Memories are made of this, but what about intellect?

Memories are made of this, but what about intellect?

'Everyone needs memories. They keep the wolf of insignificance from the door.'

Saul Bellow

'Memory is what tells a man that his wife's birthday was yesterday'

Mario Rocca

'The two offices of memory are collection and distribution'

Samuel Johnson

Neuroscience and the Pharmaceutical industry

Learning & Memory is big business

Neuroscience and the Pharmaceutical industry

Memory enhancer pills - 'magic bullets'

Licensed: Tacrine

Aricept

Exelon®

Reminyl®

Mermantine

Neuroscience and the Pharmaceutical industry

Memory enhancer pills - 'magic bullets'

Licensed: Tacrine

In clinical trials: CX516 (Ampalex)

Aricept

MKC-231

Exelon®

Reminyl®

Mermantine

Most only delay cognitive decline or produce mild improvements

They usually have side effects

Reductionism vs holism

The molecular brain and sub-atomic particles

Elementary **Particles** Quarks Carriers top photor charm strange bottom ptons tau neutrino tau Three Families of Matter

Reductionism vs holism

The molecular brain and sub-atomic particles

The search for more holistic explanations of function

Statistics - the human brain

Size - 56 cubic inches

Weight 3lb

100 billion nerve cells (10¹¹)

1 quadrillion (10¹⁵) synaptic connections

10 quadrillion (10¹⁶) synapse operations per second

Statistics - the human brain

Size - 56 cubic inches

Weight 3lb

100 billion nerve cells (10¹¹)

1 quadrillion (10¹⁵) synaptic connections

10 quadrillion (1016) synapse operations per second

10 watts!

Statistics - supercomputers

ASCII Purple (IBM) - US Department of Energy

Size 8900 square feet

Weight 197 tons

500 trillion (5x10¹⁴) calculations per second

Statistics - nanotechnology ?

Statistics - comparisons

Processing power of human brain is considerable - information overload?

Statistics - comparisons

Processing power of human brain is considerable - information overload?

Direct comparisons between brains and computers are not

appropriate

Brain development

Statistics - comparisons

The brain is your own personal organiser: seeing the wood not the trees!

Statistics - the final word!

Size doesn't matter as much as how you use it!

What are the key memory processes?

Short term

What are the key memory processes?

Short term

Consolidation

Long term

Implicit or procedural

Implicit or procedural

Explicit or declarative

Implicit or procedural

Explicit or declarative

Episodic or autobiographical

- focal content and context

Implicit or procedural

Explicit or declarative

Episodic or autobiographical

- focal content and context

Semantic memory
-memory representation
stripped of context

Main Entry: mem-o-ry 40

Pronunciation 'mem-rE, 'me-ms-

Function: noun

Inflected Form(s): plural -ries

Etymology. Middle English memorie, from Middle French memoire, from Latin memoria, from memor mindful; akin to Old English gemimor well-known, Greek mermEra care, Sanskrit smarati he remembers

Date: 14th century

1 a: the power or process of reproducing or recalling what has been learned and retained especially through associative mechanisms b: the store of things learned and retained from an organism's activity or experience as evidenced by modification of structure or behavior or by recall and recognition

2 a : commemorative remembrance <erected a statue in memory of the hero > b : the fact or condition of being remembered <days of recent memory >

3 a: a particular act of recall or recollection b: an image or impression of one that is remembered <fond memories of her youth> c: the time within which past events can be or are remembered <within the memory of living men>

4 a: a device or a component of a device in which information especially for a computer can be inserted and stored and from which it may be extracted when wanted b: capacity for storing information <four megabytes of memory>

5 : a capacity for showing effects as the result of past treatment or for returning to a former condition -- used especially of a material (as metal or plastic)

synonyms MEMORY, REMEMBRANCE, RECOLLECTION, REMINISCENCE

Example of the difference:

snake elephant flamingo hippopotamus human rat cat dog horse lion tiger bear

Semantic memory:

Which of these are mammals?

Which of them are birds?

Example of the difference:

Episodic memory:

Was the word elephant in the list?

Was the word giraffe in the list?

Amnesia

Electroconvulsive shock - anterograde and retrograde amnesia

Anterograde amnesia

Retrograde amnesia - graded

Where are the short and long-term memory stores in the

brain?

How does the process of consolidation shift information between them?

Where are the short and long-term memory stores in the brain?

How does the process of consolidation shift information between them?

The neocortex?

Karl Lashley (1920s) - mass action and equipotentiality

Karl Lashley (1920s) - mass action and equipotentiality

'I sometimes feel, in reviewing the evidence on the localization of the memory trace, that the necessary conclusion is that learning just is not possible' (1950)

Wilder Penfield - specific memories in the temporal lobe

Uncontrollable epilepsy from age 9

Uncontrollable epilepsy from age 9

Operated on by William Scoville at age 27

Removed subcortical components of temporal lobe bilaterally

Epilepsy cured

Unable to remember new information for more than a few minutes

Unable to remember new information for more than a few minutes

Memories of events prior to operation intact

Implicit/Procedural Memories not affected

Implicit/Procedural Memories not affected

Damage mainly to a brain structure called the hippocampus

The story of HM

Implicit/Procedural Memories not affected

Damage mainly to a brain structure called the hippocampus

Food storing animals - enlarged hippocampus

Marsh-tit

Food storing animals - enlarged hippocampus

Taxi drivers (Maguire *et al* 1997)

Food storing animals - enlarged hippocampus

Taxi drivers (Maguire *et al* 1997)

Rat hippocampus is also involved in making learned associations between objects (Bunsey and Eichenbaum 1996)

Different brain memory systems for:

Different brain memory systems for:

Motor skills

Different brain memory systems for:

Motor skills

Habitual responses

Different brain memory systems for:

Motor skills

Habitual responses

Spatial location

Hippocampus....

Different brain memory systems for recognition of:

Visual objects

Frontal cortex
Perirhinal cortex
Visual cortex (occipital lobe)

Different brain memory systems for recognition of:

Visual objects

Faces

Different brain memory systems for recognition of:

Visual objects

Faces

Sounds

Different brain memory systems for recognition of:

Smells

Olfactory bulb & pyriform cortex

Different brain memory systems for recognition of:

Smells

Touch

Different brain memory systems for recognition of:

Smells

Touch

Tastes

Different brain memory systems for recognition of:

Words

'What' things are encoded differently from 'where they are'

'What' things are encoded differently from 'where they are'

What

- Inferior temporal cortex

'What' things are encoded differently from 'where they are'

Where

Posterior parietal cortex

What

- Inferior temporal cortex

Turning the gain up and down

in nerve cells

Turning the gain up and down in nerve cells

Long-term potentiation
Bliss & Lomo 1973

Turning the gain up and down in nerve cells

Long-term potentiation
Bliss & Lomo 1973

Long-term depression

Turning the gain up and down in nerve cells

Long-term potentiation
Bliss & Lomo 1973

Long-term depression

Links to memory?

Neuron, Vol. 20, 445-468, March, 1998, Copyright @1998 by Cell Press

Cognitive Neuroscience and the Study of Memory

Brenda Milner,* Larry R. Squire,† and Eric R. Kandel¹⁵

*Montreal Neurologic Institute
Montreal, Quebec H3A 2B4
Canada

*Veterans Affairs Medical Center
San Diego, California 92161
and University of California
San Diego, California 92093

*Center for Neurobiology and Behavior
College of Physicians and Surgeons
Columbia University
Howard Hughes Medical Institute
New York, New York 10032

The neurosciences have grown rapidly over the last half century. This growth has been stimulated by two important developments. First, molecular biology has transformed cellular neurobiology and has led to a new concentual framework for signaling, a molecular framework Review

that eventually led to the independent discipline of experimental psychology. In its early years, experimental psychology was concerned primarily with the study of sensation, but by the turn of the century the interests of psychologists turned to behavior itself—learning, memory, attention, perception, and voluntary action.

The development of simple experimental methods for studying learning and memory—first in humans by Hermann Ebbinghaus in 1885 and a few years later in experimental animals by Ivan Pavlov and Edgar Thorndike—led to a rigorous empirical school of psychology called behaviorism. Behaviorists, notably James B. Watson and Burrhus F. Skinner, argued that behavior could be studied with the precision achieved in the physical sciences, but only if students of behavior abandoned speculation about what goes on in the mind (the brain) and focused instead on observable aspects of behavior. For behaviorists, unobservable mental processes, especially abstractions like perception, selective attention, and memory, were deemed inaccessible to scientific study. Instead, behaviorists concentrated on examin-

Alpysia californica and the Nobel Prize

Eric Kandel

Alpysia californica and the Nobel Prize

How does a cell become more or less sensitive to the same stimulus?

Eric Kandel

Alpysia californica and the Nobel Prize

How does a cell become more or less sensitive to the same stimulus?

Changes sensitivities or numbers of synaptic inputs or receptors

Eric Kandel

Association and co-incidence

Pay attention while I'm speaking to you!

Association and co-incidence

Pay attention while I'm speaking to you!

Removing the brakes and revving the engine

Association and co-incidence

Pay attention while I'm speaking to you!

Removing the brakes and revving the engine

Glutamate and calcium

- the memory superchargers !

Messenger molecules - turning up the gas!

A matter of memory formation rather than recall:

A matter of memory formation rather than recall:

Memory formation X

A matter of memory formation rather than recall:

Memory formation '

More NMDA receptors?

'2B or not 2B? - that is the question' (Tang et al 1999)

Molecular switches and structural changes involved in LTM

So how do memories become etched into stone for posterity?

Molecular switches and structural changes involved in LTM

So how do memories become etched into stone for posterity?

Altered activity - gene transcription - protein synthesis - structural change

Each cell actively expresses 20,000 genes and perhaps 4000 proteins

1000 genes and 200 proteins may be altered when a cells response is potentiated

The long-term memory switch

- kinases, phosphorylation and CREB1

The long-term memory switch

- kinases, phosphorylation and CREB1

Repressor elements CREB2 and PP1

The long-term memory switch

- kinases, phosphorylation and CREB1

Repressor elements CREB2 and PP1

The long-term memory switch

- kinases, phosphorylation and CREB1

Repressor elements CREB2 and PP1

The long-term memory switch

- kinases, phosphorylation and CREB1

Repressor elements CREB2 and PP1

Is the 50% genetic contribution to intelligence due to relative differences in CREB1 and 2?

So if we suppress the activity of CREB2 and/or PP1 in the brain can we can kiss all of our memory problems goodbye

for ever?

So if we suppress the activity of CREB2 and/or PP1 in the brain can we can kiss all of our memory problems goodbye for ever?

No - forgetting is an essential part of the brain's memory system

Why?

You don't want to be reminded constantly of bad things

Why?

You don't want to be reminded constantly of bad things

You don't want to be so overloaded with unconnected information that Waycan't see the wood for the trees

The case of D.C. Shereshevski

Aleksandr Luria

14	39	12
Α	E	123
1492	I	456
K	0	V
1945	54	789
2001	J	В
X	15	Н
99	16	W
Q	1066	37
Υ	27	C

So how does forgetting work?

Everything is stored but we just can't access it - recall problem

Memories fade or are overwritten if not recalled - storage problem

So how does forgetting work?

Everything is stored but we just can't access it - recall problem

Memories fade or are overwritten if not recalled - storage problem

The act of remembering also causes protein-dependent changes in the brain (Nader et al 2000)

Memory and hormones

Strong emotional states facilitate the process of memory storage

Memory and hormones

Strong emotional states facilitate the process of memory storage

Stress hormones such as cortisol can, at low levels, facilitate memory processes although at high levels they are very disruptive

placebo verbal memory performan cortisol (40mg/c poor Baseline Days of treatment

High levels of cortisol impair verbal memory performance

Department of Psychology University of Plymouth

Memory and hormones

Sex hormones, memory and mate choice - oestrogens

He's only Mr Unforgettable when he can get you pregnant!

For female mice smell memory is best when they are fertile (Sanchez-Andrade and Kendrick 2003)

Possibly caused by oestrogen facilitating NMDA-evoked nitric oxide release

Consolidation of human memory (Haist et al 2001)

Consolidation of human memory (Haist et al 2001)

Chess experts vs chess amateurs (Amidzic et al 2001)

Mother sheep identifying the smells of their lambs

(da Costa et al 1997 Mol. Brain Res.)

Mother sheep identifying the smells of their lambs

Short term: AMPA/NMDA sensitisation

Mother sheep identifying the smells of their lambs

Long term: mGluR activation

The size of a memory representation decreases with time

Sparse encoding through specialisation

The 'Granny cell' trap

The size of a memory representation decreases with time

Sparse encoding through specialisation

The 'Granny cell' trap

Memories are distributed representations capable of filling in gaps

Generate as extensive and flexible representations of new information as possible

Generate as extensive and flexible representations of new information as possible

Find ways to piggy back the new onto the old

Generate as extensive and flexible representations of new information as possible

Find ways to piggy back the new onto the old

Generate as extensive and flexible representations of new information as possible

Find ways to piggy back the new onto the old

Use more than one information access route

Increased size of brain neocortex

- consciousness, awareness and long-term memories

Increased size of brain neocortex

- consciousness, awareness and long-term memories

Symbolic representations improve organisation

- language, numbers etc.

Learning and application of rules and formulae

How does the brain link up and integrate information from different sensory modalities and memory systems to both derive and apply general rules?

It's all a matter of juxtaposition and timing!

Time is the dimensional aspect of brain function we need to

understand

Time is the dimensional aspect of brain function we need to understand

The importance of synchrony, correlations and rhythms for binding information

Cambridge Philharmonic Orchestra

Cognitive enhancement

So where do the next generation 'cognitive enhancer bullets' come from ?

Targeted drug delivery to specific brain regions will reduce unwanted side effects

Drugs targeting molecular repressors CREB2 or PP1

Learning how to induce patterns of brain activity that facilitate memory

Memories start in short-term labile form that can become consolidated into a long-term one

The brain has multiple memory systems

Designed primarily to integrate not just to store

The hippocampus plays a key role in consolidating memories

Good knowledge of the molecular control of memory formation and consolidation

Less known about global organisational principles

To be best organised we need to be able to forget

Intelligence: organisation through language and consciousness and neocortex size

Cognitive enhancer bullets targeted drugs and tuning into rhythms

In the meantime the best advice is:

Use it or lose it!