GRESHAM

COLLEGE

Networks: The Internet and Beyond
Professor Richard Harvey FBCS

April 2021

If you have ever experienced the frustration of working in a hotel with poor wifi you will be aware of
how critical a connection to the internet is to everyday life. But the internet is a surprisingly recent
idea. Transatlantic telephones calls had been a reality since the mid 1920s, but it was not until the
early 1960s that one could buy a modem (a modem, or modulator/demodulator is a device that
converts digital signals from computers into signals that can travel down telephone wires optimised,
usually, for voice communication). Early modems such as the Bell 101? or, in the UK, the Datel 1A,
had data rates of a few hundred bits per second and they could only connect one computer to
another (or point-to-point as it is often called).

Such point-to-point networks were not useless — large corporations often used temporary or leased-
line connections to allow bureau computing? or to provide access to the mainframe from remote
sites. Early home users could use modems to dial-up bulletin boards which would then store the
information which others could see when they logged in — a sort of non-realtime Mumsnet. While
technically these architectures are networks, they are constrained by the carrier which in this case
was the telephone network. Telephony had evolved over many years to provide highly optimised
lines for voice communication between two people. Once the call was set-up, the telephony
company provided a permanent circuit between the two parties for as long as they were prepared
to pay for it. The mention of money at this point is deliberate — almost all the telephone companies
in the world had devised a business model which assumed that consumers wanted, needed, and
were prepared to pay for a what is called a “circuit switched” network.

There seems to be some agreement that Norman Abramson and a small team of engineers at the
University of Hawaii first realised that computer communication was fundamentally unsuited to
circuit switching. Their discovery was forced on them by geography. At the time the University of
Hawaii had one computer, an IBM 360, but four sites on three of the islands. There were no cables
between the sites so it was going to have to be radio. Fortunately, there were a couple of unused
spectrum bands so, one them was designated for transmission from the main computer, and the
other band was to be used for the “back channel” — communication from the remote terminals back
to the main computer [1]. And this is where the interesting bit starts.

Of course, all electronic communication is inherently unreliable — there is interference, electrical
noise and so on. When we are speaking on the telephone it is simple for us to say “I'm sorry, could
you say that again™ but how can this work with computer data? Two approaches are commonplace,
and often used together. The first is called Forward Error Correction and is a fascinating idea. Can

I There seems to be some doubt about what the Bell 101 modem looked like. Some websites show a lady in fifties
garb next to two boxes the size of fridges — | suspect that was not the Bell 101. Either way, by the time modems were
needed, there were the size of a couple of shoe-boxes. Fancy ones, like the Datel made electrical connections to the
line whereas the early US modems often used “acoustic couplers” which were rubberised cups that coupled speakers
and microphones to a standard headset.

2 Bureau computing is where is powerful machine in one location is used to the work needed in another location. The
Lyons Electronic Office (LEO) computers ran the payroll for Ford UK for example [6].

3 Itis a pet peeve of mine how frequently one has to say that on cellular telephone calls. The mobile telephone after
years of work has considerably poorer performance than a landline which is one of many indignities of our age.

we add a small amount of data to the original message such that the receiver can, firstly, detect that
an error has occurred and, secondly, correct it.

A formal way of doing this was developed by Richard Hamming and published in 1950 [2]*.
Hamming picked up on the idea of a parity digit which is additional bit added to data. If the number
of ones in the data is odd then we set that additional digit to one so that the total number of ones in
the augmented data is even (this is even parity). Hamming worked out that by adding parity digits
computed on subsets of the data it was possible to formally prove that one could detect all n-bit
errors and, this was the surprising thing, correct them. An alternative, and less form of error
detection is just to add the number of ones in the data (this is called a checksum). If on reception
the checksum does not match the data then likely an error has occurred. In human communication
we tend to check data by applying a semantic check so, when Army HQ receives a message from
the front that reads “send three and fourpence, we are going to a dance” we know the message is
highly unlikely. Unlike humans the forward error correcting codes developed by Hamming need
know semantic knowledge and are based on pure Mathematics®.

The second idea is ARQ or Automatic Repeat ReQuest protocols. ARQs come is several varieties
but the basic idea is that the receiver uses the back channel to ask the transmitter to resend material
that it has missed. In its simplest form, every block of data is acknowledged with an ACK signal or,
if we are employing some form of FEC, a NACK (meaning we have received some data but can see
it is not correct in some way). In the earliest computer connections both of these ideas, FEC and
ARQ, were pretty soon established and indeed were known about before the invention of the
programmable electronic computer.

Alohanet was unorthodox in that, firstly, it was engineered for computers to send bursts of
information, or “packets” as they were called (Abramson argued that most computers would want to
transmit large bursts of information quite quickly and then there would be long periods of silence).
He turned out to be right about that, and of course circuit-switching is fundamentally unsuited to that
sort of communication. The second unorthodoxy was the idea that all the nodes would communicate
on the same frequency. This was literally heresy — even in relatively free-and-easy radio channels
such as CB radio or Marine VHF there are strict calling and communication protocols to avoid people
speaking over each other. How the heck were computers meant to avoid this?

The conventional approach would have been to have either to have assigned each a node a
separate frequency (frequency division multiplexing or FDM) or a time slot on the same channel
(Time Division Multiplexing or TDM). FDM was ruled out because there was only one frequency
available for the back channel and fortunately there were no radio engineers around to design an
FDM system® to work within that single channel. TDM means all the computers have to synchronise
their clocks which was possible but tiresome because the sync signal has to be transmitted and
there are different transmission delays to account for in the system. It also meant most of the slots
would be empty most of the time because most of the time the computers were not wishing to
communicate.

The ALOHANET solution was to allow any of the stations to transmit when they liked. If the data
was received uncorrupted, then the receiving stations sent back an ACK. If there was no ACK then
the transmitter backed-off for a random amount of time and tried again. Repeat until some limit.

4 Claude Shannon, who shared an office with Hamming at Bell Labs, introduced a teaser preview of the result in his
famous “A Mathematical Theory of Communication” paper in 1948 [7].

5 Actually they are really are pure Mathematics in the sense that most of the developments in this area rely on an area
of Maths known as Galois Field theory (specifically GF(2)).

6 1t's not that hard to design and FDM system but by “fortunately” | mean that the lack of the obvious solution meant
that they had to invent something which has proved to be incredibly useful

This very simple algorithm turned out to be very efficient and as we shall see is the basis for the
ARPANET, ethernet and the internet as we know it today.

The problem is sometimes known as the Byzantine generals problem? although, in its full complexity,
some of the generals are known to be either unreliable or turncoats. In our simple version there are
two generals each with a platoon on a hill. Their enemy lies in a valley between them. To attack
and win they need to coordinate and attack at once. General 1 sends a messenger to the other
general with the order to attack. Has the messenger been intercepted by the opposition forces and
killed? Or maybe their message has been delivered corrupted to “retreat’? Although in this case
the problem cannot be solved with zero error, | hope you can see that an ACK message improves
things enormously — if General 1 and 2 were to use an ALOHA protocol then General 1 sends
“Attack;” if he or she receives “Attack acknowledged” back in a reasonable time then there is some
confidence that the message got through. If there is no response, then General 1 resends the
message. If we receive “Retreat acknowledged” then we know there has been dirty work at the
crossroads and we send the message again. Now clearly this does not circumvent all the
sneakiness of Byzantine generals but, reverting to ALOHANET, it is good enough.

In network parlance when two transmitters transmit at once we usually refer to a “collision”.
Depending on the medium, radio waves, wires, optics and so on it may be possible to spot a collision
just by listening to one’s own transmission or it may be necessary to design an ARQ to tell
transmitters that a packet has been correctly received. Either way, the two transmitters need to be
persuaded to “back off” and retry at a different time. If they are both running the same deterministic
back-off algorithm then it’s like one of those awkward moments when both people speak at the same
time, and both try again to speak at the same time. ALOHA introduced the idea of a random back-
off time.

Meanwhile, in mainland USA, the Advanced Research Projects Agency (ARPA), now DARPA, had
been funding a few universities to get connected via a network called ARPANET. The first
connections took place in 1969 and used a protocol called NCP or Network Control Program.
However, the internet as we know it today did not really come into being until (i) there was created
an iron bureaucracy to run it® and (ii) there was a more flexible protocol known as TCP, the Transport
Control Protocol. However before describing TCP, we ought to briefly look at the way that packets
are formatted and addressed: this is IP the internet protocol.

IP specifies that every packet of information contains two parts: a header and the payload. Together
they form a packet or datagram®. A datagrams is not just any collection of data, the critical feature
is that it contains enough information to be routed from the source to destination computer without
any additional chit-chat between the computers. A good analogy is that it is like a postcard — it
contains both the address and the information and, like a postcard, it is sent off into the network and
the network manages to route to the receiver without have to hold-open a circuit. Unlike a telephone
call, it is designed for a connectionless network. As soon as one decides to send data via
datagrams, users essentially lose control of the routing information — in principle parts, or all, of that
angry email you sent to your elected representative may have travelled via Manchester, Milwaukee,
Moscow or Mecca.

7 One of the important contributors to this problem Leslie Lamport wrote that he wanted to get away from the previous
name which was the Chinese generals problem. In the full version of the problem some of the generals might be
either unreliable or renegades so it's easy to cause offence. Albania was closed at the time so he decided on
“Albanian Generals” only to be told that there were a great number of Albanian immigrants in the USA. Hence
Byzantine generals (https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/)

8 It is fair to say that the instigators of the internet’'s management practices would be horrified to referred to as a
bureaucracy — they saw themselves merely as custodians of good ideas — more on this in a moment.

9 The word datagram is a hybrid of the words data and telegram.

https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/

The specification of these datagrams was published in September 1981 in a document known as
an RFC (Request for Comment). RFC 791, edited by one of the founders of the internet John Postel,
defines IP, the internet protocol. The essence of RFC 791 is to define the format of a header that
contains two 32-bit blocks that give the source and destination of the packet. The header also tells
intermediate computers on the route (routers as we now call them) whether this packet can be split,
or fragmented, into smaller ones. This was a critical feature in the 1980s: buffer memory was
expensive so it was unreasonable to expect all routers to be able to handle very long packets. The
standard demanded that all systems be able to handle packets of up to 576 bytes. Since the
header has a maximum size of 64 bytes this effectively imposed a minimum standard on routers of
being able to handle data of 512 bytes.

One of the successes of the internet has been the standardisation process. It is fair to say that the
process of computer standardisation can be nauseatingly slow. The FORTRAN language for
example was devised in 1954. It was standardised in 1978 and that was not particularly slow! The
internet is not like that. The Internet Engineering Task Force (IETF) which governs the internet has
had a few iterations on its structure (it's now a subset of the Internet Society which carries the risk
insurance) but the essential ideas are the same — standards, information!! and experimental
documents are published as RFCs. Once published, they stay published although subsequent
RFCs may render previous ones obsolete or “deprecated”. One feature of the RFC process is that
it is fast.

As | am sure you have noticed IP says nothing about what should be the payload in a packet nor
does it guarantee to deliver a packet. It certainly does not guarantee to deliver packets in the order
in which they were sent. For this, higher level protocols are needed. These are usually specified
as packets which themselves fit into the payload section of IP packets. As a computer will be running
multiple applications, all communicating in different protocols, there is usually a need for some
internal addressing — these “ports” are equivalent of the numbers of flats, or apartments, in a large
block at the same address. One of the simplest protocols is called UDP, the User Datagram Protocol
(RFC 768) and is the most basic packet-within-a-packet protocol. UDP has two additional numbers,
the source port and destination port, which are used by the networking software in your computer
to route the packets once arrived, a length parameter (which tells the networking software how much
data is to come) and a checksum. The checksum breaks the rule of packet-within-a-packet because
it is computed not only over the port addresses but also the IP addresses so it provides some
additional robustness against corruption??.

UDP is a connectionless protocol that delivers packets, or not, in any order. Programmers may
want that model but most of us want to establish a connection with a remote computer and then
send information reliably, and in order. For that we need TCP — the Transmission Control Protocol
— as described in RFC 793 also dated from September 1981. TCP and IP go together and as they
are the indispensable duo (the Morecombe and Wise of the Internet) people often mix them up or
refer to them jointly as TCP/IP. The aim of TCP is to give the programmer the impression that there
is a continuously connected wire between two computers (even though the reality is lumps of
packets flying about all over the place). This is called a virtual circuit. Itis the protocol used by your
web-browser when it communicated with www.gresham.ac.uk to download this transcript. As with
UDP, the TCP header contains the source port and destination port numbers, recall these help with
routing withing your PC, but it also includes three extra fields: a sequence number (TCP gives the
impression of providing data in sequence); an acknowledgement number and a window. As we saw
earlier with ALOHANET, acknowledgement is one of the tactics used to cope with any Byzantine
generals that might be hanging around.

10 postel called bytes Octets to, | assume, avoid confusion with computers that were not using 8-bit words.
11 And April Fool's Day jokes.
2 The checksum is said to be computed over a “pseudoheader” and is example of one of several forward error control
mechanisms within the basic architecture of the internet.
4

http://www.gresham.ac.uk/

In TCP a connection can either be closed; listening or established. Once the connection is
established then are a variety of states possible since each computer is essentially signalling that
they are ready to send data or ready to receive. These are necessarily fiddly as, given we are
dealing with the internet, communication can be broken at any time so there is a lot of to’ing and
fro'ing. To give a flavour of this | have included the basic hand-shaking protocol from RFC 793 for
establishing a connection. If | was to convert this into human terms then there are two people who
want to talk. Initially B is listening. A says “l want to talk, and | shall number by packets from 100”.
B says “l acknowledge your need to talk, and | shall nhumber by packets from 300. My
acknowledgement is labelled with 101 because 100 was your first packet so I'm now waiting for the
next which is 101”. A says “OK. | acknowledge your acknowledgment. | am at 101 and you are
301”. Then A says “Here is the data”...

TCP A TCP B
1. CLOSED LISTEN
2. SYN-SENT -=> <SEQ=100><CTL=SYN> --> SYN-RECEIVED

3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED
4. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> —-—> ESTABLISHED
5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

Basic 3-Way Handshake for Connection Synchronization

TCP start-up is designed as a triple handshake because the connection may break at any time
leaving, for example, A expecting to send data to B who has gone offline.

There are several observations that follow immediately from TCP/IP. Firstly, it is bulky (think of all
of that header data) which tends to encourage longer packet sizes for efficiency. Secondly it is too
complex for hardware!® so as soon as you connect your computer to the internet it is using up CPU
cycles running the TCP/IP stack. Thirdly, there seem to be a number of questions left unanswered
which relate to exactly how zillions of these packets are managed. How do computers know the
addresses of remote machines, or even their own address? How is communication managed so
that the internet doesn’t collapse under the weight of everyone screaming for attention at the same
time? And finally, given that anyone along the route can see everyone’s packets (a technique called
packet sniffing), how to we prevent everyone seeing everyone else’s data?

The first one is relatively easy to deal with: there is another set of protocols associated with naming.
In the early years of the internet the University of East Anglia asked for and got, for free, a Class B
internet address so that every computer in UEA will have an address that starts with
139.222.xxx.yyy. Computers at UEA are either statically assigned to particular addresses by a
human (the network guy) or, more likely, when a new computer comes up on the network it asks
UEA’s domain name server (DNS) for an address which it is assigned dynamically. Routers also
consult the DNS so they can build routing tables which allow address fields in packets to be over-

18 There are some specialised devices known as TCP Offload Engines (TOEs) which are used in Gigabit and 10Gb
ethernet network interface cards (NICs) but they themselves can cause problems due to the difficulties of dealing with
updates. These are described in, among other places, a paper with the amusing title “TCP Offload is a dumb idea
whose time has come”

written with new addresses if necessary. This Network Address Translation, or NAT, is now a
routine fixture of the internet as IP version 4 did not allow enough space in the packets for the
addresses, so addresses have to be shared. The NAT system routes all the packets from all
computers through smaller number of addresses by modifying the IP address fields and using
different port numbers — it's a complex bodge and doesn’t work for all protocols hence the pressure
to switch to IP version 6 which has larger addresses.

The second question is about congestion control, and it arose because in October 1986 the internet
stopped working. Three nodes in relatively close proximity, the Lawrence Livermore Lab, Berkeley
and Livermore Berkeley were connected using 32Kbits per second links. Suddenly the link speed
dropped to 40 bits per second. At first, the operators they suspected there was a bug in their
relatively new version of TCP which was running under Unix'4. It turned out that there was a bug
but not in the sense that we know it — the software was running as demanded, but TCP was getting
its knickers in a twist.

TCP is an example of a “self-clocked” protocol. The transmitter sends a burst and waits for an ACK.
Once it receives an ACK, then it can send another burst. But how long should those bursts be? If
we restrict them to one packet, and we are on a satellite connection, then it might take a second or
more for the ACK to arrive — one packet every second is ridiculously slow. What if we send a great
big burst of data? Well, that jams up the network so it cannot be effectively time shared so, if we
have low bandwidth networks either we deprive everyone else space or our jumbo packet is dropped
which means we have to retransmit it which is inefficient.

The solution was define a new parameter, the congestion window, which controls the size of the
packets. When starting a connection, the transmitter sets the window to one (and sends a single
packet). On each ACK we increase the window by one. We keep increasing until we reach the
receiver’'s advertised window size (in TCP the receiver sends back their buffer size as part of the
acknowledgement protocol). If at any point we do not receive an ACK then it is a fair assumption
that there is congestion, and we should reduce our sending quickly. Van Jacobson, the man who
devised the first TCP congestion algorithm, recommended that the congestion window be halved.
Halving might seem a bit dramatic, but assuming you were using 100% of the link, congestion
implies one other user has appeared so the link bandwidth has to be shared 50:50. The general
version of congestion control therefore has additive increases in data sent and multiplicative
decreases in the event of congestions (AIMD congestion control as it is known). The effect of AIMD
is to give a data transmission graph that looks like a sawtooth and people will sometimes refer to
data flows as riding the TCP sawtooth. That in a nutshell is TCP Tahoe — the world’s first packet
congestion control algorithm.

If you have followed me so far then well done! Congestion control is not an easy topic and it is still
a subject of debate and research — Wikipedia lists fifteen separate algorithms for TCP/IP congestion
control — and different types of channel, WiFi, or satellite for example, demand different congestion
control algorithms. Furthermore, the reasons for congestion are not at all well understood even by
the cognoscenti. A reasonably recent annoyance is an effect called bufferbloat which particularly
affects home broadband modems [3]. Let’s imagine | am copying a large file from my work computer
to home. My broadband company has provided a modem with a large buffer — it looks to me like
everything is going fine — | am slinging packets at the buffer — “give me more,” cries the modem ‘I
can handle it”. Meanwhile, upstream, there is some mild congestion. The buffer gets fuller but my
computer does not know to slow down — the buffer is huge. Meanwhile I'm trying to connect to
Gresham College to book my next seat. My ACK packets also go into the buffer but they take an
age to be transmitted because they are backed-up behind the buffer, so the Gresham college
website assumes | am on a super low bandwidth connection so it throttles back via congestion
control and thus nothing happens. Some unscrupulous broadband providers rather like buffer bloat

14 A version of Unix that we now call the Berkeley System Distribution or BSD.

as it allows them to sell you a more expensive faster connection whereas the problem was very poor
latency caused by bufferbloat. These delays are now seriously out of hand — | measured round trip
times that were sufficient to send a signal to the moon and back between my home and Gresham
College which is under 150km away.

The solution is tail-drop — we should use smaller buffers that simply destroy packets they cannot
accept. Destroyed packets trigger the congestion control algorithm to work and it throttles back to
adapt to the bandwidth available

In their book “Algorithms to Live By” [4] by Brian Christian and Tom Griffiths draw some fascinating
analogies with everyday life and the science of networking. They range over the justice system in
Hawaii, the Peter principle, queuing for doughnuts and ants®®. ['ll confine myself to one of his
observations which is that when one goes on holiday it is customary to write an “Out of office”
message that implies that all the messages one receives will be queued up waiting for reading on
return. Indeed, many organisations insist their employees set such messages. This is classic
bufferbloat since it gives the senders the false impression that the vacationer has available to them
infinite processing capacity when they return from holiday, so that they will indeed be able to process
the queue. Tail drop would be more efficient and more humane for both the sender and receiver?®.

So far, | have pretty much managed to describe how the internet works without getting bogged down
in any of the dull stuff. However, | feel | ought to give at least passing time to the idea of layers. I'm
sure you noticed that TCP was built upon IP and, the world-wide web, is built upon TCP. These
“pbuilt-upons” describe the layers of a network. In the old days, people ran multiple network
standards and there was a good living to be made translating one protocol, say Cambridge token
ring, into, say DECnet or Appletalk (to arbitrability pick three defunct standards). To make these
translations easier the Open Standards Institute defined seven layers of a network. | fear life is too
short to describe them all and in RFC 34397 there is an argument against layering which is that the
implication that each layer can be separately optimised is a fantasy. Nevertheless, for those of you
who feel they must know it, here is the OSI seven-layer model

Table 1. Examples of protocols in the 1ISO seven-layer model
Layer Examples

7 Application | web (http; https)

6 Presentation | Mpeg; Mime

5 Session RPC

4 Transport TCP, UDP

3 Network IP

2 Data link PPP

1 Physical 10-base T Ethernet

| have left one question unanswered from earlier and that relates to security. IP included a field that
allowed one to mark packets using the standard US government security markings at the time,
restricted, secret, top secret and so on, but appeared unconcerned about any router along the route
being able to see all the packets. This has proven to be a major headache and there have had to
been various fixes over the years to deal with malicious computer users. I'll talk more about some
of the issues in the next lecture but just focussing on internet security the obvious first defence is
physical security so it is commonplace to find that key internet sites are highly protected and

15 Ants also use congestion control and apparently one can aspects of the TCP sawtooth in their behaviour.

16 There are other good reasons why email is incompatible with a scholarly life and these are explained on Donald
Knuth’s webpage (https://www-cs-faculty.stanford.edu/~knuth/email.html).

17 Any particular RFC can always be found at https://www.ietf.org/rfc/rfcNNNN.txt where NNNN is the RFC number

7

https://www-cs-faculty.stanford.edu/~knuth/email.html

replicated. There are, for example, twelve root domain servers operated by twelve independent
entities, these are replicated in a total of 1379 entities so, in that case, the chance of failure is low.

When it comes to software security solutions, there are two basic themes. The firstis to encrypt the
packets so that casual interlopers, otherwise known as the “man in the middle attack,” cannot read
the data part. This is done in https for example. | hope this works well as it is the method used by
our banks!8! The second, used in conjunction with encryption, is to control the routing. Those of
you in employment may have the misfortune to be required to connect to your employer’s website
by a system known as a Virtual Private Network or VPN. When you start-up your VPN, you connect
with a VPN server at your organisation. From then on, all of the packets that would have left from
your machine are collected, encrypted and embedded into either UDP or TCP packets (you usually
have a choice of which protocol to use). At your employer’s site these packets are decrypted and
slung out onto the network. The good thing about a VPN is that all packets are encrypted and all of
the packet is encrypted so interlopers cannot see with whom you are talking. The bad thing is that
all that encryption can be very expensive — you will notice your computer runs hot when the VPN is
working and of course the VPN at your employer’s site is a now a single point of failure for an attack
or, more likely, equipment failure'®. However, for our discussion the interesting point about a VPN
is that it protects your home or mobile internet address since now your packets appear to come from
your work address.

This leads us to an important vulnerability of the internet which is that the headers are always
unencrypted so, even if we cannot know what is being said, we know who is talking to whom. It is
surprising how much information is given away by traffic analysis. If there is burst of information
from me to my employer and, almost immediately afterwards, we see a burst of traffic from my
employer to IKEA, then it's a fair bet that | am ordering some furniture.

In the mid-1990s, the US Office for Naval Research (ONR) funded work to reduce the effectiveness
of traffic analysis attacks and the outcome was The Onion Router (Tor). Tor uses yet another
internet protocol called SOCKS which allows for another machine to act as a proxy server. You tell
your machine the name of the proxy, and then your machine wraps your packets with headers
destined for the proxy. The proxy rewrites the headers of your packets so they appear to come from
the proxy, when they are returned to the proxy they are wrapped and sent back to you, where they
are unwrapped and processed as normal. Proxies are quite common in secure networks as it means
all external, for example, web traffic can be routed through one machine which is easier to secure
than securing everyone. Tor creates labyrinths of circuits between networks of Tor proxy routers.
There are quite complicated rules for choosing the route to avoid the possibility that multiple nodes
on the route are compromised. However, Tor can still operate securely even if some of the nodes
are owned by malicious agents.

Tor encrypts each packet using an “onion” of encryption for each hop in the labyrinth. So, if there
are four hops in the network then your computer obtains encryption keys from the four routers. It
firstly encrypts with the fourth routers key, then the third etc etc. So, when the packet reaches the
first router it strips off its own encryption to reveal the address of the second router to which it sends
the packet. The second router knows where packet came from and, once it decrypts, it knows where
to send it, but it does not know the address of the originator, nor the destination, nor does it know
the contents. Thus, routers within the tor network know very little so, even if they are compromised,
there is not much they can other than some traffic analysis. The entry and exit nodes or a Tor
network are a potential insecurity so great care is used when choosing those.

18 Actually the https protocol does three things: it encrypts the packets; it allows website owners to avoid people
impersonating their website (provided they pay a certification authority) and it also provides a method to prevent
packets being inserted or tampered with during transmission.

19 You can cook sausages on some VPNSs.

This has brought us to end of our circuitous tour around networks. In the abstract | promised to talk
about the future of networks so | ought to spend a brief interval talking about three themes which
are touted as significant for the future: wireless; 10T and security/privacy. Each one of those
deserves a lecture in its own right. | regret having to leave out wireless networking in this talk, other
than ALOHANET. Wireless brings its own problems — in TCP for example the assumption that if
packets are lost it is due to congestion. That may not be the case in wireless, which can lead to
poor performance and when packet switching is combined with cellular telephony even more
tweaking can be needed®®. Nevertheless, people hate wires and there is constant consumer
pressure to move communication to radio even though radio is inherently less secure and polluting??.
As we have seen, the protocols associated with the internet are complicated and generally are
unsuited to simple computers. This has led to a plethora of lightweight networking protocols that
are used principally for devices in the Internet of Things or IoT. You can find our more about the
Internet of Things in another Gresham lecture by Martin Thomas [5]. Without being too glib | think
| can summarise his lecture by saying that 1oT will be a nice idea once it works. However, the final
area for innovation and indeed philosophical thought is better (or worse) security and/or privacy.
Security and privacy are not the same thing nor is it immediately obvious that more of both is a good
thing. These are both topics for the next lecture.

Bibliography

[1] N. Abramson, "The Development of ALOHANET," IEEE Transactions on Information Theory,
Vols. IT-31, no. 2, pp. 119--123, 1985.

[2] R. W. Hamming, "Error Detecting and Error Correcting Codes," The Bell System Technical
Journal, vol. XXIX, no. 2, pp. 147--160, 1950.

[3] J. Gettys, "Bufferbloat.net,” [Online]. Available: https://www.bufferbloat.net/projects/bloat/wiki/.

[4] B. Christian and T. Griffiths, Algorithms to Live By: The Computer Science of Human
Decisions, William Collins, 2017.

[5] M. Thomas, "The Internet of Things," Gresham College, 20 March 2018. [Online]. Available:
https://www.gresham.ac.uk/lectures-and-events/the-internet-of-things. [Accessed 12 April
2021].

[6] G. Ferry, A Computer Called LEO: Lyons tea Shops and the world's first office computer,
London: Fourth Estate, 2003.

[7] C. E. Shannon, "A Mathematical Theory of Communication," The Bell System Technical
Journal, vol. XXVII, no. 3, pp. 379--423, 1948.

© Richard Harvey, 2021

20 There was a brief period during the pandemic when people were attacking 5G phone masts. | did wonder briefly if
the attacks could from networking engineers who had very carefully optimised their TCP transmission parameters for
ethernet and were irritated to find they were not optimal for a new kind of wireless link. Sadly, it turned out that the
attacks were not led by network engineers but by luddites who disliked new technology for irrational reasons.

21 By polluting | mean polluting of the electromagnetic spectrum. People worry about light pollution which disturbs the
sleep patterns of humans and animals, but general electromagnetic pollution is also problematic as anyone who has
tried to install a wifi system in a large block of flats will be aware.

	Bibliography

