Animal senses: how do they perceive the world and what important things can they sense that we cannot?

Animal senses: how do they perceive the world and what important things can they sense that we cannot?

- How we and other species experience the world around us
- How we recognise each other
- Our respective capacities for self-awareness

Animal senses: how do they perceive the world and what important things can they sense that we cannot?

- Senses merely provide an interpretation of the outside world
- Subjective but comforting illusion of an absolute reality
- The external world can be experienced in many different ways

Each species has evolved its senses to survive by interacting successfully with the environment

- Only humans have developed sophisticated artificial sensors to detect environmental signals beyond those immediately required for survival
- In most cases examples of these artificial sensors have biologicalbased equivalents in other species

- Touch

20

335

-

- Touch

- Taste

- Touch
- Taste
- Smell

"I want my husband to pay more attention to me. Got any perfume that smells like a computer?"

- Touch
- Taste
- Smell
- Hearing

-

- Touch

- Taste

- Smell
- Hearing
- Sight

- Balance

00

3.9

3

116

- Balance

3/6

-

- Balance
- Magnetic fields

- Balance
- Magnetic fields

33

.

- Balance
- Magnetic fields

- Balance
- Magnetic fields
- Electrical fields

999

- Balance
- Magnetic fields
- Electrical fields
- Biosonar

- Balance
- Magnetic fields
- Electrical fields
- Biosonar
- Telepathy

- Balance
- Magnetic fields
- Electrical fields
- Biosonar
- Telepathy

- Knowing when their owners or companions intend to return

- Knowing when their owners or companions intend to return
- Detecting illnesses such as cancer or warning owners of impending epileptic attacks or high blood pressure
- Detecting emotional states in others
- Detecting hormonal states in others
- Detecting the presence of buried objects

_

- Knowing when their owners or companions intend to return
- Detecting illnesses such as cancer or warning owners of impending epileptic attacks or high blood pressure
- Detecting emotional states in others
- Detecting hormonal states in others
- Detecting the presence of buried objects
- Tracing owners or companions and making long journeys to be re-united

- Finding their way back home from great distances

- Finding their way back home from great distances
- Detecting electromagnetic fields, ultrasonic frequencies or infrared and ultraviolet wavelengths

- Finding their way back home from great distances
- Detecting electromagnetic fields, ultrasonic frequencies or infrared and ultraviolet wavelengths
- Locating objects using sonar

- Finding their way back home from great distances
- Detecting electromagnetic fields, ultrasonic frequencies or infrared and ultraviolet wavelengths
- Locating objects using sonar
- Using sun compasses or reading celestial maps

-

- Finding their way back home from great distances
- Detecting electromagnetic fields, ultrasonic frequencies or infrared and ultraviolet wavelengths
- Locating objects using sonar
- Using sun compasses or reading celestial maps
- Sensing impending storms, earthquakes etc

General principles of sensory systems - Sensory receptors

- Chemoreceptors - smell and taste receptors

General principles of sensory systems - Sensory receptors

- Chemoreceptors smell and taste receptors
- Mechanoreceptors touch and hearing receptors

- Sensory receptors
- Chemoreceptors smell and taste receptors
- Mechanoreceptors touch and hearing receptors
- Thermoreceptors to sense heat or cold
- Nociceptors to sense pain

=

- Sensory receptors
- Chemoreceptors smell and taste receptors
- Mechanoreceptors touch and hearing receptors
- Thermoreceptors to sense heat or cold
- Nociceptors to sense pain
- Photoreceptors to allow detection of light

General principles of sensory systems - Sensory receptors

- Chemoreceptors smell and taste receptors
- Mechanoreceptors touch and hearing receptors
- Thermoreceptors to sense heat or cold
- Nociceptors to sense pain
- Photoreceptors to allow detection of light
- Magnetoreceptors to detect magnetic fields

General principles of sensory systems - Sensory receptors

- All transduce a specific form of energy into electrical impulses
- Greater sensitivity = more receptors
- Change is more important to detect than constancy
- Convey these to the brain via sensory nerves

- Sensory receptors

 The brain has a precise spatial and temporal map of the pattern of receptor activation

- Sensory receptors
- The brain has a precise spatial and temporal map of the pattern of receptor activation
- Each sensory modality is mapped onto a different part of the brain

- Sensory receptors

- The brain has a precise spatial and temporal map of the pattern of receptor activation
- Each sensory modality is mapped onto a different part of the brain
- Greater sensitivity associated with greater representation in the brain

- Sensory receptors
- Integration of the senses mainly occurs later in regions controlling memory and action
- Independent awareness of the world experienced through each sense?
- Multiple independent illusory interpretations of reality?

- The skin is our largest sensory system (50 square feet in humans)

- Different receptors for heat, cold, pain, itching and pressure

- The skin is our largest sensory system (50 square feet in humans)
- Different receptors for heat, cold, pain, itching and pressure
- Body pressure receptors are mapped in somatosensory cortex

-

- The skin is our largest sensory system (50 square feet in humans)
- Different receptors for heat, cold, pain, itching and pressure
- Body pressure receptors are mapped in somatosensory cortex
- Somatotopic maps

- Experience can change the cortical representation

- Experience can change the cortical representation
- Experience of phantom limbs

- Animals with enhanced touch sensitivity

Star-nosed mole

Eastern mole

Masked shrew

- Animals with enhanced touch sensitivity

 The star-nosed mole has 100,000 touch receptors in the skin of its nose!

 Raccoons have very sensitive hands for helping to obtain food

- An enhanced sense of touch may help detect earth vibrations or changes in wind direction and velocity
- It is also likely to enhance sensitivity to pain

Smell and taste

- These senses are of paramount importance for survival in most mammals
- These chemical senses can work in combination (flavour perception)
- Chemical detection by sense of smell more sensitive than by taste

 Receptors on tongue, epiglottis and soft palate

- Receptors on tongue, epiglottis and soft palate
- Salt sodium
- Sweet sugars
- Sour acids
- Bitter alkaloids
- Umami monosodium glutamate and meat-like tastes
- Fat

The 'classic' taste map

Salt

Sweet

Sour

Bitter

Umami

- The system is biased towards detecting poisons (bitter and sour)

3. 	Taste	Substance	Threshold for tasting
	Salt	NaCl	0.01 M
	Sweet	Sucrose	0.01 M
	Sour	HCI	0.0009 M
	Bitter	Quinine	0.000008 M
	Umami	Glutamate	0.0007 M

- The system is biased towards detecting poisons (bitter and sour)
- Receptors connect to the brain via cranial nerves
- Processing is in a brain region adjacent to the sense of touch region for the tongue

Large variation in taste sensitivity in human population

- Females have greater sense of taste than males!

- Females have greater sense of taste than males!
- To protect babies against poisons during pregnancy?

- Females have greater sense of taste than males!
- To protect babies against poisons during pregnancy?
- Morning sickness reduces likelihood of miscarriages

- Some other mammals are probably more sensitive to tastes than us:
- Rabbit 17,000 taste receptors
- Pigs 15,000 taste receptors
- Humans 9000 taste receptors
- This is probably the least well understood sense

- Most mammals depend on this sense much more than us
- Two different detection systems
- Liquid borne odours pheromones (urine, saliva, glandular secretions)
- Air borne odours
- Both systems have large numbers of different receptors
 Pheromones 100; Odours 1000
- Allow over 10,000 different smells to be detected!

- detection of pheromones
- This is an involuntary, unconscious system
- Receptors in the vomeronasal organ

- detection of pheromones
- This is an involuntary, unconscious system
- Receptors in the vomeronasal organ
- Brain projections routed straight to regions controlling hormones, sex and emotion
- Male pigs and hamsters use it to promote sex response to female pheromones
- Female mice use it to remember the male that had sex with them
- In humans often referred to as the 6th sense

- detection of air-borne odours

- 1000 receptor types localised in olfactory epithelium

-

- detection of air-borne odours
- 1000 receptor types localised in olfactory epithelium
- Other species have much larger olfactory epitheliums:

Dog - 150 cm²

German Shepherd 220 million

- Receptor numbers

Cat - 14 cm²

Cat 60 million

Human - 4 cm²

Human 6 million

- Brain processing of smell

 Odours are spatially mapped in olfactory bulb

-

- Brain processing of smell
- Odours are spatially mapped in olfactory bulb
- Projections are then sent directly to areas dealing with:
 - memory (hippocampus)
 - emotion (amygdala)
 - control of attention and action (frontal cortex)

Aromatherapy

Smells are highly memorable and evoke strong attentional and emotional reactions:

Peppermint: refreshing and stimulating, increases alertness, relieves pain, indigestion, nausea and headaches

Rosemary: a stimulant that promotes mental clarity and alertness

Sandalwood: warm, sensual aroma, euphoric and seductive

Ylang-ylang: alleviates anger, anxiety and stress

(Hammers, 1995)

- This sense can be used to detect and localise odours over very long-distances
- Comes into its own for close-up following of odour trails
- What must the experience be like for a dog?

9

- This sense can be used to detect and localise odours over very long-distances
- Comes into its own for close-up following of odour trails
- What must the experience be like for a dog?
- Detecting emotional and hormonal changes and disease

- Electronic noses

- We hear our own voices through our heads!
- Dolphins hear through their lower jaw

- We hear our own voices through our heads!

- Dolphins hear through their lower jaw

- Auditory maps in the brain

- We hear our own voices through our heads!
- Dolphins hear through their lower jaw
- Auditory maps in the brain
- Computing sound direction

-

Mouse 12 - 20 KHz

Wavelength of sound must be at least twice the width of the head

Human 2 KHz

- We hear our own voices through our heads!
- Dolphins hear through their lower jaw
- Auditory maps in the brain
- Computing sound direction
- Human hearing range 20 40Hz up to 15 20KHz

-

- We hear our own voices through our heads!
- Dolphins hear through their lower jaw
- Auditory maps in the brain
- Computing sound direction
- Human hearing range 20 40Hz up to 15 20KHz

Detecting infrasound

1 - 20Hz

- Long-distance detection of earth tremors, storms etc
- Detecting ultrasound (40 120KHz)
 - bats 120Khz
 - mice 100KHz
 - dolphins 100KHz
 - cats 64KHz
 - dogs 45KHz

- Long-distance detection of earth tremors, storms etc
- Detecting ultrasound (40 120KHz)
 - bats 120Khz
 - mice 100KHz
 - dolphins 100KHz
 - cats 64KHz
 - dogs 45KHz

Used by small rodents to signal distress or pain

-

-

- Long-distance detection of earth tremors, storms etc
- Detecting ultrasound (40 120KHz)
 - bats 120Khz
 - mice 100KHz
 - dolphins 100KHz
 - cats 64KHz
 - dogs 45KHz
- Used by small rodents to signal distress or pain
- and..... by males after sex!
- Predators have adapted to hear these calls

Hearing - Biosonar

Detection to catch time is around **0.5** seconds

Done at 20 - 30 mph with many hundreds of other bats around

- Biosonar

Detection to catch time is around **0.5** seconds

Done at 20 - 30 mph with many hundreds of other bats around

All in complete darkness!

Hearing - Biosonar

How do they do it?

- Biosonar

How do they do it?

They use specific frequency calls and detect echoes from each component

8 Elements of CF-FM Sonar Processing

F4
F3
F2
F1
Call Echo
Time

- Biosonar

How do they do it?

- They use specific frequency calls and detect echoes from each

component

 Type of fly identified by wing-beat altering pattern of echo

- Biosonar

How do they do it?

- They use specific frequency calls and detect echoes from each component
- Type of fly identified by wing-beat altering pattern of echo
- The calls are extremely loud!

-

- Biosonar

How do they do it?

They use specific frequency calls and detect echoes from each component

 Type of fly identified by wing-beat altering pattern of echo

- The calls are extremely loud!

 The brain map of auditory space is biased to 30, 60 and 90Khz

- Biosonar

How do they do it?

They use specific frequency calls and detect echoes from each component

 Type of fly identified by wing-beat altering pattern of echo

- The calls are extremely loud!
- The brain map of auditory space is biased to 30, 60 and 90Khz
- Secondary maps compute temporal sequence of call and echo

- Biosonar

Sequence of events

- Searching sweep just with constant frequency
- Echo detected from fly
- Increase call frequency and add FM sweep
- Compute direction
- Identify type of fly
- Compute speed and distance
- Alter call frequency

Hearing - Biosonar

- Biosonar

Why are they not confused by calls and echoes from other bats?

- Two key factors:
- They know which is their own voice (30KHz component)

- Biosonar

Why are they not confused by calls and echoes from other bats?

- Two key factors:
- They know which is their own voice (30KHz component)
- All of their brain cells that need inputs from two frequencies in sequence must receive the 30KHz sound first

0

- Biosonar

Why are they not confused by calls and echoes from other bats?

- Two key factors:
- They know which is their own voice (30KHz component)
- All of their brain cells that need inputs from two frequencies in sequence must receive the 30KHz sound first
- They know when they should receive back the corresponding 60KHz echo

- Biosonar

- Dolphins are similar but:
- Use broadband calls produced through the nose

- Biosonar

- Dolphins are similar but:
- Use broadband calls produced through the nose
- Hear echoes through the lower jaw

- Biosonar

- Dolphins are similar but:
- Use broadband calls produced through the nose
- Hear echoes through the lower jaw
- Can detect objects up to 100 metres or more
- Have amazing impedance matching strategies using fat

Vision and magnetoreception - The visual system

- The brain makes lots of computational assumptions

- The brain makes lots of computational assumptions
- Retinotopic maps and multiple visual areas linked in parallel

- The brain makes lots of computational assumptions
- Retinotopic maps and multiple visual areas linked in parallel
- What and where are dealt with separately

- The brain makes lots of computational assumptions
- Retinotopic maps and multiple visual areas linked in parallel
- What and where are dealt with separately
- Visual fields and binocular overlap

- The brain makes lots of computational assumptions
- Retinotopic maps and multiple visual areas linked in parallel
- What and where are dealt with separately
- Visual fields and binocular overlap
- Most mammals are good in the dark

- The brain makes lots of computational assumptions
- Retinotopic maps and multiple visual areas linked in parallel
- What and where are dealt with separately
- Visual fields and binocular overlap
- Most mammals are good in the dark
- Daylight visual acuity is less good than ours

- Daylight visual acuity

 Humans have trichromatic vision but many mammals are dichromatic

Detecting ultraviolet and infrared

- Magnetoreception
- Animals that navigate using detection of magnetic fields
- Polarity or inclination compass?

- Magnetoreception
- Animals that navigate using detection of magnetic fields
- Polarity or inclination compass ?
- What about mammals?

- Magnetoreception
- The search for the magnetoreceptor:
- Magnets in the head Magnetite

- Magnetoreception
- The search for the magnetoreceptor:
- Magnets in the head Magnetite
- Photoreceptors

- Magnetoreception
- The search for the magnetoreceptor:
- Magnets in the head Magnetite
- Photoreceptors
- Detecting storms and body electrical activity?

- Magnetoreception
- The search for the magnetoreceptor:
- Magnets in the head Magnetite
- Photoreceptors
- Detecting storms and body electrical activity?
- How are magnetic fields experienced?

Synaesthesia

- (syn = together + aesthesis = perception)

()--

0.0

3.9

Galton

- (syn = together + aesthesis = perception)
- Seeing or hearing specific words, letters or numbers as colours
 - " I've chosen and dumped girlfriends because of how their names tasted. The name Tracy tastes of flaky pastry."

- (syn = together + aesthesis = perception)
- Seeing or hearing specific words, letters or numbers as colours
- Tasting shapes

Cytowic

- (syn = together + aesthesis = perception)
- Seeing or hearing specific words, letters or numbers as colours
- Tasting shapes
- Feeling musical instruments as touch in different body regions

- (syn = together + aesthesis = perception)
- Seeing or hearing specific words, letters or numbers as colours
- Tasting shapes
- Feeling musical instruments as touch in different body regions
- Affects between 1 in 200 and 1 in 20,000 individuals

- (syn = together + aesthesis = perception)

- Prevalent in artists (23% of 358 fine-arts students)

Nabokov

Scriabin

Hockney

Messiaen

- (syn = together + aesthesis = perception)
- Prevalent in artists (23% of 358 fine-arts students)
- Probably caused by cross wiring between adjacent sensory maps

- (syn = together + aesthesis = perception)
- Prevalent in artists (23% of 358 fine-arts students)
- Probably caused by cross wiring between adjacent sensory maps
- May be normal during early stages of development

- (syn = together + aesthesis = perception)
- Prevalent in artists (23% of 358 fine-arts students)
- Probably caused by cross wiring between adjacent sensory maps
- May be normal during early stages of development
- Might some adult animals where vision is poor use visual parts of the brain to enhance experience of other senses?

- (syn = together + aesthesis = perception)

Adaptive changes in early and late blind: A fMRI sudy of Braille reading Burton et al 2002

- Sensing intention of companions or owners to return home

- Sensing intention of companions or owners to return home
- Sensing fear or suffering in absent offspring
- In humans telepathic communication

- Sensing intention of companions or owners to return home
- Sensing fear or suffering in absent offspring
- In humans telepathic communication
- Remote viewing

- Sensing intention of companions or owners to return home
- Sensing fear or suffering in absent offspring
- In humans telepathic communication
- Remote viewing
- What is the form of energy and how is it detected?

....and finally

- The world does indeed appear very different to other species
- Heightened or additional senses can explain many of their apparently supernatural abilities
- However, so far, not all!

Professor Keith Kendrick is Head of Neurobiology at:

The Babraham Institute
Babraham
Cambridge
CB2 4AT

www.babraham.ac.uk/

