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~resham Lecture

The Geometrg of Time Travel

There is no difference between Time and
any other of the three dimensions of
Space except that our consciousness
moves along it.

H.G.Wells, The Time Machine.

Time travel used to be just science fiction. When H.G.Wells published ‘me Time
Machine’ in the 1894-5 issue of The New Review, even the Time Traveller’s friends
didn’t believe a word. But if you look through today’s mainstream physics journals,
things like Annals of Physics and Physical Review Letters, you will find occasional
articles about time travel — taking it completely seriously, and applying state-of-the-art
physics. There’s been quite a spate of them in recent years. Some claim to prove that
time travel is impossible, and some say that it’s possible in principle but impossible in
practice because of the huge energy overheads. Whatever the articles say, they’re
becoming a lot more fiequent~

Most of The Real Physics of Time Travel is General Relativity; and the
Quantum Mechanics. The General Relativity is by far the most interesting,
concentrate on that.

But fiS~

rest is
so I’ll

Special Relativity
I’ll try to get through this bit quickly, but we need some of the basics. The main

one is that ‘Relativity’ is a silly name.
The whole point of Special Relativity is not that ‘everything is relative’, but that

one particular thing — the speed of light — is unexpected absolute. If you’re traveling
in a carat 50 mph and you f~e a gun forwards, so that the buUet moves at 500 mph relative
to the car, then it will hit a stationary target at a speed of 550 mph, adding the two
components. However, if instead of fting the gun you switch on a torch, which ‘f~es’
light at a speed of 670,647,740 mph (186,000 reps), then that light will not hit the
stationary target at a speed of 670,647,790 mph. It will hit it at 670,647,740 mph,
exacfly the same sped that it would have had if the car had been stationary.

You cm prove this in your own home. You’ll need a cardboard box about the size
of a shoebox, a torch, and a mirror. Cut a small hole,in the front of the box, to let the



light in. Cut a flap in the top so that you can open the box and look inside; and write’~
SP=D OFLIG~ IS 670,647,740 ~H’ on the bottom of the inside of the box. Stand still,
close the flap, aim the torch at the mirror so that the bem reflects back into the box through
the hole, and open the flap to read off the speed of light. Then run toward the mirror
and repeat the experiment. Funny, you get 670,647,740 mph both times...

You may think this is a silly expenmen~ but with more Sophisticatedequipment
you get the same answer — as Albert Michelson and Edwmd Morley discoveredbetween
1881 and 1894. They were trying to detect the motion of the Earth relative to the ‘ether’,
all all-pervading fluid that was thought to transmit all elechornagneticradiation, light
included. Their conclusion was that either there isn’t an ether at all, or the Earth isn’t
moving relative to it — which is fishy given its orbit round the Sun, wh’ich points it in
opposite directions every six months — or that there’s something pretty weird about light.

Albert Einstein is generally credited with the thmry — known as Special Relativity
— that there’s something pretty weird about light. He published it in 1905 along with the
fmt serious evidence for quantum mechanics and a general theory of diffusion processes.
But a lot of other people — among them Hendrik Lorentz and Henri Poincar& — were
working on the same idea, because it was widely recognised that Maxwell’s equations for
electromagnetism didn’t entirely gell with Newtonian mechanics. The problem was one of
‘moving frames of reference’. How do the equations change when the observer is
moving? There are formulas that answer this question, known as coordinate
transformations. In Newtonian mechanics, for example, velocities measured by (or
relative to) a moving observer change by subtracting the motion of the observer. But
Newtonian transformations mess up Maxwell’s equations something chronic. The
answer is to use different formulas, called Lorentz transformations. They keep the speed
of light constant, but have spin-off effects on space, time, and mass. Objects shrink as
they apoproach the speed of fight, time slows down to a crawl, and mass becomes infinite.

It’s not easy to think about this kind of thing using just the formulas, and the idea
didn’t really take off until 1908 when the mathematician Hermann Minkowski provided a
good geometric model for relativity — a simple way to visualise it— now called
Minkowski (orflat) spacetime.

F
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(a)
Figure 1 Minkowski spacetime.
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Because relativity is about the non-relative behaviour of light, everything in it
depends heavily upon which ‘frame of reference’ an observer is employing. Moving and
static observers see the same events in different ways. Mathematically, a frame of
reference is a coordinate system. Newtonian physics provides space with three fixd
coordinates (x,y,z). The structure of space was thought to be independent of time, and it
was not tradition to represent time as a coordinate at dl. Minkowski introduced time as
an explicit extra coordinate. We can draw two-dimensional Minkowski spacetime as a
plane (Fig.la). The horizontal coordinate, x, determines a particle’s position in space;
the vertical coordinate, r, determines its position in time. In full-blooded Minkowski
spacetime x is three-dimensional; but for convenience it’s shown here as being one-
dimensiond. Later 1’11rdso represent space as being a two-dimensiond. The problem is
that four dimensions of spacetime don’t fit conveniendy on to two-dimensional paper, so a
lot of the mathematics involves tricks for cutting down the number of dimensions of space.
The simplest trick is to ignore a few dimensions.

As the particle moves, it traces out a curve in space-time called its world-line. H
the velmity is consant, then the world-line is straight, and its slope depends on the sped.
Particles that move very slowly cover a small amount of space in a lot of time, so their
world-lines are close to the vertical; particles that move very fast cover a lot of space in very
litde time, so their world-lines are nearly horizontal. h between, at an angle of 45”, are
the world-lines of particles that cover a given amount of space in the same amount of time
— measured in the right units. Those units are chosen to correspond via the speed of
light — say years for time and light-years for space. What covers one light-year of space
in one year of time? Light, of course. So 45° world-lines correspond to particles of light
— fight rays or photons — or anything else that can move at the same speed.

You all know that Relativity forbids bodies that move faster than light. (The
mathematical reason is that their lengths would become irnagin~ — involving the num~r
i = ~-l — as would mases and the locrd passage of time.) So the world-line of a real
particle can never slope more than 45° away from the vertical. Such a world-fine is cdld
a rimelih curve (Fig.lb). Any event — point in space-time — has ass~iated witi it a
lighr cone, formed by the two diagond lines at 45° inclinations that pass through it. It’s
c~ed a cone because when space has two dimensions, the corresponding surface redly is a
(double) cone. The forward region contains the future of the event, all the points in
space-time that it could possibly influence; the backward region is its p~t, the events that
could possibly influence ir. Everything else is forbidden territory, elsewhere and
elsewhens tiat have no possible causal connections with the chosen event.

Pythagoras’s Theorem tells us that in ordinary space, the distance between two
points with coordinates (x,y,z) and (X,YZ) is the square root of the quantity

(X-X)2+ ~-~2 + (Z-2)2. (1)
In Special Relativity, there is an analogous quantity, called the inlerval between events
(x,r) and (X,~; it is

(X-X)2- (t-~2. (2)
Note the minus sign: time is special. (And H.G.Wells turns out not to be quite correct!)
Along the lines of 45° slope, the intend is zero.

The interval is related to the apparent rate of passage of time for a moving observer.
The faster an object moves, the slower time on it appears to pass. This effect is c~ed rime
dilation. As you approach a null curve — that is, travel closer and closer to the speed of
light — the passage of time that you experience slows down towards zero. If you could



travel at the speed of tight, time would be frozen. No time passes on a photon.
The key to relativistic time travel is the hoary old Win paradoxl, pointed out by

Paul Langevin in 1911. Suppose that (Fig.2) two twins, Rosencrantz and Guildenstem,
are born on Earth. Rosencrantz stays there dl his life, whfie Guildenstem travels away at
nearly lightspeed, and then turns round and comes home again at the same speed.
Because of time dilation, only six years (say) have passed in Guildenstern’s frame of
reference, whereas 40 years have passed in Rosencrantz’s frame. Experiments carting
atomic clocks around the Earth on jumbo jets have vefild tiis scenario, but aircraft are so
slow compwed to fight that the time difference obsemed (and predicted) is ody the tiniest
fraction of a second.

curve

➤
space x

Figure 2 The Twin Paradox.

‘The time is out of joint’, as Shakespeare said in Hamlet. So it ought to be
possible to exploit the out-of-jointness to make a time machine. But how? The missing
ingrdent turns out to be... gravity.

General Relativity
Einstein inventd General Relativity as a synthesis of Newtonian gravi~ahon and

Special Relativity. In Newton’s view, gravity is a force that moves particles away from
the perfect straight line paths that they would otherwise follow. These paths are

geodesics: they minimize the total distance. In flat ~nkowski spacetirne, the analogous
objwts minimize the interval (formula (2) above) instead. Gravity is incorporate, not ~
an extra force, but as a distortion of the structure of spacetime, which changes the interval.
This variable interval between nearby events is called the metric of spacetime. The usu~
image is to say that spacetime becomes ‘curved, though this term is easily rnisinterpretd.

1 Althoughthis is called a paradox, it isn’t! People think it’s paradoxical because they don’t

actually look at a spacetime diagram, and they assume that it doesn’t matter which twin is used
as the ‘fixed’ frame. But Guildenstern’s motion involves acceleration (positive and negative),
while Rosencrantz’s doesn’t — and that destroys the apparent symmetry between the two
twins.



In particular, it doesn’t have to be curved round anything else. The curvature is
interpreted physically as the force of gravity, and it causes light-cones to deform. One
result is ‘gravitational lensing’, the bending of light by massive objects, which Einstein
discovered in 1911 and published in 1915. The effect was fwst observed during an ecfipse
of the Sun. More recentiy it has been discovered that some distant quasars produce
multiple images in telescopes because their light is lensed by an intervening galaxy.

Fig.3 shows a spacelike section of spacetime (that is, one taken at a ‘fixed instant
of time) near a sw it takes the form of a curved surface that bends downwards to create a
circular vafley in which the star sits. This spacetirne structure is static: itremains exacdy
the same as time passes. Light follows geodesics across the surface, and is ‘pulled down’
into the hole, because that path provides a short cut. Particles moving in spacetime at
sublight speeds behave in the same way. H you look down on this picture from above you
see that the particles no longer follow straight lines, but are ‘pulled towards’ the star,
whence the Newtonian picture of a gravitational force.

TOP
VIEW

PATH OF LIGHT RAY

STAR

Figure 3 Bending of light by gravity.
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Far from the star, this spacetime is very close indeed to Minkowski spacetime; that
is, the gravitational effect falls off rapidly and soon becomes negligible. Spactimes that
look like Minkowsti spacetime at large distances are said to be asymptotically flat.
Remember that term: it’s important for making time machines. Most of our own universe
is asyrnptoticdy flat, because massive bodies such as stars are scattered very thinly.

When setting up a spacetime, you can’t just bend things any way you Ike. The
metric must obey the Eiwtein equations, which relate the motion of freely moving particles
to the degree of distortion away from ‘flat’Minkowski spacetime.

I can now explain what a time machine looks we within the framework of Gened
Relativity. A time machine lets a particle or object return to its own past, so its world-
line, a timelike curve, must close into a loop. A time machine is just a closed tirnelik
cume, abbreviated to ~C. Instead of asking ‘is time travel possible?’ we ask ‘can
CTCS exist?’.

In flat Minkowski spacetime, they can’t. Forward and backward light cones —
the future and past of an event — never intersect. But they can intersect in other types of
spacetime. The simplest example takes Minkowksi spacetime and ‘rolls it up’ into a
cyfinder (Fig.4). Then the time coordinate becomes cyclic, as in ~ndu mythology.

➤
space

Figure 4 A simple example of a spacetime with a ~C

Although this picture looks curved, actually the corresponding spacetime is not
cwed — not in the gravitational sense. When you roll up a sheet of paper into a cylinder,
it doesn’t distort. You can flatten it out again and the paper is not folded or writied. An
ant that is confined purely to the surface won’t notice that it has been bent, because
distances on the surface haven’t changed. In short the metric — a local property of
spacetime structure near a given event — doesn’t change. What changes is the globrd
geometry of spacetime, its overaU topology.

Rolhg up Minkowski spacetime is an exampleof a powerf~mathematical trick for
building new spacetimes out of old ones: cut-and-paste. If you can cut pieces out of
known spacetimes, and glue them together without distorting their metrics, then the result
is also a possible spacetime. I say ‘distorting the metric’ rather than ‘bending’, for exacdy
the reason that I say that rolled-up Mikowski spacetime is not curved. I’m taking about
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intrinsic curvature, as experience by a creature that lives in the spacetime; not about
apparent curvature as seen in some extemd representation. k the rest of this article ~11
say that apparent bending is ‘htiess’ if it doesn’t actually change the metric. We’ll see
other examples of the cut-and-paste construction as we proced.

The rolled up version of Minkowski spacetime is a very simple way to prove that
spacetimes that obey the Einstein equations can possess CTCS — and thus that time travel
is not inconsistent with currently known physics. But that doesn’t imply that time-travel is
possib2e. There is a very important distinction between what is mathematically possible
and what is physictiy feasible.

I A spacetime is mathematically possible if it obeys the Einstein equations. It is
physically feasible if it can exist, or could be creatd, as part of our own universe. There’s
no very good reason to suppose that ro~ed-up Minkowski spacetime is physically feasible:
certainly it would be hard to refashion the universe in that form if it wasn’t already
endowed with cyclic time, and right now very few people think that it is. The search for
spacetimes that possess CTCS and have plausible physics is a search for more plausible
topologies. There are many mathematically possible topologies, but — as with the
Mshman giving directions — you can’t get to dl of them from here.

Black Holes
But you can get to some remakably interesting ones.
h classical Newtonian mechanics, there is no fimit to the speed of a moving object.

Particles can escape from an attracting mass, however strong its gravitational field, by
moving faster than the appropriate escape velocity. In an article presented to the Royal
Society in 1783, John Michell observed that this idea, combined with that of a finite
velocity for light, implies that sufficiently massive objects cannot emit light at dl —
because the speed of tight will be lower than the escape velocity. In 1796 Pierre Simon de
Laplace repeated these observations in his Exposition of the System of the World. Both
of them imagined that tie universe might be littered with huge bodies, bigger than stars, but
totdy dark.

They were a century ahead of their time.
In 1915 Karl Schwarzschild took the fust step towards answering the analogous

question within the context of General Relativity, when he solved the Einstein equations for
the gravitational field around a massive sphere in a vacuum. His solution behaved very
strangely at a cnticd distance from the centre of the sphere, now caUed the Schwarzschild
radius. It is equal to 2GM/c2 where G is the gravitational constant, M the mass of the
sphere, and c the speed of light. When it was discovered, its mathematical significance
seemed to be that space and time lost their identity in Schw=schtid’s solution, and became
meaningless. However, the Schwarzschild radius for the Sun’s mass is 2km, and for the
Earth 1 cm — buried inaccessibly deep. What would happen to a star that was so dense
that it lay inside its own Schwarzschild radius?

In 1939 Robert Oppenheimer and Hartland Snyder showed that it would collapse
under its own gravitational attraction. Indeed a whole portion of spacehme would
co~apse to form a region from which no matter, not even light, could escape. This was the
birth of an exciting new physical concept. In 1967 John Archibald Wheeler coined the
term black hole, and the new concept was christened. A curious postscript is that in 1950
David Finkelstein resolved the mathematical question: the loss of spacetime identity in
Schwarzschilds ongind solution is just an artefact of a poor choice of coordinates. But
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even using a good choice, there is still something very weird about the Schwarzschild
radius, and @penheimer and Snyder’s newborn concept remains valid.

The development over time of a static — non-rotating — black hole is shown in
Fig.5, in which space is represented as two-dimensional and time runs vertically from
bottom to top. An initial radidly symmetric distribution of matter (the shaded circle)
shrinks to the Schwarzschfld radius, and then continues to shrink until, after a finite time,
dl the mass has collapsed to a single point, the singularity. From outside, all that can be
detected is the event hrizon at the Schwarzschild radius, which separates the region from
which light can escape from the region that is forever unobservable from outside. Inside
the event horizon lurks the black hole,

Fig.5a is the squence of events seen by a hypothetical observer on the surface of
the star, and the time coordinate t is the one experienced by such an observer. If you
were to watch the collapse from outside you would see the star shrinking, towards the
Schwarzschild radius, but you’d never see it get there. As it shrinks, i~ speed of collapse
as seen from outside approaches that of light, and relativistic time-dilation impfies that the
entire collapse takes infinitely long when seen by an outside observer, as in Fig.5b.
However, you’d see the light emitted by the star shifting deeper md deeper into the rd end
of the spectrum. Inside a black hole, the roles of space and time are reversed. Just as
time inexorably increases in the outside world, so space inexorably decreases inside a black
hole.

t

I

— event horizon

(a) (b)

Figure 5. Formation of a black hole as seen by (a) an observer at the surface of the
co~apsing mass and (b) an extemd observer.

Because the spacetime topology of a black hole is asymptotically flat — like
Minkowski spacetime at large distances — it can be cut-and-pasted into the spacetime of
any universe that has reasonably large asymptotically flat regions — such as our own.
This makes black hole topology physically plausible in our universe. Indeed, the scenario
of gravitational collapse makes it even more plausible: you just have to start with a big
enough concentration of matter, such as a neutron star or the centre of a galaxy. A
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technologically advanced society could build black holes.
A static black hole doesn’t possess CTCS, though, so we haven’t achieved time

travel yet. However, we’re getting close. The key is the realisation that Einstein’s
equations are time-reversible: to every solution there corresponds another that is just the
same, except that time runs backwards. The time-reversal of a black hole is a white hole,
and itlooks like Fig.5 turned upside down. An ordinary event horizon is a barrier from
which no particle can escape; a time-reversed horizon is one into which no particle can f~,
but from which particles may horn time to time be emitted. So, seen from the outside, a
white hole would appear as the sudden explosion of a star’s worth of matter, coming from
a time-reversed event horizon.

mite holes may seem rather strange. It m&es sense for an initial concentration
of matter to collapse, if it is dense enough, and thus to forma black hole; but why should
the singularity inside a white hole suddenly decide to spew forth a star, having remained
unchanged since the dawn of time? Let’s just agree that white holes are a mathematical
possibility, and notice that they too are asymptotically flat. So if you knew how to make
one, you could glue it neatiy into your own universe.

Not only that you can glue a black hole and a white hole together. Cut them along
their event horizons, and paste along these two horizons. The result (more accurately, a
fixed spacelike section of it) is shown in Fig.6: a sort of tube. Matter can pass through
the tube in one direction only: into the black hole and out of the white. It’s a kind of
matter-valve. The passage through the valve is achieved by following a timelike curve,
because material particles can indeed traverse it.

.

-. -.----
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;

Figure 6 A wormhole.

Because the topology of Fig.6 is asymptotically flat at both ends of the tube, both
ends can be glued into any asymptotically flat region of any spacetime. You could glue
one end into our universe, and the other end into somebody else’s; or you could glue both
ends into ours — anywhere you like (except near a concentration of matter). Now you’ve



got a wormhole. I’ve drawn one schematically in Fig.7; but you have to remember that
the distance through the wormhole is very short, whereas that between the two openings,
across norrnd spacetime, can be as big as you like.

A worrnhole is a short cut through the universe. But that’s matter-transmission,
not time travel. Never mind: we’re nearly there.

‘short cut’

Figure 7. Using a wormhole as a matter-mnsmitter.

Turning a Wormhole into a Time Machine
In 1988 Michael Morris, Kip Thorne, and Ulvi Yurtsever realised that by

combining a worrnhole with the twin paradox, they could get a ~C. The idea is to leave
the white end of the worrnhole fixed, and to tow the black one away (or zigzag it back and
forth) at just below the speed of light.

Fig.8 shows how this leads to time travel. The white end of the wormhole
remains static, and time passes at its normal rate, shown by the numbers. The black end
zig-zags to and fro at just less than the speed of ligh~ so time-tiation comes into play, and
time passes more slowly for an observer moving with that end. Think about world-fines
that join the two wormholes through normal space, so that the time experienced by
observers at each end are the same: lines joining dots with-the same numbers. At f~st
those lines slope less than 45”, so they are not timelike, and it is not possible for material
particles to proceed rdong them. But at some instant, in this case time 3, the line achieves
a 45° slope. After this ‘time barrier’ is crossed, you can travel from the white end of the
worrnhole to the black through norrnd space — following a tirneWe curve. An example of
such a world-line runs from point 5 in the white end of the worrnhole to point 4 in the
black. Once there, you can return through the wormhole, again along a timelike curve
and because this is a short cut you can do so in a very short period of time, effectively
traveling instantly from point 4 at the black end to the corresponding point 4 at the white.
This is the same place as your starting point, but one year in the past! You’ve travelld
in time. By waiting one year, you can close the CTC and end Up at the same place and
time that you started from.
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Figure 8 Turning a worrnhole into a Time Machine.

You can make your own wormhole in your own home. Take a plastic bin-tiner
and cut out the bottom. Fix one end, and ~agine the other rushing t; and ho at just
below lightspeed, so that time inside it slows down. men the far end of the bag comes
near, W* across to it, arriving at some time in your own past. Climb through it, and
you’ll travel back in time.

E your imagination is vivid enough, that is.
The actual distance you have to travel through ordinary space need not be huge: it

depends on how far the right end of the wormhole has to move on each leg of its zigzag
path. k space of more than one dimension it can spiral rather than zigzag, which
corresponds to making the black end following a circular orbit at close to tightsped You
could achieve this by setting up a binary pair of black holes, rotating rapidly round a
common centre of gravity.

The further into the future your starting point is, the further back in time you can
travel from that point. But there’s one disadvantage of this method: you can never travel
back past the time barrier, and that occurs some time after you build the wormholes. NO
hope of getting back to hunt dinosaurs.



Yes But...
Could youreally build oneof these devices? Could youredly gettiough tie

worrnhole? A technologically advanced civilisation could build the holes, and move ~em
around, by creating intense gravitational fields. But that’snot the ody obstacle.

Another is the ‘catflap effect’: when you move a mass through a wormhole it tends
to shut on your tail. It turns out that in order to get through without getting your tail
trapped you have to travel faster than light, so that’s no good. It’s easiest to see why if we
represent the spacetime geometry using a Penrose map. When you draw a map of the
Earth on a flat sheet of paper you have to distort the coordinates — for example, lines of
longitude may become curved., The Penrose map of a spacetime also distorts the
coordinates; but it is designed so that light cones don’t change — they still run at 45”
angles. Fig.9 shows a Penrose map of a wormhole. Any timelike path that starts at the
wormhole entrace, such as the wiggly line shown, must run into the future singularity.
There’s no way to get across to tie exit without exceeding the speed of figh~

past singularity

x

Figure 9 The Penrose map of a wormhole.

The tradition way round this difficulty is to thread the wormhole with exotic
matter, exerting enormous negative pressure, like a stretchd spring. Matt Visser has
recently suggested an dtemative geometry for a benign worrnhole. Two identicd cubes are
cut in space, and their corresponding faces are pasted togethe~ then the edges are
reinforcd with exotic matter.

Rotating Black Holes
The classic answer, though, is to employ a rotating black hole.
The Schwarzschild solution of Einstein’s equations comesponds to a static black

hole, one formed by the collapse of a non-rotating sphere. In 1962 Roy Kerr solvd the
quahons for a rotating black hole (Fig.10), now known as a Kerr black hle. (There are
two other kinds of black hole: the Reissner-Nords@~m black hole, which is static but has
electric charge, and the Kerr-Newman black hole which rotates and has electic charge.) It
is almost a miracle that an explicit solution exists — and definitely a miracle that Kerr was



able to find it. It’s extremely complicated and not at all obvious. But it has spectacular
consequences.

<;=
singularity ~ inner horizon

i
outer horizon

>
$

/
static limitj

ergosphere

Figure 10 Structure of a rotating black hole.

One is that there is no longer a point singularity inside the black hole. Instead, there
is a circular ring singularity, in the plane of rotation. In a static black hole, all matter must
fdl into the singularity; but in a rotating one, it need not. It can either travel above the
equatorial plane, or pass through the ring. The event horizon dso becomes more
complex; indeed it splits into two. Signals or matter than penetrate the outer horizon
cannot get back out again; signals or matter emitted by the singularity itself cannot travel
past the inner brizon. Further out still, but tangent to the outer horizon at the poles, is the
static limit. Outside this, particles can move at will. hside it, they must route in the
same direction as the black hole, although they can still escape by moving radially.
Between the static limit and the outer horizon is the ergosphere. If you fie a projwtile
into the ergosphere, and split it into two pieces, one being captured by the black hole and
one escaping, then you can extract some of the black hole’s rotational energy.

The most spectacular consequence of all, however, is the Penrose map of a Kerr
black hole, shown in Fig.11. The white diamonds represent asymptotically flat regions
of spacetime — one in our universe, and several others that need not be. The singultity is
shown as a system of broken lines, indicating that it is possible to pass through it (going
through the ring). Beyond the singularities lie antigravity universes in which distances are
negative and matter repels other matter. Any body in this region will be flung away fim
the singultity to infinite distances. Several legal (that is, not exceeding the speed of tight)
trajwtories are shown as curved paths. They lead through the wormhole to any of its
dtemative exits. The most spectacular feature of dl, however, is that this is only part of
the ftdl diagram. This repeats indefinitely in the vertical direction, and provides an i~nite
ntier of possible entrances and exits.
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Figure 11 Penrose map of a rotating black hole.

Myou use a rotating black hole instead of a wormhole, and if you can find a way to
tow its enhances and exits around at nearly lightspeed, you’ll get a much more practical
time machine — one that you can get through without running into the singularity.

Cosmic String
If you don’t fancy trying to control Kerr black holes, you can settle for a much

simpler kind of singularity that has only recently come into fashion: cosmic Stiing. fiis is



a static spacetime, so that spacelike sections remain unchanged as time passes. It is best
visurdised by taking two dimensions of space. Cut out a wedge-shaped sector and paste
the edges together. If you do this with paper you end up with a pointed cone; but
mathematically you can just identify the corresponding dges without doing any bending.
The time coordinate works just as it does in Minkowski spacetime (and to get the right
shape for light cones you should identify the edges without making actual cones). E you
throw in a third space coordinate and repeat the same construction on every perpendicular
cross-section, you get a li~ mass. This is the fully-fledged cosmic string.

To make a model of one, thread lots of identicd cones on a length of — well,
stig. Remember, each cone is a constmt-time section of the actual spacetime.

The physical interpretation of this spacetime is that the cosmic string has a mass,
proportional to the angle cut out. However, it doesn’t behave like an ordinary mass.
Everywhere except the cone point, spacetime is locally flat — just like Minkowski
spacetime. The apparent curvature of a red cone is ‘htiess’. But the cosmic string
creates global changes in the spacetime topology, affecting the large-scale structure of
geodesics. For instance, matter that goes past a cosmic string is gravitationally lensd, as
we~ see in more detail in a moment.

Recent surveys of the distribution of galaxies in or universe has revealed that they
clump on vast scales, forming structures hundreds of millions of light years long. This
clumsiness is too great to have been caused by gravitational attraction among the known
matter. One theory is that the clumps were ‘seeded’by red cosmic strings.

A cosmic string is much like a wormhole, because the mathematical glue lets you
~ump across’ the sector of Minkowski spacetime that is cut out. In 1991 J.R.Gott
exploited this analogy to construct a time machine: more precisely, he showed that the
spacetime formed by two cosmic strings that whizz past each other at nearly lightspeed
contains CTCS. The starting-point is two static strings, symmetrically placed, as in
Fig.12, which as usual is a constant-time spacelike section. The time coordinate is
suppressed; but if it were added, it would run perpendicdar to the page.

B A

Figure 12 Two cosmic strings.
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Because of the'gluing', points Pand P'meidentical, mdso~e Qand Q. The
figure shows three geodesics joining two points A and B: the horizont~ line AB, the line
APP’B, and the symmetrically placed line AQQ’B. This demonstrates gravitational
Iensing by the cosmic strings: an observer at B would see tkee copies of A, one along each
of these three directions.

Gott calculated that if the two cosmic strings are close enough together, then it takes
light longer to traverse the path AB than to traverse the other two. This has an important
consequence. If a particle starts from position A but at time Tin the past, it can get to B at
time T into the future. Cdl these events A(past) and B(future). If the strings R and S are
now made to move, so that S moves rapidly to the right and R rapidly to the left, then
A@ast) and B(future) become simultaneous in the frame of a stationary observer (thanks to
time-dilation).

To construct the required CTC, we make the particle move from A(past) to
B(future) passing via PP; then by symnmetry we make it return from B(future) to A(past)
via QQ. Gott’s calculations show that provided the cosmic strings travel at close to
lightspeed, this CTC redly does exist — mathematically.

Again the question is: can such a scenario be realised physically by a
technologically advanced civilisation? The answer would seem to be yes, providd of
course that they have the ability to create cosmic strings, or to harness naturally occurring
ones. If any natural ones exist, of course, which is moot. But in January 1992 Sean
Carroll, ~ward Farhi, and Alan Guth found a snag. There isn’t enough available energy
in the universe to build a Gott time machine. More precisely the universe never contains
enough matter to provide such energy from the decay products of stationary particles. So
the advanced civilization would need to develop a powerful new energy source.

The clumsy and energy-wasteful devices of relativistic physics are thus still a pde
shadow of the elegant machine of Wells’s Time Traveller, ‘aglittering metallic framework,
scarcely larger thart a small clock. very delicately made. There was ivory in it, ad some
transparent crystalline substance.’ (Actually this is the description of a miniaturized
prototype, but WeUs tells us that the actual machine was much the same.)

There’s stifl a bit of R&D to be done.
0 Ian Stewart

FURTHER READING
Andreas Albrech~ Robert Brandenberger, and Neil Turok, Cosmic strings and cosmic structure, New Scienfisf

16 April 1987, 4044.
Sean M. C=oll, Mward Farhi, and Alan H. Guth, An obstacle to building a time machine, Physicaf Review

Letters 68 (1992) 263-269.
Marcus Chown, Time travel without the paradoxes, New Scietiist 28 March 1992, 23.
John R. Cramer, Neutrinos, ripples, and time loops, Analog, February 1993, 107-111.
David Deutsch, Physical Review D, October 1991.
Robert Geroch and Gary T. Horowiw, Global structure of spacetirnes, in General Relativity: an Einstein

Centenary Survey (editors S.W.Hawking and W.Israel), Cambridge University Press, Cambridge
1979, 212-293.

J. Richard Got~ HI, Closed timelike curves produced by pairs of moving cosmic strings: exact solutions,
Physical Review Letters 66 (1991) 1126-1129.

John Gribbm, In Search of rh Edge of Tim, Bantam Press, New York 1992.
Jea-Pierre Lumine~ Bfack Holes, Cambridge University Press, Cambridge 1992.
Michael S. Morris, Kip S. Theme, and Ulvi Yurwever, Worrnholes, time machines, md the weak enagY

conditio~’ Physical Review Letters 61 (1988) 1446-1449.
R.Penrose, Singularities and time-asymmetry, in General Relativity: an Einstein Cente=Y Survey (editors

S.W.Hawking and W.Israel), Cambridge University Press, Cambridge 1979, 581-638
Ian Redmount, Worrnholes, time travel, and quantum gravity, New Scientist 28 April 1990, 57-61.
Frank J. Tipler, Singularities and causality violation, Annals of Physics 108 (1977) 1-36.


