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The pointed conical egg of the guillemot is generally supposed to
be an adaptation, advantageous to the species in the
circumstances under which the egg is laid; the pointed egg is
less apt than a spherical one to roll off the narrow ledge of rock
on which this bird is said to lay its solitary egg, and the more
pointed the egg, so much the fitter and likelier is it to survive.

D’Arty Thompson, On Grotih and Form

What makes evolution tick? What patterns of behaviour should we expect from an
evolutionary system? What do such systems do easily, what are the genuine surprises?
The application of mathematics to evolution is changing our answers to such questions, and
by so doing, it is changing the way we look at the development of life on our own planet.
The mathematical techniques range form the geometry of ‘catastrophes’ to ‘artificial life’.

Earlier ages saw the rise of the ‘higher’ organisms as an essential feature of the
evolution of today’s world. The highest organism of dl was humanity, and the purpose
of the whole game was us. Biologists learned, with difficulty, to avoid imputing any kind
of purpose or predetermined god to evolution. On the molecular level, it is the result of
random changes to DNA. Those changes, realised in the resulting organisms — if there
are any, for many mutations fail to lead to viable organisms at all — are then subject to
natural selection, and organisms that happen to survive, whether by luck or ‘good design’,
get to propagate their genes to succeeding generations.

In this view, there is no purpose and no sense of direction to evolution — it just
does whatever it does.

Mathematical modelling of evolution suggests that this exclusion of any kind of
overall pattern is an over-reaction. Evolution may not have gods or purposes, but it can
have a well-defined ‘direction’, a degree of predictability, a dynamic of its own. You can
program an artificial life system knowing that its mutations are random, that its selection
process has no inbuilt goals, no predefine notion of what is ‘best’ — and despite this, it
will follow a distinctive series of changes, organizing itself into more and more complicated
‘organisms’, falling into universal patterns. The very first example of artificial life, Tom
Ray’s ‘Tierra’, produced — from the simplest beginnings — things like parasites, social
behaviour, even a rudimentary form of sex. None of it was programmed in explicitly —
it just ‘happened.

Many other things that have long puzzled evolutionary theorists are turning out to
be completely standard properties of any system that is remotely similar to evolution. One
striking feature of the fossil record is ‘mass extinctions’, in which huge numbers of species
die off simultaneously. The best known instance of a mass extinction is the death of the
dinosaurs, 65 million years ago, but about twenty possible instances of mass extinction are
suspected altogether, and three or four of them stand out very clearly in the fossil record.
At any rate, 65 million years ago not only the dinosaurs, but innumerable other species, rdl
died off within what in geological terms is a very short space of time. Why? Most
probably this particular mass extinction was triggered by the so-called ~ meteorite,
which crashed to Earth just off the coast of present-day Yucatan, in Mexico. But other
mass extinctions may not have an obvious outside cause. Computer simulations of
artificial life have shown that occasional mass extinctions can be the norm rather thm the
exception in many different kinds of ‘evolutionary’ system, for reasons that involve only
the system’s own internal dynamics. More surprisingly, they have also shown that a
tendency for systems to organise themselves into more complex forms may well arise ‘for
free’, for purely mathematical reasons. If these speculations are even close to the truth,
two of the big traditional puzzles of evolution are going to turn out to be based on a
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complete misunderstanding of how evolution should be expectedto behave in the first
place.

Darwin and his Finches
Everybody thinks they understand evolution: the idea is a simple one. However,

the more closely you look at evolution, the more subtle it becomes. For this reason it will
pay us to re-examine some of the usual ground before we return to the exciting,
astonishing, but also higtiy controversial discoveries of the artificial life brigade.

According to the fossil record, life began with relatively simple organisms and
slowly got more complicated. It did so in fits and starts, with occasional bursts of
diversity punctuated by long periods of stasis: the reasons both for the bursts and the stasis
are hotly debated, with some scientists maintaining that they are what you would expect
from a complex system like life, some appealing to meteor impacts and other ‘catastrophic’
events, and a few disputing the evidence of the fossil record entirely and denying that either
bursts or stasis have occurred. But all biologists are agreed on one overriding thing: the
reason why living organisms can change, and pass on those changes to their offspring.
The process involved was the brainchild of Charles Darwin, although it was arrived at
independently by Alfred Wallace. Darwin called the process ‘natural selection’. The
phenomenon of evolution was rdready recognised, but not the mechanism behind it, which
is what Darwin supplied. Nowadays we employ the term ‘evolution’ as a catch-all,
describing both the phenomenon and Darwin’s theoretical mechanism.

Evolution tells us that over long periods of time, species of organisms change.
They are not created once and fixed forever: they are mutable. It dso tells us why.
Darwin came to his conclusions after many decades of study of living creatures. One of
his most celebrated examples is ‘Darwin’s finches’ on the Gddpagos Islands, which lie on
the equator, 1500 kilometres to the west of the coats of Ecuador.

The time is 570,000 years ago. The Galtipagos Islands are extremely isolated,
with no large land-mass anywhere nearby. Their bird population consists only of seabirds,
most of them visitors. The land, with its plants, cacti, hills, and swamps, is inhabited by
reptiles — lizards, turtles — but no mammals. It would be a paradise for land-birds —
except that there aren’t any.

Then, by pure chance, a few bedraggled, tired finches arrive, probably blown in a
hurricane. They are dl of the same species, and their species evolved elsewhere to exploit
a very precise environmental niche. Perhaps they were ground finches, birds that spent
most of the time on the ground, eating grain. Let’s suppose, for definiteness, that they
were.

When finches find themselves in land-bird paradise, what do they do? They breed.
There is an abundant supply of food, few competitors, no predators. The finch population
must have exploded. Soon there were so many finches that the supply of grain began to
run low. There were other potential sources of food: insects, cactus, berries ... but these
finches were grain-eaters.

However, the finches weren’t identical. They all had ground-finch genes, but
some had different genes from others. Some birds with slightly different genes from the
main flock, driven to desperation as the grain ran out, found that they could eat small
berries instead of grain seeds. Others evolved the ability to eat cactus. As evolution
began to work upon the now diversifying range of finch abilities, the form of the finches
became more specialised. The insect-eaters developed longer, thinner beaks, suitable for
catching an insect in flight. The berry-eaters grew thick, short beaks. Within perhaps a
hundred thousand years — maybe less — the Galapagos Islands boasted not just ground
finches, but tree finches and birds that bore a closer resemblance to warblers than to
finches. And this was just the beginning. Today that one species of finch has split into
fourteen distinct species, each with its own lifestyle. Even today, Darwin’s finches me
still evolving, their genetic makeup and their form drifting gradually as their environment
changes.

Darwin realised that something like this scenario must have occurred in the
Grdfipagos Islands, because it seemed hig~y unlikely that fourteen separate species of bird
could each have arrived on a hurricane. The idea that a single species might split into
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several fitted many other observations that he knew about, so to Darwin, the finches of the
Ga16pagos were the clincher. He worked out the basic mechanism of evolution without
having any idea that it was based on random errors in DNA chemistry: that came a lot later.
And he realised that evolution involves two very different factors. Firstly, there must be
some kind of heredity — parents must be able to pass certain kinds of change on to their
descendants. Secondly, the mechanism of heredity must be slightly imperfect, making the
occasional ‘mistake’. Given these two properties, everything else follows from the fact
that on a finite Earth, all resources are limited. Therefore organisms will have to compete
for resources, and the penalty for losing the competition will be a failure to pass characters
on to the next generation. (’Character’ is the geneticist’s term for any definable feature of
form, pattern, or behaviour: in ordinary language the word ‘characteristic’ carries the same
connotations.), Either you compete effectively, or you die. You don’t have to win all the
time, you don’t have to be the absolute best that could possibly exist: you just have to be
good enough to stay around. This process is what Darwin called natural selection, often
abbreviated to plain ‘selection’. Darwin’s great insight is that imperfect heredity plus
natural selection inevitably make organisms evolve. They chnge, becoming better players
at the game of survival. Usually they do this by becoming more complex, but that’s a
secondary observation, not an explicit feature of the theory; and sometimes they do it by
becoming simpler. And since dl the other players are changing too, none of them acturdly
need become better at survivrd as such.

Mendelian Heredity
Modern biology has filled in one of the big gaps in Darwin’s theory, the physical

(in fact, chemical) basis of of heredity. Organisms pass on characters through their DNA,
and errors occur when the DNA copying process makes a mistake. This discovery has
come only recently, but a thriving theory of genetics, founded upon clear mathematical
principles, has been around for much longer. The theory is called Mendelism, after its
discoverer, the monk Gregor Mendel. Mendel was a mathematics student at the
University of Vienna. fionically, he failed his subsidiary botany course and was therefore
denied his teaching diploma. In order to pursue his studies he became a monk, succeeded
too well, and was promoted to abbot. He was then overwhelmed with administrative
duties and had to give up his scientific research. But in between, he made one of the key
discoveries of his century. Mendel kept lots of pea plants, and he cross-bred them,
pollinating plants with the pollen from other plants. He found that plant heredity displayed
simple numerical patterns — for example when he cross-bred green-seeded pea plants with
yellow-seeded ones, he got three times as many yellow-seeded offspring as green-seeded.
From such result he deduced that the factors that determine the characters of the plant must
be inherited from both parents. Nowadays these factors are called alleles: these are
related to, but distinct from, genes, a word that has made its way into everyday language.
Aleles are the different forms that a gene can take. For instance, the gene ‘seed colour’
has at least two alleles, yellow and green.

The tidy numerical ratios were vital clues to life’s genetic mechanisms. As an
example, let me explain that 3:1 ratio in peas. Mendel’s idea is that the parents each have
have wo alleles and the offspring inherits one from each of them — chosen at random.
Call the alleles for seed colour Y and G, so that the possible pairs are YY, YG, GY, and
GG. If a pea plant has alleles YY or GG, then it is clear what colour its seeds should be;
but what about YG? Mendel’s answer is that in such cases one particular allele always
wins. That allele is said to be dominant, the other recessive. In peas, Y is dominant
and G recessive, so each of the pairs YY, YG, and GY leads to offspring with yellow
seeds and only GG to green. Note the numbers: three pairs yellow, one green — the
magic 3:1 ratio.

A huge amount of mathematical machinery for handling this kind of calculation was
developed in the early twentieth century by the statistician Ronald Aylmer Fisher. Its
virtues are simplicity and pencil-and-paper accessibility: its defects are that it employs a
simplifying assumption: large numbers of different individuals are homogenized into a
common ‘gene pool’ in which only the frequencies of occurrence of alleles matters, not
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who has which and in what combination. Genetics

4

sees evolution in completely different
terms, compared to Darwin: instead of organisms and characters, it focuss~s on-genes and
alleles. Organisms are a kind of secondary by-product of genes: it is only genes that redly
matter. This point of view, which dates from the 1930s, is called neo-D~winism. In the
modern era, that focus has been sharpened still fufiher, and the source of all important
action is seen as the molecule DNA.

Moreover, the study of evolution in terms of DNA has become highly
mathematical. There are regularities and patterns even in the random mutations of DNA
bases, and we can use them to trace evolutionary histories. Admittedly, the patterns are
mostly statistical, and the whole area is rather controversial, for good reasons. As always,
the mathematical models are only as good as their assumptions, and it now looks as if the
earliest work was a bit naive in that regard. I don’t consider this a major criticism: every
new idea has to start somewhere, and pioneering work is always nave in retrospect. Naive ‘
or not, it’s a fascinating story, and it made radical changes to our view of evolution —
including our own.

Tracing Family Trees
The central idea is to employ precise mathematicrd techniques to trace evolutionary

histories — the jargon is ‘phylogenies’. Before the subject went mathematical,
phylogenies were constructed on the basis of expert opinion — the gut feeling that a
particular species of beetle, let us say, was evolutionarily close to another beetle species,
but more distant from centipedes or wasps. The problem with such methods is that
experts can disagree, and there is then no way to resolve the dispute rationally.
Mathematical methods held out the hope of being more objective, because one of the great
advantages of mathematics is its precision. Unfortunately this can also be one of its great
disadvantages, because precision is not the same as accuracy. The accuracy of a
mathematical answer is no better than the assumptions upon which it rests — but it is easy
to be so impressed by the precision that you don’t question the assumptions.

There are two basic types of method for tracing the ‘family trees’ of organisms.
One is to deduce relationships by looking for common characters — for instance, all birds
must be related since they have wings and feathers; bats have wings too but no feathers, so
they are more distantly related to birds. The other is to ask: given two organisms, how far
back in evolutionary history did they diverge from a common ancestor? The first
approach, generally called ‘numerical taxonomy’ and pioneered by P.H.A. Sneath and
R.R. Sokal, involves making a list of characters — shape of bones, pattern of veins,
banding pattern of chromosomes, whatever. Then these characters are assigned numerical
values. For instance, suppose we wish to distinguish between a hippopotamus, a fly, and
an ant. We might draw up a table of such values, like this:

CHARACTER HIPPO FLY ANT
body length (cm) 375 2 1
number of wings o 2 ~ (mostly)
number of legs 4 6
lives in water? 1 (yes) O (no) O (no)

and so on. The problem now is to extract from this list some quantitative measure of the
overall difference between the different creatures. One way is to represent each anima~s
list of character values as a point in a multidimensional space, and see how the points
cluster. To keep the idea simple, focus only on the first two characters in the list, length
and number of wings. We can represent those characters graphically using two
perpendicular axes, and locate the three animals in the resulting two-dimensiond space.
Visually it then becomes clear that the ant and fly are closer together in the picture th~
either is to the hippopotamus. A great ded of mathematical technique has been developed
to make sense of this kind of clustering information in spaces with large numbers of
variables, and to make the process as objective as possible.

However, it is not as objective as its proponents claim. The calculations ye
indeed objective, but the assumptions behind them involve human judgement as to w~ch
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characters really matter — and indeed just how to define the ‘distance’ between
representative points. Again, people confused precision (undeniable) with accuracy
(contentious).

Critics of this approach also pointed out that it had no evolutionary content. Their
alternative ‘phylogenetic’ methods try to work out how recently two given species diverged
from a presumed common ancestor. This approach can change the resulting picture
dramatically. For example when applied to the three organisms lobster, barnacle, limpet,
numerical taxonomy concludes that barnacle and limpet are the most closely related of the
three, whereas the phylogenetic method places lobster closest to barnacle. There are two
main phylogenetic schools: evolutionary taxonomy, promoted by Ernst Mayr, George
Gaylord Simpson, and Theodosius Dobzhansky, and cladism, introduced by W. Hennig.
Both of them see the lobster as a closer relative of the barnacle than the limpet is. h its
original form, cladism was also based on measurements of characters, but it sought to
deduce the real evolutionary tree, or ‘lineage’ of the organism — its list of ancestral
organisms or species. It therefore looked at characters shared by groups of organisms that
were presumed to be evolutionarily related, and focussed ody on those characters that were
unique to some group. Elaborate mathematical techniques were devised to locate such
characters and deduce the fdy tree.

Problems with Cladism
One problem with cladism — unless you are a cladist, in which case you see it as

an advantage — is that some traditional groups get split up. For instance a cow is a
quadruped, and all quadrupeds evolved (long, long ago) from lobe-finned fish like the
lungfish. Other kinds of fish, such as the salmon, a ray-finned fish, diverged from the
lungfish lineage well before the cow did. By the rules of cladism, this prevents the stion
and lungfish from being placed in the same group — unless the cow goes in too. So either
a cow is a fish, or the lungfish and salmon are not both fishes. The same problem crops
up in classifying reptiles, where the crocodile is found to be a closer relative of the bird
than of the lizard or snake. The cladists’ viewpoint is that the family tree is just like that:
too bad. The numerical taxonomists disagree, which is where the third school, that of
evolutionary taxonomists, comes in — with a compromise approach that pleases neither of
the other two schools.

Nowadays, however, we have an (allegedly) less contentious way to trace
evolutionary lineages. Instead of tracking characters, we track DNA codes. If one
organism has a sequence somewhere that goes CCGGGTTTCC and another has one in the
corresponding place that goes CAGGG~TCC, with only one mutation, then they must be
more closely related than one with the sequence CGTGACTTCC, which differs from them
both in many more positions. There are still some big surprises, but the evidence is
distinctly less subject to personal bias in choosing characters. DNA isn’t the only
molecular method for tracking lineages: for example amino acid sequences in proteins can
also be used. The biggest problem here is a rather interesting mathematical one: how do
you define a sensible ‘distance’ between DNA sequences? The obvious one is what
communications engineers cdl the Hamming distance: the number of places where the
sequences differ. So the Hamming distance between

CCGGGTTTCC
CAGGGTTTCC

is 1, since there is ody one different base (boldface), whereas that between
CCGGGTTTCC
CGTGACTTCC

is 4. Unfortunately, DNA does not always mutate by just changing one base. Bases may
be inserted or deleted; so may whole sequences of bases. Sequences Cm be copied several
times in a row. Moreover, sequences can dso be inverted. SO only one step awayfrom
CGTGACTTCC we find sequences such as

(insert abase) CGATGAC~CC
(delete abase) CGGAC~CC
(insert a sequence) CGTATTAGGAC~CC
(delete a sequence) CGTTTCC
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(double up a sequence) CGTGACTTGAC~CC
(invert a sequence) CGTTCAGTCC

The Hamming distance places all of these a long way away from the original sequence.
You might decide to use something like ‘the smallest number of such operations that can
transform sequence 1 into sequence 2’. Apart from being very hard to calculate, this
measure also has a major defect. In a literary analogy, it would place Winnie-the-Pooh
very close to Hamlet. Two steps alone separate them:
● Step 1: insert the whole of Hamlet at the end of Pooh
● Step 2: delete Pooh.
So that won’t work either. What is really needed is a way to characterise sensible
insertions or deletions — so that when presented with “TO BE OR NOT TO BE, THAT IS THE
POOH TRAP FOR HEFFALUMPS QUESTION. WHETHER ‘TIS NOBLER IN THE MmD...” the
mathematics would spot the inserted sequence as readily as fans of William Shakespeare
and Nan Aexander Milne do.

An interesting feature of using molecular methods to trace branches of family trees
is that you can deduce a certain amount of information about when particular species
diverged from others. The idea is that particular regions of the genome mutate at different
rates, and that mutation rates can be estimated from modern experimental data. So, in
effect, the DNA mutations provide a molecular clock. There is a certain amount of
disagreement about just how regularly the clock ticks, but on a qurditative level the idea is
sensible enough. A great triumph of this approach occurred in anthropology, the study of
humanity’s prehistoric ancestors. Until the 1960s the fossil species Ramapithecus was
widely considered to be a hominid — a very close relative of mankind, much closer than
the great apes such as the gorilla and chimpanzee. But in 1967 V. Sarich and A.C. Wilson
measured the ‘immunological distance’ between humans, gorillas, and chimpanzees, by
seeing how strongly antiserums from one of these species bound to the protein albumin in
the others. Their results, interpreted via the molecular clock, indicated that humans
diverged from the great apes only 5 million years ago. Other evidence showed that
Ramapithecus and humanity diverged more than 9 million years ago. So Ramapithecus
wasn’t a hominid after all.

That figure of 5 million years has now come into dispute — though not the
conclusion that Ramapithecus wasn’t a hominid. In March 1997 Simon Easteal and
Genevieve Herbert took another look at the ticking of the molecular clock. The figure of 5

million years arises from an estimate of 1.5 x 10-~ for the probability that a given base will
mutate in a given year. (This means that any given DNA base will, on average, mutate
once every six hundred million years. Mutations in any given base are very infrequent —
but there are an awful lot of bases.) Easteal and Herbert argued that the mutation rate
ought to be pretty much the same in dl mammals; but that assumption placed the divergence
of the marsupials (such as kangaroos) from the mammals at about 330 million years ago.
However, fossil evidence shows conclusively that the divergence occurred no more than
125 million years ago. The two scientists concluded that the molecular clock ticks about
50% faster than had previously been assumed. This led them to revise the date at which
humans and chimps diverged — it was probably 3.6 to 4 million years ago, not 5 million.
This revision of history is important because it makes it possible for a known hominid,
Australopithecus afarensis, to be the common ancestor of both chimps and humans.
Another similar hominid, A. africanus, could then be the ancestor of gorillas. I mention
dl this mainly to show that science continues to refine its understanding of early human
evolution, and that mathematics is proving an indispensable tool in anthropolo~.

Ingredients for Modelling Evolution
Evolution raises some novel problems for mathematics, because when viewed as a

process it has unusual features that do not fit neatly into existing mathematical theories.
Evolution has at least four ingredients:

● mutation
● selection
● development
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● environment
and these interact to produce organisms that are adapted to their environment. Genes affect
organisms by controlling — or at least changing — the organisms’s development. Genes
themselves change by random mutation. These are processes that involve the content of
the organism — its own internal structure. Organisms affect the range of genes available
in the next generation — the gene pool — by reproduction. Selection affects organisms
by favouring those that are well adapted. These processes involve the organism’s context
— the environment, including other organisms, climate, terrain, and availability of mates
(in sexual species). Evolution occurs when many organisms pursue these interactions and
more or less systematic changes emerge. A fully realistic model of evolution must take dl
of these interactions into account — a daunting task.

Neo-Darwinism
Geneticists, especially those known as neo-Darwinists, try to sidestep the

messiness of organisms by collapsing the evolutionary system down to something simpler,
looking only at the effects ‘experienced by genes. The complex processes of selection
within a changing environment are collapsed down to a single ‘fitness factor’ for a given
allele; and phenotype — the form and behaviour of the organism — is assumed to be a
direct consequence of genotype. Instead of organisms competing for the right to
reproduce, neo-Darwinists see genes competing for their place in the gene-pool.
Moreover, in classical genetics of the kind introduced by Fisher, an ecosystem — such as a
rainforest full of different plants, insects, small animals, predators — is modelled as a
homogeneously stirred pool of genes. As the organisms reproduce, those genes get mixed
together in new combinations; as natural selection weeds out unfit alleles, the alleles that
allow organisms to survive better tend to proliferate. Random genetic mutations keep the
gene pool simmering. The mathematics focuses solely on the proportions of particular
alleles in the population, and models how those proportions change in response to
selection. Physicists cdl this kind of approach a ‘mean field theory, and resort to it only
when desperate. In mean field models, a collection of distinct individuals is replaced by a
homogeneous mass of identical ‘average’ individuals. It’s like assuming that every family
really does have 2.3 children — fine for some purposes, like deciding how many schools
to build, but misleading for others, such as deciding how many big or small houses are
likely to be needed in the next decade.

For example, a hypotheticrd population of slugs might have genes for green or red
skins, and other genes for a tendency to live in bushes or in bright red flowers. Typical
genomes include greetiush and red/flower — four possible combinations altogether.
Some combinations, however, have greater survival value: for example re~ush slugs
would be easily seen by birds against the green background of the bushes they inhabit,
whereas redflower slugs would be less visible. To model this system in the spirit of
Fisher, we assign numerical weights, called selection coefficients, to the possible genomes.
Thus retiush might have a selection coefficient of 0.1, compared to 0.7 for redflower.
Essentirdly these choices indicate that a red slug living on bushes has ody a 10% chance of
surviving to reproduce, whereas a red one living in flowers has a 70~0 chance. We also
assume some initial distribution for the proportions of the total slug population that
correspond to each of the four pairs of alleles — say that 2070 are redbush, 1590
redflower, and so on. Fisher’s mathematical scheme then lets us calculate the proportion
of each allele in each ,succeeding generation. If some proportion becomes zero, then that
particular Mele dies out.

All this, of course, is no better than the assumptions that go into it — which by
today’s standards are unsophisticated. As well as being mean field, Fisher’s genetic
models are also ‘linear’ — they assume that the effect of an allele is proportion~ to the
frequency with which it occurs, and that the effects of different alleles simply add up.
Linear mathematics held sway in classical times because the calculations were simple
enough to be done with pencil and paper. Today, most areas of science are adopting
‘nonlinear’ models with more complex, but far more realistic, dynamics. The same is true
of frontier genetics and evolutionary theory.
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Fitness Landscapes
We can cap~ure some of the flavour of nonlinear modelling by using a geometric

analogy. Imagine a plant on the side of a hill, producing seeds and scattering them
randody around it. Suppose for the sake of argument that seeds that land higher up the
hill are retained, but those that land lower down are removed. Then over a period of time
what you will find is a patch of plants working its way higher and higher up the hill. This
image of a hill is a simple example of what Sewall Wright called a ‘fitness landscape’.
This is a surface, a graph that represents how the fitness of an organism depends its
characters. Fitness is represented by height, and the characters determine the organism’s
position on the landscape. Nonlinearity implies that a typical landscape is bumpy, rather
than being flat or just sloping at a constant angle. The bumps are the places where
organisms are fittest, and so dominate the evolutionary behaviour; the valleys are also
important, however, because they separate the bumps from each other.

Fitness is a relative concept, not an absolute one, but it’s clear what such a model
predicts: organisms will evolve in the uphill direction, heading towards the locrd peaks of
fitness. There are dozens of ways in which this model of evolution is too simple to
capture the reality in detail, but it emphasises the basic point: that even if the errors in
heredity are random, natural selection will impart a definite directionality — towards fitter
organisms. Similar models can cope with more realistic assumptions, and they lead to
much the same conclusion.

Wright’s image was one of the earliest biological instances of a way of thinking that
has now become all-pervasive, the mathematical concept of a phase space. This idea,
introduced by Henri Poincar6 a century ago, represents dynamics as geometry. A phase
space is a multidimensional mathematical space whose points represent possible states of
some dynamicd system — a system whose state can change over time. In Wright’s model,
the phase space is ‘organism-space’ — its coordinates forma list of the numerical values of
all the relevant characters. For example, suppose that we are modelling a population of
finches. Then the system is ‘all possible finch phenotypes’ and its states are particular
finch phenotypes. The phase space is two-dimensiond, a plane, and its two coordinates
correspond to the two variables ‘height’ and ‘wingspan’.

If we looked at twenty such variables, we would in effect be working in a twenty-
dimensional phase space — a somewhat mindboggling concept that pervades modern
mathematics. The word ‘dimension’ is introduced as an analogy: each entry in a list of
twenty numbers can be varied independently of the others, so that entry behaves like an
independent dimension. The geometric language proves useful because it sets up helpful
analogies with spaces of two or three dimensions; precision is supplied by remembering
that the actual objects under discussion are long lists of numbers.

What of dynamics? Dynamics is represented by a flow-pattern in phase space. As
a representative point ‘goes with the flow’ its coordinates, the list of numbers that
represents the state of the system, change over time. Phase spaces offer technical
advantages for mathematicians, but their most important role is metaphorical: they formalise
the notion of context by embedding what actually happens in a structured rerdm of rdl the
things that might have happened instead. In a phase space model you can ask ‘why this
behaviour rather than that?’ and hope to get a sensible answer.

Wright’s phase space approach immediately solves one worrisome puzzle: if
phenotypic variables are continuous — capable of assuming any numerical value within a
given range and thus changing gradually — why do we see well-defined species with
values that cluster around particular numbers, and empty gaps at other numbers? The
reason is that continuously varying landscapes still have isolated peaks. Its m~n defects
are
● Not rdl characters can be captured by continuous numerical variables.
● Fitness is not just a matter of evaluating a single number. (For example a cat is

fitter than a goldfish at climbing trees, but less fit at staying underwater for hours at
a time. Who wins depends on what game they are playing.)

Nevertheless, the ‘fitness landscape’ is a useful and insightful metaphor for certain aspects
of evolution.
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Catastrophe Theory
By developing some ideas of Ren6 Thorn in the later 1960s, Christopher Zeeman

set up a mathematical model of the fitness landscape which addresses the slippery issue of
whether evolution can jump. Can a radically new organ, such as an eye, or a radic~ly new
species, suddenly come into being? Darwin’s view on this question is generally
presented as unequivocal: ‘Natura non facit saltum,’ nature does not make jumps. But he
also said: ‘Many species once formed never undergo any further change ... and the periods
during which species have undergone modification, though long as measured by years,
have probably been short in comparison with the periods during which they retained the
same form.’ That is, the jumpiness of evolution depends on the timescale over which you
look.

It is true that every so often the fossil record seems to show some very sudden
changes. Are they genuine, or do they just reflect gaps in the fossil record? Certaidy the
fossil record is very incomplete, and apparent gaps are still being filled at a relatively rapid
rate as paleontologists dig up new specimens. The gradudist view of speciation is that
over long periods of time the phenotype of a species slowly drifts, until eventually the
change becomes so great that the species seems to have changed. For example, the
trilobite is a creature that lived on the ocean floor and became extinct 250 million years ago.
Trilobites evolved for hundreds of millions of years: new species arose, earlier ones died
out. But dl of the known changes are arguably gradud in character.

In 1972 Niles Eldredge and Stephen Jay Gould caused a storm with their theory of
‘punctuated equilibrium’. This maintained that speciation nearly always occurs by the
splitting of lineages, not by the slow drift of a single lineage, and that this splitting happens
much more rapidly than the usual drift rate. They tied this theory (unnecessarily, it seems
to me) to the prevailing idea that the splitting of species occurs by ‘dlopatric speciation’, in
which a small subpopulation on the edge of the geographical range moves away and
becomes disconnected from the main body of the species. Once isolated, this group
evolves in new ways because it is in a different environment. If the resulting new species
reinvades the originrd territory, the fossil record at that place will appear to show a jump.

The gradualists disagreed completely: they maintained that almost all speciation
takes place gradudly. They accepted the possibility of splitting as well as drift — after W,
the number of species dive today is a lot greater than it used to be, and the new ones must
have come from somewhere — but saw splitting itself as a gradual separation, not a
sudden jump. Eldredge and Gould, in contrast, thought that almost all species arise
through rapid changes at splittings, and hardly any changes in species occur by gradud
drift.

It’s a complicated debate, not helped by differences of opinion about what
constitutes a species. Cladists, for instance, define species in a manner that precludes drift
as a mechanism for species change, because to them anything that changes gradudly
represents the same species. What mathematics does here is to suggest that the whole
debate is misconceived. Anyone brought up on modern dynamical systems — the best
general theory of how systems can change over time that we have ever had — knows that
the same system can change suddenly or gradually. The sudden changes are called
b~urcations, a term that represents a conceptual splitting of possible behaviors rather
than an actual splitting of species — and is not confined to splitting into WO pieces,
despite its usage in everyday language. Imagine a dynamical system whose behaviour
depends on external parameters — environment, perhaps. Assume that those parameters
vary gradually. What does the system do? The ‘obvious’ answer is that the system
changes gradurdly too: that continuous changes produce continuous effects.

Obvious — but wrong. Most of the time the effects will change gradually, but
every so often the parameters can hit a ‘critical value’ at which the change becomes rapid
and dramatic. When this happens, we have a bifurcation. For an example, imagine a
stick being gradually bent by an external force (your hands). To begin with, it bends, and
the change is just as gradud as the change in the applied force. But then, without anything
terribly obvious changing, the stick suddenly snaps. After that, you can continue moving
your hands gradudly and the stick again moves with them.

There is nothing unusual about this dual behaviour: usually smooth, sometimes
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sudden. It is what nearly all dynamical systems do.
Bifurcations occur when the state of the system changes from being stable to being

unstable: the system then seeks a new stable state, which maymeana big change. The
gradual behaviour occurs when stable states remain stable. Symmetry-breaking is a
particular type of bifurcation behaviour, found in symmetric systems. But even
asymmetric systems can, and often do, bifurcate.

In the 1960s, Thorn introduced some new ideas from pure mathematics into the
classification of bifurcations, and Zeeman gave them the name ‘catastrophe theory’ to
emphasise the sudden changes involved. Catastrophe theory did not have a big impact on
biological modelling — partly as a result of exaggerated criticism in its early days — but it
completely revolutionised bifurcation theory. It was a bloodless revolution, accomplished
under an assumed name (singularity theory), and it took place largely within mathematics,
so hardly anybody noticed. That change in dynamical systems can be sudden was not ‘
new, but the possibility of classifying such changes in terms of a sequence of increasingly
complex geometric forms was new.

The central question, from this point of view, is this: suppose that a fitness
landscape changes gradually, as a result of changes in external parameters. Mat should
we expect the ~~ess peaks to do? You might expect them to move gradually as well —
this seems to be the unspoken assumption behind gradualist thinking about evolution.
That expectation is correct if there is only one peak and it does not run into anything else —
such as a slope. It is dso correct in the especially simple kind of linear mathematics that
was common a century ago. But it is not true — not even close to truth — for more
realistic nonlinear mathematics. The reason is that in nonlinear systems peaks can be born,
can be absorbed, can collide, can split.

So why not species too?
Admittedly, a fitness landscape is too simple to capture all of the rich reality of

biology — but if anything, that reinforces its message. The model shows that both rapid
and gradual change are natural in any system that occupies the peaks of slowly changing
landscapes. There is absolutely no need to choose one or the other as being exclusive, and
every reason not to. If the simplest nonlinear model of transitions in gradudly changing
fitness landscapes possesses such a rich range of dynamic behaviour, surely more complex
and biologically more accurate ones should be capable of at least the same richness?

The gradudistipunctuationist controversy is pointless. Most likely, the two schools
of thought are both right, some of the time, and both wrong, some of the time. It’s time
they put their ideas together: neither will ‘win’ on its own.

Artificial Life
So far, the evolutionary mathematics that ~ve told you about has been fairly

conventional, at least to a mathematician. But some aspects of evolution pose completely
new problems for mathematics, and their solution demands the creation of new
mathematics. It’s not arrived yet, but with imagination we can see it on the way.

The need for biologically more realistic models of evolution has stimulated a very
different approach to evolutionary modelling, known as the theory of compex adaptive
systems, or Complexity Theory for short. Artificial life is a development within
Complexity Theory. Complexity theorists try to model complicated systems of individuals
as complicated systems of individuals. They don’t take short cuts with ‘average’
behaviour, they don’t assume everything is unifofiy mixed: they accept the unique nature
of the individud, and delight in it. To model evolution, they setup computer models with
lots of ‘virtual organisms’ that obey simple rules of interaction, and see what happens.
Remember the slugs and their selection coefficients? For a complexity-theoretic approach
to the same problem, we set up a simulation based on a square grid, say 100 squmes by
100. We decide which square corresponds to a piece of bush, or flower, or whatever.
Then we populate a randody chosen selection of these squares with ‘virtual slugs’, by
assigning a slug ‘genome’ (combination of the alleles under consideration) to each such
cell. For example the square 28 units long row 49 of the grid might be assigned genome
refiush, and so on. Other squares might be ‘virtual predators’. Next, we give the
computer rules for how these virtual organisms move around the grid and interact with each
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other. For example, we might decide that at each time-step a slug moves at random to a
neighboring square, or stays put, whereas a predator ‘sees’ the nearest slug and moves
five squares towards it, ‘eating’ it if it reaches the slug’s own square — meaning that that
particular virtual slug is removed from the computer’s memory. We set up the rules so
that green slugs are less likely to be ‘seen’ if they are on bushes rather than flowers, and so
on. Then we play this mathematical computer game — the technical term is ‘cellular
automaton’ — for ten thousand time-steps, and read off the proportions of various
surviving slug alleles. In all likelihood we would run the simulation several hundred
times, to ensure that any apparent mathematical patterns are independent of the particular
sequence of random events that occurs in a single run. An advantage of the complexity
model is that it explicitly incorporates organisms as individuals, rather than by proxy as
allele proportions, and it implements natural selection by pitting predators against prey in an
environment, rather than simply assigning numerical weights to the probable outcome of

such a contest.
Complexity theorists have invented innumerable models in the same spirit: building

in simple rules for interactions between many individuals, and then simulating them on a
computer to see what happens. The provocative but apt term ‘artificial life’ was coined to
describe such activities. A celebrated example is Tierra, invented by Tom Ray. h Tierra,
short segments of computer code compete with each other inside the computer’s memory,
reproducing and mutating. The source of all Tierran ‘life’ is an ancestral organism, a self-
replicating segment of computer code occupying 80 bits of memory. h January 1990 Ray
released this organism into a primal ocean of random bits in a computer’s memory and left
the system to its own devices. Copies of the replicating ancestor quic~y took over large
regions of memory, but then occasional mutations — computer errors — began to cause
changes. New replicating ‘species’ appeared, some smaller than the ancestor, some
bigger. As time passed, the diversity of the ecosystem fluctuated: sometimes there were
very few species, sometimes a lot. It was all rather confusing. Then 45-bit parasites
emerged. Lacking their own copying instructions, they ‘borrowed them from nearby
organisms. In some runs of the program the ancestral organism then mutated, becoming
79 bits long and resistant to the parasites, so the parasites died out. In other runs,
‘hyperparasites’ appeared, which subverted the parasites’ method of replication and used it
to replicate themselves. Some of the hyperparasites evolved into social organisms with 61
bits, which replicated only by mutual cooperation. Their existence paved the way for 27-
bit cheats, which hijacked the entire program by sterding control from the social organisms.

Tierra may only be a random sea of bits in a computer’s memory, but ‘all life is
there’. It strongly reinforces the view, central to this book, that the patterns exploited by
biology arise ‘for free’ from mathematics. Ray did not instruct his bit-strings to become
parasites, or hyperparasites, or to cooperate.

They did it anyway.
However, he did instruct them to reproduce, by including an explicit ‘copy’

command in his computer language. You’ve got to start somewhere, but the whole story
would be a lot more convincing if the ability to replicate itself arose ‘for free’. Because
then you’d be modelling the origin of life, not just what happens to it once it has arisen.

Ambitious? Improbable? Of course. But science won’t advance at all if we
pursue only lines of attack whose success can be predicted in advance.

h 1996 Andrew Pargellis unveiled his own artificial life program: ‘Amoeba’. Ray
had ‘played God’ by seeding the computer’s memory with a specially designed replicator,
but Pargellis started with just a random block of computer code. Every 100,OOO
computational steps the program wiped out 790 of the memory slots and replaced them with
randomly chosen commands. He found that about every fifty million steps a self-
replicating segment of code appeared. Replication didn’t have to be built into the rules —
it just happened.

Systems like Tierra and Amoeba, without being given any explicit instruction to do
so, display ‘high level’ patterns very similar to those found in real terrestrial evolution.
These include the spontaneous appearance of replicators, spontaneous increases in
complexity, rudimentary forms of symbiosis and parasitism, lengthy periods of stasis
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punctuated by rapid changes — even a kind of sexual reproduction. The message is that dl
of these puzzling phenomena are entirely natural: theyaretypicalproperties of complex
adaptive systems. Instead of being surprised when we see them in the evolutionary
record, we should be surprised if we did not.

Implications
These are striking discoveries, but what is their significance? Does artificial life

really tell us anything useful about real life?
I think it does. I can best describe why by invoting the concept of phase space —

a geometric image in which every event that does happen is surrounded by a ghostly halo
of ‘nearby’ events that didn’t — but could have. When you set up any mathematical
system, be it a classical dynamicd system or the kind of thing used by devotees of artificial
life, you also implicitly set up a phase space. Phase spaces are big — they contain all
possibilities, not just a selection. If the rule system is sufficiently ‘rich — which
basically means not horribly boring and obvious — then all sorts of possibilities lurk
within its phase space. Now we begin to see the significance of mutations in evolution.
They don’t just make evolution possible: they enable the system to explore its phase space.
The states that it is occupying today may change tomorrow. We also see the role of
selection more clearly: it makes the exploration efficient. H dl that happened were random
mutations, the system would wander around in its phase space like a drunkard, tottering
one step forward, two steps back. Indeed the mathematics of ‘random walks’ shows that
such systems spend an awful lot of time revisiting old haunts. But with selection, bits of
phase space that ‘don’t work are eliminated. Selection helps the system to home in on
the interesting regions of phase space, the places where useful things happen, the central
features of the evolutionary landscape.

The phase space for real terrestrial evolution is far more complicated than that for
Tierra or Amoeba. But it plays the same role. Its rules are those of the physical
universe. Mutations allow life on Earth to explore the evolutionary phase space, selection
cuts down the possibilities so that evolution doesn’t spend dl of its time wandering up dead
ends or revisiting places that don’t contain anything interesting. Their combined effect
creates a geography of phase space, making it more like a landscape than a featureless
plain; evolution homes in on the more significant features, behaving as fit has gods when
actually it is being driven by the geography of its phase space. Evolution does not bow
where it is heading — but if we could see its phase space, we’d get a pretty good idea.

Stuart Kauffman, a highly original scientist who has thought deeply about such
matters, sees this kind of structure as being characteristic not just of evolution, but of any
process that has the ability to complicate and organise itself. Instead of ‘phase space’ he
ttis of the ‘space of the adjacent possible’. And instead of merely pointing out that phase
spaces have a geography, hence a dynamic, he believes that we may soon be able to state
precise mathematical laws that govern how a system explores the space of the adjacent
possible. And he is convinced that those laws will be a lot closer to ‘as fast as possible
without falling to bits’ than they are to ‘with no purpose and no sense of direction’.

G Ian Stewart
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