which means we have to retransmit it which is inefficient. 
 
The solution was define a new parameter, the congestion window, which controls the size of the 
packets.  When starting a connection, the transmitter sets the window to one (and sends a single 
packet).  On each ACK we increase the window by one.  We keep increasing until we reach the 
receiver’s advertised window size (in TCP the receiver sends back their buffer size as part of the 
acknowledgement protocol).  If at any point we do not receive an ACK then it is a fair assumption 
that there is congestion, and we should reduce our sending quickly.  Van Jacobson, the man who 
devised the first TCP congestion algorithm, recommended that the congestion window be halved.  
Halving might seem a bit dramatic, but assuming you were using 100% of the link, congestion 
implies one other user has appeared so the link bandwidth has to be shared 50:50.  The general 
version of congestion control therefore has additive increases in data sent and multiplicative 
decreases in the event of congestions (AIMD congestion control as it is known).  The effect of AIMD 
is to give a data transmission graph that looks like a sawtooth and people will sometimes refer to 
data flows as riding the TCP sawtooth.  That in a nutshell is TCP Tahoe – the world’s first packet 
congestion control algorithm. 
 
If you have followed me so far then well done!  Congestion control is not an easy topic and it is still 
a subject of debate and research – Wikipedia lists fifteen separate algorithms for TCP/IP congestion 
control – and different types of channel, WiFi, or satellite for example, demand different congestion 
control algorithms.  Furthermore, the reasons for congestion are not at all well understood even by 
the cognoscenti.  A reasonably recent annoyance is an effect called bufferbloat which particularly 
affects home broadband modems [3].  Let’s imagine I am copying a large file from my work computer 
to home.  My broadband company has provided a modem with a large buffer – it looks to me like 
everything is going fine – I am slinging packets at the buffer – “give me more,” cries the modem “I 
can handle it”.  Meanwhile, upstream, there is some mild congestion.  The buffer gets fuller but my 
computer does not know to slow down – the buffer is huge.  Meanwhile I’m trying to connect to 
Gresham College to book my next seat.  My ACK packets also go into the buffer but they take an 
age to be transmitted because they are backed-up behind the buffer, so the Gresham college 
website assumes I am on a super low bandwidth connection so it throttles back via congestion 
control and thus nothing happens.  Some unscrupulous broadband providers rather like buffer bloat 

 
14 A version of Unix that we now call the Berkeley System Distribution or BSD. 
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as it allows them to sell you a more expensive faster connection whereas the problem was very poor 
latency caused by bufferbloat.  These delays are now seriously out of hand – I measured round trip 
times that were sufficient to send a signal to the moon and back between my home and Gresham 
College which is under 150km away. 
 
The solution is tail-drop – we should use smaller buffers that simply destroy packets they cannot 
accept.  Destroyed packets trigger the congestion control algorithm to work and it throttles back to 
adapt to the bandwidth available 
 
In their book “Algorithms to Live By” [4] by Brian Christian and Tom Griffiths draw some fascinating 
analogies with everyday life and the science of networking.  They range over the justice system in 
Hawaii, the Peter principle, queuing for doughnuts and ants15.  I’ll confine myself to one of his 
observations which is that when one goes on holiday it is customary to write an “Out of office” 
message that implies that all the messages one receives will be queued up waiting for reading on 
return.  Indeed, many organisations insist their employees set such messages.  This is classic 
bufferbloat since it gives the senders the false impression that the vacationer has available to them 
infinite processing capacity when they return from holiday, so that they will indeed be able to process 
the queue.  Tail drop would be more efficient and more humane for both the sender and receiver16.   
 
So far, I have pretty much managed to describe how the internet works without getting bogged down 
in any of the dull stuff.  However, I feel I ought to give at least passing time to the idea of layers.  I’m 
sure you noticed that TCP was built upon IP and, the world-wide web, is built upon TCP.  These 
“built-upons” describe the layers of a network.  In the old days, people ran multiple network 
standards and there was a good living to be made translating one protocol, say Cambridge token 
ring, into, say DECnet or Appletalk (to arbitrability pick three defunct standards).  To make these 
translations easier the Open Standards Institute defined seven layers of a network.  I fear life is too 
short to describe them all and in RFC 343917 there is an argument against layering which is that the 
implication that each layer can be separately optimised is a fantasy.  Nevertheless, for those of you 
who feel they must know it, here is the OSI seven-layer model 
 
Table 1: Examples of protocols in the ISO seven-layer model 

Layer  Examples 

7 Application web (http; https) 

6 Presentation Mpeg; Mime 

5 Session RPC 

4 Transport TCP, UDP 

3 Network IP 

2 Data link PPP 

1 Physical 10-base T Ethernet 

 
 
I have left one question unanswered from earlier and that relates to security.  IP included a field that 
allowed one to mark packets using the standard US government security markings at the time, 
restricted, secret, top secret and so on, but appeared unconcerned about any router along the route 
being able to see all the packets.  This has proven to be a major headache and there have had to 
been various fixes over the years to deal with malicious computer users.  I’ll talk more about some 
of the issues in the next lecture but just focussing on internet security the obvious first defence is 
physical security so it is commonplace to find that key internet sites are highly protected and 

 
15 Ants also use congestion control and apparently one can aspects of the TCP sawtooth in their behaviour.   
16 There are other good reasons why email is incompatible with a scholarly life and these are explained on Donald 
Knuth’s webpage (https://www-cs-faculty.stanford.edu/~knuth/email.html). 
17 Any particular RFC can always be found at https://www.ietf.org/rfc/rfcNNNN.txt where NNNN is the RFC number 

https://www-cs-faculty.stanford.edu/~knuth/email.html


 

8 

replicated.  There are, for example, twelve root domain servers operated by twelve independent 
entities, these are replicated in a total of 1379 entities so, in that case, the chance of failure is low.  
 
When it comes to software security solutions, there are two basic themes.  The first is to encrypt the 
packets so that casual interlopers, otherwise known as the “man in the middle attack,” cannot read 
the data part.  This is done in https for example.  I hope this works well as it is the method used by 
our banks18!  The second, used in conjunction with encryption, is to control the routing.  Those of 
you in employment may have the misfortune to be required to connect to your employer’s website 
by a system known as a Virtual Private Network or VPN.  When you start-up your VPN, you connect 
with a VPN server at your organisation. From then on, all of the packets that would have left from 
your machine are collected, encrypted and embedded into either UDP or TCP packets (you usually 
have a choice of which protocol to use).  At your employer’s site these packets are decrypted and 
slung out onto the network.  The good thing about a VPN is that all packets are encrypted and all of 
the packet is encrypted so interlopers cannot see with whom you are talking.  The bad thing is that 
all that encryption can be very expensive – you will notice your computer runs hot when the VPN is 
working and of course the VPN at your employer’s site is a now a single point of failure for an attack 
or, more likely, equipment failure19.  However, for our discussion the interesting point about a VPN 
is that it protects your home or mobile internet address since now your packets appear to come from 
your work address.   
 
This leads us to an important vulnerability of the internet which is that the headers are always 
unencrypted so, even if we cannot know what is being said, we know who is talking to whom.  It is 
surprising how much information is given away by traffic analysis.  If there is burst of information 
from me to my employer and, almost immediately afterwards, we see a burst of traffic from my 
employer to IKEA, then it’s a fair bet that I am ordering some furniture. 
 
In the mid-1990s, the US Office for Naval Research (ONR) funded work to reduce the effectiveness 
of traffic analysis attacks and the outcome was The Onion Router (Tor).  Tor uses yet another 
internet protocol called SOCKS which allows for another machine to act as a proxy server.  You tell 
your machine the name of the proxy, and then your machine wraps your packets with headers 
destined for the proxy.  The proxy rewrites the headers of your packets so they appear to come from 
the proxy, when they are returned to the proxy they are wrapped and sent back to you, where they 
are unwrapped and processed as normal.  Proxies are quite common in secure networks as it means 
all external, for example, web traffic can be routed through one machine which is easier to secure 
than securing everyone.  Tor creates labyrinths of circuits between networks of Tor proxy routers.  
There are quite complicated rules for choosing the route to avoid the possibility that multiple nodes 
on the route are compromised.  However, Tor can still operate securely even if some of the nodes 
are owned by malicious agents. 
 
Tor encrypts each packet using an “onion” of encryption for each hop in the labyrinth.  So, if there 
are four hops in the network then your computer obtains encryption keys from the four routers.  It 
firstly encrypts with the fourth routers key, then the third etc etc.  So, when the packet reaches the 
first router it strips off its own encryption to reveal the address of the second router to which it sends 
the packet.  The second router knows where packet came from and, once it decrypts, it knows where 
to send it, but it does not know the address of the originator, nor the destination, nor does it know 
the contents.  Thus, routers within the tor network know very little so, even if they are compromised, 
there is not much they can other than some traffic analysis.  The entry and exit nodes or a Tor 
network are a potential insecurity so great care is used when choosing those. 
 

 
18 Actually the https protocol does three things: it encrypts the packets; it allows website owners to avoid people 
impersonating their website (provided they pay a certification authority) and it also provides a method to prevent 
packets being inserted or tampered with during transmission. 
19 You can cook sausages on some VPNs. 
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This has brought us to end of our circuitous tour around networks.  In the abstract I promised to talk 
about the future of networks so I ought to spend a brief interval talking about three themes which 
are touted as significant for the future: wireless; IoT and security/privacy.  Each one of those 
deserves a lecture in its own right.  I regret having to leave out wireless networking in this talk, other 
than ALOHANET.  Wireless brings its own problems – in TCP for example the assumption that if 
packets are lost it is due to congestion.  That may not be the case in wireless, which can lead to 
poor performance and when packet switching is combined with cellular telephony even more 
tweaking can be needed20.  Nevertheless, people hate wires and there is constant consumer 
pressure to move communication to radio even though radio is inherently less secure and polluting21.  
As we have seen, the protocols associated with the internet are complicated and generally are 
unsuited to simple computers.  This has led to a plethora of lightweight networking protocols that 
are used principally for devices in the Internet of Things or IoT.  You can find our more about the 
Internet of Things in another Gresham lecture by Martin Thomas [5].  Without being too glib I think 
I can summarise his lecture by saying that IoT will be a nice idea once it works.  However, the final 
area for innovation and indeed philosophical thought is better (or worse) security and/or privacy.  
Security and privacy are not the same thing nor is it immediately obvious that more of both is a good 
thing.  These are both topics for the next lecture. 
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20 There was a brief period during the pandemic when people were attacking 5G phone masts.  I did wonder briefly if 
the attacks could from networking engineers who had very carefully optimised their TCP transmission parameters for 
ethernet and were irritated to find they were not optimal for a new kind of wireless link.  Sadly, it turned out that the 
attacks were not led by network engineers but by luddites who disliked new technology for irrational reasons. 
21 By polluting I mean polluting of the electromagnetic spectrum.  People worry about light pollution which disturbs the 
sleep patterns of humans and animals, but general electromagnetic pollution is also problematic as anyone who has 
tried to install a wifi system in a large block of flats will be aware. 
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