GEOMETRY

Lecture 5
MODERN CRYPTOGRAPHY
by

PROFESSOR HAROLD THIMBLEBY
Gresham Professor of Geometry

28 February 2002



Explaining Cryptographic Systems

Tim Bell ) Harold Thimbleby Mike Fellows
University of Canterbury Gresham College University of Victoria, British
Christchurch & University College London Columbia
New Zealand London, UK Canada
Ian Witten Neil Koblitz
University of Waikato University of Washington _Matthew Powell
Hamilton Seattle Um"egﬁtry of hCanﬁzrbury
New Zealand USA istenute
s New Zealand
Abstract

Modern cryptography can achieve levels of security and authentication that non-specialists find
literally incredible. Techniques including information-hiding protocols, zero-knowledge proofs
and public key cryptosystems can be used to support applications like digital signatures, digital
cash, on-line poker and secure voting in ways that are provably secure — far more secure than
the traditional systems they replace. This paper describes simple versions of such applications
that have been used to give school-children and the general public a broad understanding of
what can be achieved, and how.

The material has been extensively and successfully used by the authors in schools, science
festivals and with undergraduates, and even postgraduate specialists.

Introduction

Security and privacy are pressing social issues in an era when much commerce is conducted
electronically, and personal information is stored on computers and transmitted over computer
networks. Modern cryptographic systems can implement extremely high levels of security, but
their capabilities are not widely appreciated by the general public. For example, many people use
debit cards to pay for goods, where money is transferred directly from their bank account to the
store’s. In the process the bank finds out where the purchase is being made, and could build up a
profile of the person’s shopping habits. Despite this loss of privacy, debit cards are widely
accepted. Most people are quite unaware that cryptographic protocols exist that enable the
transaction to be carried out reliably without the bank being able to identify to whom the money
is going! This seems incredible — literally unbelievable — to people who have never encountered
public key cryptosystems and information hiding protocols.

If more people knew about such things, they would lobby for their adoption to better protect
privacy in everyday transactions. Moreover, it would cultivate a higher level of trust for systems
that use sophisticated protocols to protect information. Just as an understanding of biology goes a
long way towards making informed decisions on environmental issues, understanding the
technical issues involved in cryptography enables informed decisions on privacy issues. The
activities described in this paper are intended to take some of the science fiction out of people’s
understanding of computer security. The upcoming generation of computer users deserves a
clear view of the technical issues that underpin the myriad computerized systems that permeate
our lives.

Most people’s knowledge of information security dates from their school days, when they may
have been introduced to a Caesar cipher (replacing one letter with another further along in the
alphabet), or another substitution cipher that maps the alphabet to special symbols, and perhaps
other private key systems such as the one-time pad (a long key which is used just once — it could
conveniently be the text of a book). All of these schemes have the problem of getting every
trusted person — and nobody else! — to know the keys. Before the internet and world-wide
communication for business purposes, perhaps it was possible to distribute keys by sending spies
or diplomats, but when you want to communicate securely with new business customers on the
other side of the world, who by definition you never knew before, alternatives to conventional

1



secure key distribution must be found. Most people have no idea about the advanced
cryptographic techniques that are now available to solve these problems and others such as
authentication (how do you know who your new customer is?).

Unfortunately cryptographic experts often regard the new techniques as far too abstruse for
school-children to understand. We disagree. The goal of our work is to make advanced ideas
understandable to people who are not in a position to invest heavily in preparatory study.

This paper describes several simple activities, designed for active participation by children or lay-
people, which inculcate an understanding of seemingly impossible cryptographic techniques. The
activities use only basic arithmetic and elementary puzzle-solving ability. Moreover, they are
“unplugged” in that they do not require the use of a computer. This makes them widely
accessible, regardless of hardware or software availability. Although this paper is aimed at the
cryptographic community and at computer science educators, the techniques described in it are
aimed at the general public. We have included some mathematics in this paper: for some
audiences, especially teenagers (and even postgraduate computing students!) with some math
background, it is fun to go beyond games and show that there are real challenges in the material.

We begin by describing simple activities that expose some of the issues involved, namely key
distribution and information hiding. We demonstrate a protocol for coin-tossing over a
telephone, and present two public-key cryptosystems that are based on puzzles that are simple to
understand but hard to solve — in computer science parlance, intractable.

We have found the best approach for all of these activities is to have students work through them
using concrete examples, explaining each step as they proceed. We prefer to allow them to
discover for themselves how the methods work, where possible figuring out the completion of
the task by themselves. They can then contemplate ways to attack the protocols, and ways to
deter attacks.

Presentations have been used with a range of audiences, including schoolchildren (from
junior/elementary to senior high school), teachers (on training courses) and lay people from the
general public. In all cases members of the audience have reported surprise and intrigue at being
able to understand how to do something that they previously thought would have been
impossible. In some groups lengthy discussions have ensued on how such schemes might be
attacked or improved. More details of our computer-free approach to presenting computer
science is available from the “Unplugged” web site at

http://unplugged.canterbury.ac.nz/, and Bell (2000) and Koblitz (1997) are papers
describing our experiences.

A survey we did (Bell, 2000) of 212 attendees from five presentations found, for instance, that
84% of males and 78% of females had an increased interest in computing science afterwards.
Between the authors, around 150 presentations of the material described in this paper have been
delivered (both to students and to teachers) up to December 2000.

Introducing the key distribution problem

We start by using an overhead foil to show a facsimile Elizabethan cipher (Figure 1). This is of
some historical interest, and illustrates many elementary issues. A squiggle occurs frequently,
and looks from the context to be the letter e, but closer inspection shows that ¢t is more frequent.
As there are 73 symbols used in total, it cannot be a simple substitution cipher, even allowing for
a few null characters. This makes decryption harder, but it appears that the clear word division
has been retained, and this makes things easier. On closer examination, one might determine that
A is coded as triangle and square symbols, amongst others. Such discussion readily draws
enthusiastic interaction from the audience and leads into standard techniques for coding.
Higenbottam (1973) gives further extracts from the diary, and provides a full solution.



dadae oxgr nwmmacdl AvvArivt Liénhéd
my Lord Anderson Cheaffe Justise v*87 /lx;mAa.r t{rn
mAvdohyx for quyett Inioyeng of his leasse. VIOV Iy

was of one thousand markes.

Figure 1. Coded entry from Sir Arthur Throckmorton’s diary for Satterday [sic] 4 July 1584. The diary is at
Canterbury Cathedral, and this illustration was based on F. Higenbottam, Codes and Ciphers, ©English
Universities Press, 1973, p136.

Although Higenbottom was able to afford the hard and time-consuming work to decode this
message, in general it requires the recipient to have the key. How is the key distributed? What
happens if an eavesdropper acquires the key — for, by assumption, there are eavesdroppers,
otherwise codes would not be needed in the first place!

To help explain the issues, we have used several methods.

Historical motivation. Breaking the World War II Enigma code is an exciting and well-
documented story (e.g., Sebag-Motefiore, 2001). The deadly risks people took to obtain keys
emphasises the significant roles of key management and distribution in conventional
cryptography.

A chain and several padlocks. The loose chain is explained to be equivalent to a plain-text
message. It is about a metre long, and its ends are painted a distinctive colour (this helps greatly
when the chain is given to the audience, who tend to fumble if they can’t find the ends quickly).
When the ends of the chain are padlocked together, this is explained as representing a coded
message. Clearly, to unlock the ends of the chain, a key is required.

A small lockable tool box or cash box (about 10cm by 5cm by 5cm). A tool box has the
advantage that items the audience provides can be placed inside. It is then possible to send the
actual messages that people in the audience have written, or even various goodies across the
room. We have found that a robust metal toolbox is needed to withstand the most determined
teenagers’ attempts to open it without a key. It is important to have a lockable flap that is large
enough to take several padlocks at once.'

We now divide the group into three (each group running front to back), and give the chain,
padlock, and key to someone on, say, the right-hand side. The challenge is to pass the locked
chain across the room to the left side, via the mischievous middle section. To avoid the chain
being thrown across thoughtlessly (or even the key being lost), the audience is instructed that
before anything happens, the people on the right-hand side must explain what is to happen so
that everyone can follow it.

We emphasise that with the Internet, we want to have customers for e-commerce who we do not
already know. We cannot get keys to everyone, and we don’t know who to trust. This is a very
different problem from the ordinary secret messages, where the sender and receiver know each
other, and might, for instance share a one-time pad.

This illustrates the key distribution problem. With padlocks, there are several solutions. For
instance, the chain could be sent across locked, locked with a second padlock on the other side,
then returned. Back on the first side, the first padlock is removed (the key never having left that
side), and the chain sent back, still padlocked by the left side’s padlock. When the locked chain
gets back, that side can remove the padlock easily with their key (which never left that side).

This technique relies on commutative coding, meaning that the resulting secret message text does
not depend on what order the two coding systems were applied, and the final decoded message
does not matter in which order the decoding steps are done in. This property is easily illustrated

! We have also used the toolbox ‘metaphor’ to help explain packet switching (one can use several
boxes, numbered contents, and so on).



with a Caesar cipher, although the weakness of this particular cipher might already have been
pointed out to the audience when discussing the Elizabethan cipher or other simple examples.

Here’s how. Julius Caesar himself coded the alphabet by moving each letter along three, so A
becomes D, B becomes E and so on. We will use two Caesar codes, one using a shift of 3 and one
a shift of 5. Coding and decodinga single word is shown in Figure 2.

Original plain text HELLO HELLO
Code using 3 KHOOR Code using 5 MJQQT
Code using 5 PMTTW Code using 3 PMTTW
Message sent PMTTW PMTTW
Decode using 5 KHOOR Decode using 3 MJQQTt
Decode using 3 HELLO Decode using 5 HELLO
Recovered plain text HELLO HELLO

Figure 2. Showing how HELLO can be coded by two Caesar codes in either order, and correctly decoded using
the two codes, independently, in either order. Code 3 replaces letters three further along in the alphabet, e.g., A
with D; Code 5 uses letters five along, e.g., A with F.

The technique, passing the box around the audience, also shows that the people in the middle
saw three messages cross over. The audience may be able to deduce something from this activity
— the existence of a message may constitute useful information in itself, and heightened activity
may draw attention to itself. To avoid this, dummy messages could be sent to keep the level of
activity consistent.

There is a problem with the two-padlock scheme, which we illustrate as follows. The middle
group is given a third padlock. The left team now send their locked chain across. The middle
group simulates the intended recipients — so far as the senders are concerned, the protocol has
been followed exactly. Since they dare not enter into a plain-text discussion, they have no way of
knowing that the intended recipient failed to get the message. Meanwhile, the middle group are
celebrating having an unlocked chain. Even worse, the middle group can simulate the sender,
and pass a locked message on to the intended recipient (possibly tampered with), and the victim
again has no way of knowing that the code has been intercepted.

So not only do we have a key distribution problem (partly solved) but we have an authentication
problem (not solved). We note that secrecy and identity are opposite poles. If you are very secret,
how can anyone be sure who you are? These problems provide motivation for the public key
systems described below.

How does the audience relate the chains to the digital world? Having prepared a sawn-up
padlock, it is easy to show that a persistent code-breaker could always dismantle a padlock, or X-
ray it, and hence crack the code. We show that knowing the inside of the padlock enables a key to
be constructed (they are isomorphic). In the digital world we have to assume that it is easy for a
code-breaker to see our message, and so techniques other than secrecy of the encryption method
have to be employed.

Trap door functions

This leads into the abstract idea of one-way trapdoor functions, which are introduced as
computer (or mathematical) objects that behave like padlocks: they are easy to lock, but hard to
unlock unless you know the secret. In the later sections we introduce three one-way functions
(Boolean circuits, perfect codes, and directed cycle partitions) that can be related back to the
padlock demonstration.



Trapdoor functions are often introduced in terms of factoring integers, which is obviously
relevant to cryptography, but is quite an abstract concept for many audiences. It is thus helpful to
provide examples of trapdoor functions from the familiar physical world. We hold up a postcard
or a large picture, and cut it into pieces. We now have a jigsaw. This can clearly be made as hard
as one likes to solve (just cut into more pieces), but anyone who knows what the picture is
supposed to be or how it was cut up finds it much easier to do.

Application of trapdoors: fair coin tossing

This activity involves using a one-way function to perform a coin-toss over a telephone. One of
the better known cryptographic techniques relating to this is playing poker by telephone (Shamir,
Rivest & Adleman, 1981). If an audience can be convinced that a fair coin toss is possible, the
poker game becomes considerably more believable.

Again it is helpful to encourage the audience to consider how a fair coin toss could be achieved,
and to point out how cheating is possible if you don’t trust the person at the other end. The
relevance of such techniques can be motivated (for children) by considering a coin toss with a
rival school sports captain to determine where a game will be held, or (for adults) the problems
faced in businesses when activities such as contracts, negotiations and voting need to be made
electronically between people who can’t completely trust each other. It is very effective to offer a
candzy bar to anyone in the audience who can guess whether a tossed coin comes down heads or
tails;” of course, because the lecturer cheats (to demonstrate the need for guaranteed trust),
nobody can win the reward!

If there are adults in the audience, reminding them that the game has a serious undertone is
important. For example, take a large cheque book and write (or mime!) a generous cheque out for
someone in the audience, perhaps to buy something off them. Explain that naturally you will
deny that you ever signed the cheque, and in a world where anyone could do this, businesses
would soon go bust. Remind them that if e-commerce (business over the internet) is to work,
customers must not be able to repudiate money transfers. The game here shows how a single bit
cannot be repudiated; obviously, by combining bits we could devise a protocol where entire
cheques (up to whatever our generosity extends to) can be protected.

Depending on time or the audience, preparation time available, various techniques can be used:

Circuits

The first technique we use employs a randomly chosen boolean circuit, such as the one shown in
Figure 3, as a one way function. In the figure there are six inputs and six outputs. The presenter
will need to teach the operation of simple Boolean gates (only AND and OR gates are required).
Instead of using 1s and Os (as in Figure 3) it may be, for some audiences, more fun to colour in the
1s squares.

The coin toss operates as follows, using the traditional characters Alice and Bob to illustrate the
process. Alice and Bob agree on a randomly chosen boolean circuit (perhaps they each supply
half). Alice secretly selects a random input to the circuit (six zeroes and ones in the example), and
calculates the output. She then supplies the output to Bob, via the phone (or across the room).
Bob must guess the parity of the input (i.e., the number of ones). He could do this reliably if he
could determine the input, but because a one-way function has been used, this is not possible.
Thus he might as well toss a coin to guess the parity. If he is correct, he wins. Afterwards, Alice
proves that she hasn’t cheated by providing the input that produced the given output.

2 Don’t leave the candy on the overhead projector while engrossed in coin tossing!

5



and

and or
1 1

Figure 3. A boolean circuit used as a one-way function for the coin-toss.

Bob could cheat by finding an inverse function, but students can determine by trial and error that
this is not a simple task. Alice could cheat by finding two inputs with opposite parity that
produce the same output. However, since Bob has an equal and independent role in defining the
circuit, she has no way to engineer such a situation, which means that all she can hope to do is to
compute such a pair of inputs. Again, because the function is “one way” this is computationally
difficult. Of course, for a six-bit domain and range a full enumeration of all mappings is possible,
although this would be very tedious by hand.

There are many variations. If less time is available, a pre-prepared handout can be used. If the
audience is younger, more time must be spent explaining AND and OR, and colouring can be
used rather than writing binary digits. Explaining AND and OR also helps understand why the
circuit is a trap door: if the output of an AND is zero, you do not know which of its inputs was
zero; if the output of an OR is one, you do not know which of its inputs were one. Thus, although
it is easy to go forwards ‘through’ the trap door, going backwards requires, at best, guessing.

A stronger system would use more bits, and this observation provides the opportunity to discuss
how the strength of a cryptographic systems can be measured in bits, and the exponential
increase in the search space as bits are added. Advanced audiences may like to be reminded of
the well-known difficulty of solving satisfiability, which is the technical term for trying to invert
the coin flip circuit in general. It is also worth pointing out that although we know that the code
can be broken, we can ensure that it takes a long time to decode it. It would not matter if most
business transactions were decoded, say, a year later, though keeping them secure for shorter
periods might be very important.

Phonebook. An example suggested by Arto Salomaa (Bauer, 1997) is to use a phone book. Given
someone’s name, it is very easy to find a phone number (indeed this is what phone books are
designed for). However, given a phone number it is very hard to discover the person’s name,
since this could mean reading through the entire phone book. A lively audience may realise that
it is easy to find out a person’s name — just ring them up, and ask who they are. Better, then,
would be to make a checksum from the phone number, for instance adding the digits together —
this is not a phone number that can be rung up, but it is determined one way from a person’s
name.

The phone book is used as follows: a coin toss represents one bit of a number (e.g., whether it is

odd or even). So, choose a person’s name that has an odd or even number of letters in their
surname, and tell Bob the phone number. Thus Alice cannot change the name of the person, but



Bob does not know the name of the person. Bob guesses whether the name has an odd or even
number of letters and challenges Alice.

Any book. Typically our talks show books that have had an interesting role in cryptography
(e.g., Anderson, et al, 1999; Zimmermann, 1995). These books can be used at this point as more
interesting aids than phone books!

Alice chooses an odd or even number to represent a head or tails toss, and then tells Bob several
words on that page of a particular book. Alice cannot change the page number when challenged
by Bob.

Calculators. A one-way function can be constructed using an identical pair of calculators. Alice
enters a secret number into her calculator, and then presses the sin or square root, v, button a
suitable number of times. The output of the function is (say) the last three digits displayed. Bob
must then guess if Alice’s original number was odd or even. More complicated, but more secure,

is a function like 2x2-1 with a starting number around 0.3, which behaves chaotically.

These are examples of trapdoor functions, but how can they be used? The lecturer tosses the coin,
and then looks up a person’s name, beginning with either H or T. That person’s phone number
(or a checksum of it) can then be told to everyone in the room. The volunteer then guesses
whether the coin came down heads or tails. The lecturer claims the volunteer is wrong, and of
course can now be challenged to reveal the person’s name used for the phone number. (This can
also be done by having the audience member choose a name beginning with H or T, and the
lecturer tosses a coin to guess which it is.)

We encourage the audience to invent further trapdoor functions, work out their weaknesses, and
try to find solutions to the weaknesses.

The exact dominating set problem

Finding what is called an exact dominating set is an easily explained problem on graphs that can
be used as an alternative one-way function for the coin-toss protocol, and also as the basis of the
public key system described in the next section.

A exact dominating set’ on a graph G=(V,E) is the set V’ such that for every vertex v there is
exactly one # in N[v] with u in V’, where N[v] is the neighbourhood of v.

Of course, we don’t use this definition with school-children! Instead, we present the graph as a
street map, where edges are roads and vertices are intersections. Finding a dominating set is
introduced as a resource placement problem: for example, students relate well to the “ice-cream
vendor” problem, in which ice-cream vendors must be placed in a seaside township so that no-
one has to walk past more than one intersection to buy an ice-cream. Figure 4 shows a map with
a solution requiring just six vendors (open circles in the figure). Each intersection with a vendor
“covers” (dominates) the neighboring intersections, so the solution shown covers the entire map.

* The exact dominating set is also known as the perfect code problem. The name “perfect codes”
comes from coding theory, as the problem can be used to find the Hamming perfect error-
correcting codes. This name may be confusing in this situation because it does not relate to
cryptographic codes; in fact, we shall see that the cryptographic codes generated are far from
perfect.



Figure 4. Solution to the ice-cream vendor problem using six vendors.

The solution in Figure 4 is an exact dominating set because every neighboring intersection is
covered exactly once. An example of a dominating set that is not exact would be to put a vendor
on every intersection.

After teaching children about the ice-cream vendor problem, we have them solve some sample
maps. They soon discover that it is very difficult to find the minimal solution — in fact, the
problem of determining whether a graph has a perfect code is NP-complete. We then show them
how to generate their own maps to which they know the solution. This is very attractive, as a
child can quickly draw a large map that they can solve, yet their parents and teachers can’t.

The map is generated by first drawing the solution vertices as open circles, and adding random
neighbouring vertices to them, as shown in Figure 5. At this stage the solution is trivially
obvious. It is then disguised by randomly adding edges between the vertices, but not to any of
the solution vertices. The map in Figure 4 was derived from the one in Figure 5 this way.

Xl
7

Figure 5. Generating an ice-cream vendor (perfect code) problem.

The problem can be used for the coin-toss protocol as follows. Alice devises a map that she
knows the solution to, and she sends it to Bob. Bob must guess whether the cardinality of the
solution is odd or even (any two perfect codes in a graph must have the same cardinality). Bob
wins if he is correct, and if he loses, Alice can produce the perfect code to prove that he is wrong.

In the next section we show how to use the problem as the basis of a child-proof public key
system.

A public key system
Public key systems have revolutionised security, providing methods for safe key distribution,
authentication, secure financial transactions, and secure email.

To present the essence of the idea, we dress the problem up as passing a message in class so that
even if the teacher knows how it was encoded, they can’t decode it. The value of such a method is
both obvious and attractive to students! Other applications can be mentioned, such as prisoners



communicating in front of a guard who can see everything they write, or sending a credit card
number over the Internet with an eavesdropper recording every interaction.

The public key system is based on the dominating set problem described in the previous section.
The public key is the graph, and the private key is the set of vertices that give an exact
dominating set. The message to'be encrypted is an integer m, which might represent a letter of
the alphabet, or an entry in a codebook or a quantity of cash. The procedure is described briefly
as follows. The Appendix provides a more expansive discussion, more suited to a handout.

1. Randomly associate an integer m, with each vertex v € V so that Y m,=m . In other words,
veV
for the code number m, find a set of random numbers that add up to it, and associate each
number with a vertex.

2. Associate the integer s, with each vertex v €V, calculated as s,= Ym, where N[v], as before,
ueNJ[v]
is the neighborhood of v, that is the set of all vertices adjacent to v, and v itself. In other
words, replace each number on each vertex with the total of all the numbers on vertices
immediately connected to it.

3. Transmit the s, values. To transmit the values, you of course need an agreed (public)
convention to send them in the right order, so that the recipient knows which number goes
with which vertex.

To decrypt the message, sum the s, values for the vertices that are solutions to the exact

dominating set. This sum will include every m;,, value exactly once, and therefore be equal to m.

We do not use the above description to present the system to a general audience. Rather, we
work through a straight-forward example of the calculation as shown in Figure 6. In this example
the message is the number 66. In the Figure, the first number at each vertex is m1,, and the number

in parentheses is s,. A solution to the perfect code is the vertices that have the m;, (s,) values of 2
(13), 6 (13), 5 (22), and 1 (18), for which the s, values sum to m = 66 which thus recovers the
original number encoded.

6
(22)

2
3 11
) (20) 25)
Figure 6. Calculations for the public key system to encode the number 66.

This system requires some care with arithmetic, and identifying adjacent vertices, but students
will achieve a great deal by working through it.

This system is vulnerable to attack by forming a set of linear equations for the m, values, which
can be solved efficiently using Gaussian elimination. If the students have the mathematical
maturity to see this, the observation provides an opportunity to discuss similar problems in
“real” cryptosystems, which also rely on problems that we may learn of solutions for in the
future.

A public key system based on the directed cycle partition problem

A public key system can also be based on the Directed Cycle Partition problem. A directed cycle
partition is a variation on the Hamiltonian cycle for directed graphs. It is essentially a
Hamiltonian cycle, but the graph is allowed to be partitioned before a cycle is found in each class.

9



A Hamiltonian cycle is the special case where the only partition allowed is the trivial partition
with one class.

The directed cycle partition problem on a directed graph G=(V,E) is to determine whether the
vertex set of G be partitioned so that there is a directed cycle through the vertices of each class of
the partition. This problem is conjectured to be NP-complete.

In our public key system, the public key is the directed graph, and the private key is the partition
and the directed cycles. To encrypt a message that is a positive integer m:

1. Randomly associate an integer m,, with each vertex v € V so that Y, m,=m
veV

2. Randomly associate an integer r,, with each vertexv € V.
3. Label each arc uv with the numerical value m,+ r,,~r,,

4. The encrypted message is the graph G together with the arc labels.

Decryption is performed by summing over the arc labels of the directed cycles. In this sum, the r,
terms cancel out, leaving m. This approach is vulnerable to the same linear algebra attack as the
dominating set system.

The directed cycle partition problem should be introduced using a real-world problem that the
audience can relate to. For example (continuing with the ice-cream theme), the problem might be
to plan a route for a mobile ice-cream van that drives around, stopping at street corners — it is
very important that the van does not go past a corner twice, because children will see the van and
be disappointed that it doesn’t stop. Partitioning can be introduced by allowing multiple vans.

Comparing information

Cryptography is a fascinating subject, with a very wide range of applications. It lends itself to
being used in classroom settings such as those we described above.

Consider the problem of comparing information without revealing it. For example, Alice and Bob
have heard confidential complaints about a sensitive matter; they wonder whether they have
received the complaints about the same person or about two different people. How can Alice and
Bob tell, without revealing the name of the person involved to each other? A paper on this
problem (Fagin, Naor, & Winkler, 1999) provides thirteen different solutions; many of the
solutions do not require computers. For example, if not too many possible names are involved, a
set of boxes can be made, with each box labelled by a person’s name. Alice and Bob then each put
a marble (or other small object) in the appropriate labelled box. The labels are then removed
(without looking inside the boxes). If one box contains two marbles, then Alice and Bob were told
about the same person.

Politics of cryptography

Cryptography has been used for centuries for all sorts of activities, primarily spying and warfare
(Kahn, 1996; Sebag-Montefiore, 2001). It is clearly an exciting subject, but the political interest in
cryptography is not only historical. Martin Gardner wrote a column in the Scientific American in
1977 on trap door functions, which he discusses in (Gardner, 1989). As a result the US National
Security Administration argued that public disclosure of trap door functions was illegal. The
bizarre story of Pretty Good Privacy (Zimmermann, 1995), a freely available public key system, is
now well-known — see Singh (1999) for a popular account (though one that is perhaps more
popular than accurate, according to Diffie, 1999); more recent issues include the British
Government’s reconsideration of legislation that would have banned a conventional paper
address book listing ordinary individuals’ digital signatures (Anderson, et al., 1999), and the story
of Sarah Flannery (Flannery & Flannery, 2000), who won national and international science prizes
for her work in cryptography.

Further discussion of these issues are beyond the scope of this paper. We refer the reader to
Whitfield Diffie and Susan Landau’s excellent and authoritative book (1998), and to Baker and
Hurst (1998) who provide a world-wide perspective and survey of cryptographic issues, thus
taking our “game” like approach into serious multinational legal issues.

10



Conclusions

The activities discussed above have been used with diverse groups of children and adults,
ranging from elementary-school children to university students. They have been carried out with
enthusiasm by young and old alike, and it is gratifying to see that many of those who participate
reach an understanding of what are generally regarded as advanced cryptographic techniques.
We urge other educators and cryptography experts to use these methods to improve the public
understanding of these complex but important topics.

Acknowledgements

This paper has been developed from one presented at the First World Conference on Information
Security Education (Bell, Thimbleby, Fellows & Witten, 1999). We are grateful to Josh Benaloh,
Paddy Krishnan and Tad Takaoka for helpful discussions. Harold Thimbleby is a Royal Society-
Wolfson Research Merit Award holder, and gratefully acknowledges this support.

References

Anderson, R., Crispo, B., Lee, J-H., Manifavas, C., Matyas, W. Jr. & Petitcolas, F. (1999). The Global
Internet Trust Register, Cambridge, Massachusetts: MIT Press.

Baker, S. A. & Hurst, P. R. (1998). The Limits of Trust: Cryptography, Governments, and Electronic
Commerce, Kluwer Law International.

Bauer, F. L. (1997). Decrypted Secrets, Berlin: Springer-Verlag.

Bell, T. (2000). “A low-cost high-impact Computer Science show for family audiences,” In
Australasian Computer Science Conference 2000 (ACSC 2000) (pp. 10-16), Canberra, Australia.

Bell, T., Thimbleby, H., Fellows, M., Witten, I. H. (1999). “Explaining Cryptographic Systems to
the General Public,” In Yngstrém, L. & Fischer-Hiibner, S. (Eds.) IFIP First World Conference on
Information Security Education (pp. 221-233), Department of Computer and Systems Science,
Stockholm University, Report Series 99-008.

Diffie, W. (1999, September 10). “Of Riddles Wrapped in Enigmas,” Times Higher Education
Supplement, p. 25.

Diffie, W. & Landau, S. (1998). Privacy on the Line: The Politics of Wiretapping and Encryption,
Cambridge, Massachusetts: MIT Press.

Fagin, R., Naor, M. & Winkler, P. (1999). “Comparing Information Without Leaking It,”
Communications of the ACM, 39(5), 77-85.

Flannery, S. with Flannery, D. (2000). In Code: A Mathematical Journey, London: Profile Books.
Gardner, M. (1989). Penrose Tiles to Trapdoor Ciphers, New York: W. H. Freeman and Company.
Higenbottam, F. (1973). Codes and Ciphers, London: English Universities Press.

Kahn, D. (1996). The Codebreakers, Revised Edition, New York: Scribner.

Koblitz, N. (1997). “Cryptography as a Teaching Tool,” Cryptologia, 21(4), 317-326.
Sebag-Montefiore, H. (2001). Enigma: The Battle for the Code, London: Phoenix.

Shamir, A., Rivest, R. L. & Adleman, L. M. (1981). “Mental Poker,” In Klarner, D. (Ed.), The
Mathematical Gardner (pp. 37-43), Belmont, California: Wadsworth.

Singh, S. (1999). The Code Book: The Secret History of Codes and Code-Breaking, London: 4th. Estate.
Zimmermann, P. R. (1995). The Official PGP User’s Guide, Cambridge, Massachusetts: MIT Press.

Appendix. A simple public key handout

This handout describes how to create a public key and to use it, using a graphical problem called
“dominating sets.” For illustrative purposes, we’ll use a simple key, that can be drawn by hand
— the example is complicated enough to convey the right impression, but not so complicated that
one runs out of time going through the entire example. We’ll achieve a scheme where anyone in
the world can send us a secret message (using our public key, which we let everyone in the world

11



know) but which only we can decode (using our private key that we keep secret and tell nobody).
In our public key scheme, the secret message can be any number.

1 Create your private key
Put some dots on paper, and draw short lines from them. (It doesn’t matter if the lines cross, but
it’s easier if they don’t.) This is the private key; keep it secret.

In this example, we'll just use two dots. Using more dots makes it a bit harder to encode but very
much harder to decode; with enough dots you can ensure that decoding (without the private key)
is impossible in the time available, but that it is still easy-enough to encode.

2 Use your private key to make a public key

Join up the ends of the lines any way you like. Again, it’s easier, but not necessary, if the lines
don’t cross. This is the public key that anyone can know and use. It is difficult to find the private
key from the public key, which is the trapdoor effect that is required for the scheme to work.

3 Distribute your public key around the world

Don’t forget to send instructions for using it — remember this is a public key system, and it does
not matter that everyone knows how to use the system. The instructions can be public
knowledge.

4 Someone somewhere wants to send a secret message to you

Someone somewhere else in the world might want to confide in you the date of a crime. Let’s say
it was the fourth of February, 1997, and nobody else in the world must find out. They must
convert the message — in this case the date, 4/2/97 — into a number. So we’ll use 40297 as the
example secret message. There are 7 dots in the public key we have designed, so find any 7
numbers that add up to 40297. Our friends might choose an easy sum,
40297=40000+50+50+50+50+90+7, and they will put these numbers anywhere around the map on
the dots:

50 40000

i

90 50

Next our friends add each number to the next nearest numbers along the lines. So they replace 7
(on the left) with 7+50+90=147. They do this for each of the dots.

12



40197 40100

147 } 40150
247 190
Then they send the map (with these numbers on it) to you. You might want to agree on a scheme
to send the numbers without the map, for instance just send 4019 7401 0000 1470 0240 4015 0002
4700 190: messages can then be sent easily in email. Note that the way we have split up the

numbers gives no hint on how big they are; this is something else that needs to be agreed
between you.

5 You decode messages using your private key

Only you know that the dominating set is {147, 40150} because that is how you made your private
key. Just add these numbers together, and you get 40297. So the day in question is the fourth of
February, 1997.

6 Further thoughts...

Look up “dominating sets”: you should find it is a computationally hard problem, in fact the
difficulty doubles each time you add a node. Thus solving the code can be made pretty difficult
by using a big enough graph. Unfortunately there’s actually an easy way to crack this code. Can
you find it? (Hint: write the problem as a set of equations.) Can you fix this weakness? (Hint:
think of a way of coding a message using dominating sets that has no such equations.)

13



