How does a brain work and can we design machines the same way?

Professor Keith Kendrick

How the brain works is still an enigma

What works for other organs does not for brains

How the brain works is still an enigma

What works for other organs does not for brains

50,000 neuroscientists are trying to solve it!

Where might the solution lead?

Understanding the mental capacities of other species

Held et al 2002

Where might the solution lead?

Allowing us to interface with machines

Where might the solution lead?

Construction of biorobots

Brain and computer statistics

Size - 920cm³

Weight 1.5kg

100 billion nerve cells

1 quadrillion synaptic connections

10 quadrillion synapse operations/second

Brain and computer statistics

Size - 920cm³

Weight 1.5kg

100 billion nerve cells

1 quadrillion synaptic connections

10 quadrillion synapse operations/second

10 watts!

Brain and computer statistics

ASCII Purple (IBM) - US Department of Energy

Size 830m²

Weight 200 tons

500 trillion (5x10¹⁴) calculations per second

Selective attention

Selective attention

Selective attention

Illusions

Illusions

Illusions

Rewriting the truth

'Time distorts accurate memory for events' Schmolk et al (2000)

The conscious brain

A brain functions at many different levels

A brain functions at many different levels

Two-thirds of our genes are expressed in brain cells

How do brains work as cohesive communicating networks of cells?

How do brains work as cohesive communicating networks of cells?

Brain cells use a language based on electrical impulses

Each cell operates an 'integrate and fire' communication strategy

The chemical synapse

Nobel Prize winners 1906

'in recognition of their work on the structure of the nervous system'

Camillo Golgi

Santiago Ramón y Cajal

Nobel Prize winners 1932

'for their discoveries regarding the functions of neurons'

Sir Charles Scott Sherrington

Edgar Douglas Adrian

Nobel Prize winners 1936

'for their discoveries relating to chemical transmission of nerve impulses'

Sir Henry Hallett Dale

Otto Loewi

Key questions are:

What are the messages really saying?

Key questions are:

What are the messages really saying?

Who is listening to them?

Key questions are:

What are the messages really saying?

Who is listening to them?

Why do they give rise to our experience of perception, thought and action?

Phrenology

Phrenology

Brain anatomy

Phrenology

Brain anatomy

Electrical stimulation

Wilder Penfield

Brain damage

Brain damage

Brain imaging experiments

The five senses

What and where are computed separately

There is no single seat of consciousness

Seeing or hearing specific words, letters or numbers as colours

"I've chosen and dumped girlfriends because of how their names tasted. The name Tracy tastes of flaky pastry."


```
0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21
22 23 24 25 26
27 28 29 30
```

Seeing or hearing specific words, letters or numbers as colours

Tasting shapes

Cytowic

Seeing or hearing specific words, letters or numbers as colours

Tasting shapes

Feeling musical instruments as touch in different body regions

Seeing or hearing specific words, letters or numbers as colours

Tasting shapes

Feeling musical instruments as touch in different body regions

Affects between 1 in 200 and 1 in 20,000 people

Prevalent in artists (23% of 358 fine-arts students)

Nabokov

Scriabin

Messiaen

Prevalent in artists (23% of 358 fine-arts students)

Probably caused by cross wiring between adjacent sensory maps

How do the modules function and how are they unified?

(b) Motor cortex in right cerebral hemisphere

How do the modules function and how are they unified?

How do the modules function and how are they unified?

How do the modules function and how are they unified?

Hierarchical encoding

Lines

Colours

Outline

Features

Face

Number of cells

Hierarchical encoding

Number of cells

Lines

Colours

Outline

Features

Face

Type

Familiar?

Individual-specific

Synchrony

Unfamiliar face

120-150ms

Familiar face

Learning – turning the gain up and the population down?

Donald Hebb

'When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased'

Rhythms Stage 1 (10 seconds to 10 minutes)
EEG - theta waves (3-7Hz) more synchronised

EEG

'...a large scale assembly of brain cells is a little bit like a stone being thrown into a puddle, the ripples that will emanate will be highly transient but their excursion will vastly exceed the diameter

of the stone' Susan Greenfield

Different attributes of an object brought together as a whole?

Different attributes of an object brought together as a whole?

Crick (and Watson)

Difference between conscious and unconscious perception

Egan et al PNAS 2003

How do we find out what large neural networks are really doing?

How do we find out what large neural networks are really doing?

Answer: Listen in on their conversations!

How?

How?

Answer: Using lots of bugging devices

► The Olfactory System

Different smells change the output frequency of small numbers of cells

Sparsening does occur during learning

But does everyone else know what's happening?

Coded patterns speak together in desynchrony

Coded patterns speak together in desynchrony

The smell orchestra!

Why not synchrony?

The smell orchestra!

More patterns can be represented

Recognising faces

Sparsening also occurs during learning...

...and desynchronisation

Recognising faces

What happens when you are learning?

Recognising faces

What happens when you get it wrong?

Neural network principles in artificial systems

Can we make captured visual or sound signals negatively correlated?

Neural network principles in artificial systems

What happens if we do this?

Neural network principles in artificial systems

Moore's Law and Quantum or DNA computers

Moore's Law and Quantum or DNA computers

These will not be capable of consciousness!

Alan Turing

What about biological computers based on neural network principles?

Nanotechnology brains

Nerve cell: several dendrites, one ramified axon	Gold nanoparticle bound to conducting polymer strands
Axon ~0.1 to ~3μm ~100μm to ~10cm	Conducting polymer strands ~1nm to ~10µm ~20nm ~100µm
Dendrites - several/neuron	Conducting polymer strands ending in a gold particle
Synapse - thousands/neuron	Intersection between polymers and electrolyte - can be thousands
	several dendrites, one ramified axon Axon ~0.1 to ~3µm ~100µm to ~10cm Dendrites - several/neuron Synapse

Nanotechnology brains

Artificial brains will be...

DON'T PANIC

MAY 26 2005

Artificial brains will be...

small...

Artificial brains will be...

small...

fast...

Artificial brains will be...

small...

fast...

capable of consciousness...

...and may enhance existing brains

Copyright 2003 Randy Glasbergen. www.glasbergen.com