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Gresham Lecture
Four Centuries of Logarithms

Ian Stewati 24.1.97

The first Gresham Professor of Geometry, appointed four hundred years ago, was Henry

Briggs. Among his claims to fame is the invention of logarithms — in the form that we now

use. Logmithrns themselves first came to light in the work of John Napier, and the idea seems

to have originated around 1594. Briggs made a significant improvement on Napier’s original

conception, making the idea far more practical (and mathematic~y more natural).

For most of the intervening four centuries the main use of logarithms was to facilitate

arithmetical calculations. Logarithms reduce multiplication to addition, which is easier and
much quicker. They also form the basis of the slide rule. Within the last twenty years,
however, slide rules have been replaced by calculators, and logarithms are seldom, if ever,

used for artihmeticd purposes.

So have logarithms gone the way of the dodo?

Let’s see how they have fared over the centuries.

Century 1: 1594 to 1699
Napier published his system in 1614, but he wrote that it took him some twenty years

to invent it. k modem notation, the underlying idea is the power law
~axb = ~a+b

To mtitiply two numbers u and v, find a and b so that

U=xa

v Xb=

and observe that uv = w where w is such that
a+bW=x .

Again in modem notation, we have

a = logx u

b = logx V

a+b = logx w.

However, this is not exactly how Napier proceeded. k modem notation, his method led to the

value

Nap log x = lolo[loge(lolo) - loge x]

where e = 2.71828 ... is the ‘base of natural logarithms’. But modern notation, and even the

concept of e, did not exist at that time.

Henry Briggs was the first Gresham Geometry Professor and also the first Savilain

Professor of Geometry at Oxford. k 1615 he visited Napier at his home in Scofland, and they

discussed ways to improve the concept of a logarithm to make it more practical to use. Bnggs

in effect proposed using powers of 10, so that when
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a=logloy.

One major advantage is that

Ioglo(loy) = 1 + IOgloy

loglo(looy) =2 +logloy

Ioglo(loooy) = 3 + Ioglo y

and so on.

Briggs undertook to calculate a table of logairthms to base 10, and to publish it. It
appeared as Atithmetica bgan.thmica in 1624.
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Fig. 1 Tide page of Napier’s Logarithm Tables.
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Later in the same century Newton introduced the calculus, and it was discovered that

the logarithm was related to the area under a hyperbola.

of ncirglon. 155

Problem ~— x
a+ s

=a, which givcsn=— ,.

fo the E~u;t~on to the Hypc[boia fough;, is
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——

~x] ● =,.
Let (as bcforc)AC: C

AH be theAfymcotes
of any Hyperbola ~L
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Fig.2 A page from George Cheyene’s Philosophical Principles of Religion discussing the

quadrature of the hyperbola.

Century 2: 1700 to 1799
This is the century of Leonhard Euler, who made the logarithm (and its inverse

function, the exponential) the basis &fanalysis.

Eder introduced the symbol e for the base of natural logarithms, de~g it as

e = hmn _> _ (1+ l/n)n.

Then, if y = ex, we have x = loge y (or just log y).

He dso showed that (using complex numbers in which i =4-1)
eiX=~osx+is~x

Mg logarithms and exponentids to trigonometry.
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Century 3: 1800 to 1899
This century witnessed the flourishing of complex analysis, and there was

considerable controversy over the value of
log (-l).

Eventually Euler sorted it dl out by arguing that

log (-1) = in + 2kn

for any integer k. Complex logarithms are many-valued.

Gauss used this fact to prove the ‘fundamentd theorem of algebra’ that any polynomird

equation of degree d over the complex numbers has d complex solutions.
Cauchy used it as the basis for a method of studying complex analytic finctions.

Century 4: 1900 to 1997
In the modern era, the roles of the logarithm and the exponential have become

inordinately vtied. Here are just three areas:

Dynamical Systems

The solutions of systems of linear differential equations

where x is a

Frmtik

The

logarithms.

Probability

dfldt = Ax,

vector and A a matrix, are given by the exponential function:

x(t) = Xo e*t.

fractal dimension of a self-similar fractal is given by a formula involving

For example the Cantor set has dimension log 2 /log 3 = 0.6309.

Benfor&s Law, a probabdistic curiosity used, among other things, by tax authorities to

detect fraud, holds that in any collection of natural data the probability that a given number has

the first digit n is log(n+l)-log(n). So 1 is more likely than 2, and so on. Examples include

the sizes of islands in the Bahamas and currency rates in newspapers.

h~arithms are alive ad well.

FURTHER READING

Eli Maior, e: The story ofa number, Princeton University Press 1994.
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a= log10 y.

One major advantage is that

loglo(loy) = 1 + Ioglo y

Ioglo(looy) = 2 + loglo y

loglo(loooy) = 3 + Ioglo y

~d so on.

Briggs undertook to calculate a table of logairthms to base 10, and to publish it. It
appeared as Arithmetics bgarithmica in 1624.
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Later in the same century Newton introduced the calculus, and it was discovered that

the logarithm was related to the area under a hyperbola.
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Fig.2 A page from George Cheyene’s Philosophical Principles of Religion discussing the
quadrature of the hyperbola.

Century 2: 1700 to 1799
This is the century of Leonhard Euler, who made the logarithm (and its inverse

function, the exponential) the basis of anrdysis.

Euler introduced the symbol e for the base of natural logarithms, defining it m

e = limn _> _ (1+ l/n)n.

Then, if y = ex, we have x = loge y (or just log Y).

He dso showed that (using complex numbers in which i =4-1)
eix= cosx+isinx

litig logarithms and exponentirds to trigonometry.


