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Happy New Year and welcome to this first lecture of 2011.  It is a mathematically propitious day, as you will have noticed. It is 11/1/11, so if you have nothing better to do, you can factorise this and work out the continued fraction expansion to which it approximates and all those interesting things. This is analogous to how you used to work out the prime factorisation of hymn numbers when you sat in church as a child - the acid test of the budding mathematician!

Today, we are going to talk about uses of irrationality, with special focus on paper sizes, which you might think sounds rather odd.  I am going to look at why we have developed the paper size system that we have, why Xerox machines work better with that system, why you would be mad to do anything with paper or Xerox machines in America, and then we are going to look at some of the medieval counterparts of these modern problems of paper sizing and the Golden Ratio. 
You probably realise that we deal a lot with papers which have funny labels, like A3, A4, and if you are really exotic, B1, B2, and even the C series of papers.  So what do these labels mean?

Well, to get a grasp of this, we are going to need to know about one interesting number, which is √2. This number, famously, is an irrational number, and that fact was discovered by the Ancient Greeks. It was known, supposedly, to the Pythagoreans, and there are stories and legends that the first person to discover it was regarded as an enemy of the people and thrown into the sea because he had unveiled something that was indeed irrational and therefore dangerous to the world of thought. A rational number is one that you can represent as the ratio of two whole numbers, two integers.  So, if that number was two-thirds or one-half, by construction, it is a rational number.  This famous proof from Ancient Greece demonstrates that √2 is the number you get if you make a right-angled triangle, with two sides of length 1 and 1. Pythagoras’ theorem tells you that the length of the hypotenuse is the square root of 12 + 12 which is √2. This number cannot be written as the ratio of two whole numbers.
The proof works as a classic example of a proof by contradiction.  You assume that the result is true, deduce a logical contradiction and therefore conclude that the original assumption was false. We start by assuming then that √2 = p/q, where p and q are integers with no common divisor, so they are in their fraction in its lowest terms i.e. 1/2 not 2/4. We work out the consequences of that.  So, if we were to square this formula, we would have that p2/q2 = 2 so p2 = 2q2. That would mean that p squared is an even number as it is twice something that is a whole number. That means that p must be an even number as well because the only way that you can get an even number is to multiply an even number by an even number or an even number by an odd number, so p must be even if p2 is even.
So this means that p is twice some other number – call it n, p = 2n. If we substitute that back in we have that 4n2 = 2q2, so q2 = 2n2. Therefore, q2 is an even number, and so, by the same argument, q must be an even number.  So we have proved that both p and q have to be even numbers. Therefore, they are both divisible by 2, so our original assumption that p and q had no common divisor was incorrect, so we have a contradiction with that initial assumption.  So, it is not possible to write √2 as p/q, with p and q having no common divisors. As a result, √2 was termed an irrational number. This proof will be found in one of the books in Euclid, although we know, from other writings, it was known far earlier.

So why is this number interesting?  If you look at modern paper sizes, we have the problem of an aspect ratio with paper. We want to be able to deal with different sizes of paper in a way that is simple and convenient.  Suppose that you start with one large sheet of paper, and the height of this long side is 2, and we will allow the other short side to have a length r, and we shall see if there is an interesting r.
First of all, rotate it round, so it is horizontal. Now suppose we wanted to cut this piece of paper in half.  We would then have 2 pieces which had a height r but which each had a width 1, and so the ratio of the height to the width of the small pieces is r/1; whereas, with the big piece, the height divided by the width is 2/r.  Well, if we want these to be in the same ratio r/1 = 2/r, r2 = 2 and r = √2. This ratio is called the aspect ratio, and you can see immediately how this picture here demonstrates the relationship between A3 and A4 paper. If you have a piece of A3 paper, you divide it in half in this way, you end up with the 2 pieces of A4, where we have this same ratio of 1:√2, √2:2, for the height against the width.

If you were interested in dividing sheets of paper into 3 you could see how you would change this argument. You would want to have r2 = 3 and you would find it very convenient to work with an aspect ratio of √3.

Paper sizes have used this A size format which is the √2 scaling ratio. If you slice an A0 sheet in half, you will have 2 sheets of A1; if you slice the A1 in half, in the other direction, you will have an A2; if you cut in half in the other direction, you will have A3 and you can keep on going for as long as you want. 
If you work in the paper business or you are ordering paper, you might wonder about the measurements and how accurate are they in practice. The rules for the industry state that for up to 15cm size, the manufacturer is allowed to make things with a range plus or minus 1.5mm. It goes to 2mm once they get up to the intermediate scale, and they you get to the biggest scale of paper, it could be wrong by 3mm, in any dimension.

This √2 ratio for paper cutting is sometimes called the Lichtenberg Ratio.  Georg Lichtenberg was a German scientist, mathematician and general man of affairs, who wrote in a letter in 1786 about the advantages of having a square root of 2 paper size ratio. Before then, people used a whole variety of different choices. There are pretty numbers like the Golden Ratio that people thought might be a good idea for almost sort of mystical reasons. Here is a little cartoon of Lichtenberg.  He was famous at the time for rather pithy quotations and remarks; one I noticed in his biography was “Love is blind but marriage restores its sight.”

Let us look at some tables of numbers of these paper size ratios, and then look at some of the hidden ratios and numbers that sit amongst them.

Here is the same picture again, showing these paper sizes that we start by halving A0 to make A1.  Also shown on here are 2 rather peculiar paper sizes, used in America, which we will return to later on, that are sometimes just called US Letter or US Legal, and they do not fit into this scheme at all, and that, as we will see, is something of a disaster.

The next series of paper sizes that you may encounter are the so-called B sizes, and these are used for slightly different sorts of objects, leaflets and other types of mailing. They are constructed from the A series by taking the geometric mean of the 2 previous A sizes.  So B1 = √(A1 x A0). 

As a word of warning here, I discovered that there is something called the Japanese B paper size, which is really very odd indeed as it uses the arithmetic mean not the geometric mean, so B1 (Jap) = (A1 + A0)/2.  Not surprisingly, this is not used internationally, and does not produce a nice scaling situation of the sizes. This is how B sizes look with the dimensions. Again, they go from B0 all the way down to B10.
Well, what has all this got to do with Xerox machines?  You probably have some suspicion that the nice point about this setup is that if you look at the series of enlargements and reductions that you get, say, in A series paper or B series paper, or moving across from A to B, then they all change by the same pair of factors: so one is √2, which is approximately 1.41; and, if you go down in size, you reduce by a factor of 1/√2, which is about 0.71.  If you made one reduction you get a size of 71%; if you make 2, you get 1/√(√2) which gets 84%; and if you then go up, √(√2) is 119%; and if you just have an enlargement by √2, it is 141. So, respectively, the aforementioned ratios correspond to the reduction that takes you from A3 to A4; the reduction from B4 to A4; the increase from A4 to B4, or B5 to A5; and the enlargement here from A4 to A3 or A5 to A4.

Yesterday I went round some of the Xerox machines in our Department and took some photographs of these panels.  The secretaries who were using them were very surprised – I told them it was my new hobby; I was collecting photographs of Xerox machine panels for the New Year!  

They are rather hard to photograph, as you can guess, but one of the things you learn is that different manufacturers work with different approximations to these numbers, and so now you should be able to understand why these numbers appear.

The top one says 141% which is a magnification by a factor of 1.41 which is √2. This is the aspect ratio which moves from A4 to A3, or also from A5 to A4.  So, a transformation from one member of the A series to the next biggest will be an increase by that amount. Across, it says 71%, so this is the reduction from A3 to A4. This is 0.71 which is 1/√2.  If applied twice then 1/√2 x 1/√2 is very close to 0.5 and it has been written as exactly 50% here.

This machine here plays fast and loose with these numbers – it cannot be bothered to tell you it is 71%, it just rounds to 70%, so 0.7 is its estimate of 1 over the square root of 2; it sticks with 50% for the 2 reductions; and then, at the bottom, 25% as the other one.

One of the things you learn about Xerox machines from this picture is that if you were to put in the Xerox machine an A3 document and made a reduction of it, then the reduction factor, the 0.71, produces a scale document which exactly prints out onto the A paper, so you do not need to have all sorts of different paper trays to deal with reductions from one type of paper to another. The rationality of the system is in the reduction and enlargement process. It does not create awkward spare margins which are left over at the edge when you move from one of these types of paper to any of the others.  That is the beauty of the scaling relationship which is why it has been chosen.
Well, here is the grand picture as it were.  I have only done it for the A type paper.
So, if you go from A0 down to any of these smaller types of paper, this is the amount of reduction that you need to apply.  So A1, for example, is 71% of A0, so that is 1/√ 2.  If you apply another reduction, you have 0.71 x 0.71 = 0.504, so that is why A0 to A2 is 50%, roughly.  If you apply another reduction, so you multiply by 0.71 again, you are down at 0.3579, really 36% - in this manual, it is called 35.   Multiply by another 1/√2, and you are down to 0.25, 25%.  So, all these numbers along this row, which are taking you to successfully smaller A sizes of paper, are all just multiplications by 1/√2, although they have been rounded up to rather disguise this fact.
If you go in the other direction, okay, then you can see, if you divide by 0.71, you go up to 140, 198, 279, 396, so these are some of these larger numbers along these rows.

So, the whole of this vast table of relationships between paper sizes is simply a multiplication or a division by the √2, in any direction.  You can see, this 396.8, 397%, is rounded to 400; the 279, had got rounded to 283, a particularly bad approximation; and this 198 gets rounded to 200.
Newspapers are an interesting case.  If you are old enough, you probably remember the extraordinary Sunday Sport.  I think there is now sort of an annual calendar of the front pages of the Sunday Sport.  I can remember being rung up by the Editor of the Sunday Sport with a cosmology story that they had, and they wanted to know if it was true that the universe would once have fitted inside a matchbox when it extremely young during the Big Bang Theory.  I told him that it was much smaller than that, and he said, “No, I think a matchbox is about the smallest that any of our readers can really envisage”!   
This was a particularly brilliant story because, the following week, the headline was: “World War II Bomber Vanished from the Surface of the Moon!”   Then, when they asked Patrick Moore by phone what he thought of this, the next story, which said that astronomers had discovered heaven, they quoted him directly: “This is the most fantastic thing I’ve ever heard in my life!”  

There are typically 3 types of paper size that get used for newspapers: the large broadsheet, which was introduced in the early 1700s, I think about 1712, and the reason it is so big is there was a tax on the number of pages in newspapers, so if you had big pages, you paid less tax.  There is the tabloid.  The quality dailies, when they produced tabloids, did not call them tabloids for these sorts of reasons.  They called them “compact edition”, but they are exactly the same – in size, not in content.  There is a European size, which is known as Berliner, which is familiar from things like Le Monde, although, unfortunately, not the Berliner Zeitungen – it does not use this format.
This the last part of the paper size saga, that, just as you could create a B size from A size, you can create a C size by taking the geometric mean of the A and the B size.  So, C1 = √(A1 x B1).  They do this because it beautifully creates a series of paper sizes which are the sizes of the envelopes in which the A or the B series papers will nicely fit.

So, here are the numbers, for what they are worth, but the idea is, for example, that a C4 envelope holds an A4 letter very neatly. You can see, from the actual dimensions that A4 (297 x 210) fits nicely inside C4 (324 x 229).  If you go up to C5, then when you fold the A4 in half, it also fits just nicely inside, with a little bit spare. So there is logic to this new series of paper sizes: they are designed mainly for envelopes.  Remember that the C(N) envelope holds the A(N) letter, unfolded, whereas the C(N) envelope holds the A(N-1) letter folded in half.  You can work out that if you wanted to fold it in four, you would go 2 C series sizes down, so folding your A4 letter twice produces a size that fits nicely inside the C6 envelope.

So, study this carefully, and you too can become the Regius professor of envelope science at Oxford.  We do not have such things at Cambridge!

This is a little summary of the sort of uses for these types of paper.  We have seen the A series.  We are familiar with technical drawings, posters, articles, and scientific papers and so forth, so we all tend to work with A4 most commonly.  Once you start cutting the A4 sizes in half, you are down to using notepads.  

There seemed to be a rumour around – it may just have been created by the English – that A6 is used for European toilet paper.  I measured our toilet paper at home, which came from Waitrose, and it is not A6, so it is different to these paper sizes entirely.

A6 is postcard size so you can fit it inside a C6 envelope if you want. Books are where you find great use of the B series, and also these higher numbers of the A series. The newspaper sizes, B4 and A3, we have just seen. The very small ones, with the high numbers, are most commonly used for playing cards. 

So there is a sort of hierarchy of interesting uses.  If you want to carry around a formula in your wallet for what the size of these things is the fact that as you move up to the next N size, you reduce by another factor of √2, means that these are the actual sizes of these pieces of paper in metres.  So, A1 is 2-1/4 -1/2; A2 would be 2-1/4 -1 and so on.  If you multiply them together, you notice that things become rather simple, because width x height gives the area of these pieces of paper.  So, the area of A(N) is 2-N.  So the area of A0 is 1 by 1 and as you go up the series areas are half as small. 

Here is an amusing little digression. If we were to go to some hypothetical and completely enormous value of N that is impractical such as A233 the area of this piece of paper would be 2-233, which is 10-35 of a square metre, which is the smallest physical area that we can contemplate in modern physics, something known as the Planck area.  It is the scale of size over which the known laws of gravitation and quantum theory both break down and have to be replaced by a new theory of quantum gravity.  This is sometimes called the Planck unit of area, and it is defined by Newton’s gravitation constant, Planck’s quantum constant, divided by the speed of light cubed, so it is a dimension of area that is defined by the fundamental constants of nature, not by some human choice.
One of the great discoveries of modern particle physics, string theory and black hole physics is that fundamental structures in nature, indeed maybe the whole universe itself, have an entropy which is defined by the surface area, so all the information is in the surface area, not the volume or the mass, and that entropy is proportional to the surface area in Planck area units.  So the whole universe has got a surface area of 10120 in Planck area units, and this is sometimes known as the Bekenstein-Hawking Entropy.
So, you could work out that the Bekenstein-Hawking Entropy of a piece of A233 paper is 1 and you can work out what it would be for a piece of A4 paper.  It is very small in a sense, compared with the entropy of the whole universe, as you might expect.

Well, this business about area is, again, of great practical use and shows again how someone like Lichtenberg had thought rather carefully about why you want to introduce this type of paper system, with this aspect ratio. As I said, A0 has an area of 1 m2, so A4 has got an area of 1/24 m2, which is a 1/16 m2.   A1, it would be 0.5 m2.  From this, you can work out the weight of a stack of a quantity of paper of any size, very simply.

Ordinary paper, the sort that we write upon - if you collect stamps or make exhibition mountings, you will use much higher quality paper – but ordinary paper, which you would use to leave a note out for the milkman, probably has the standard paper quality of a weight of 5 grams for each page of A4.  So you can see, knowing this, you can work out what the weight is of any particular piece of A series paper, and if you have a stack, you can very easily work out the weight.
Well, I shall tell you something that you can take away and make use of. The C4 envelope weighs a bit less than 20 grams, and so you can work out how many sheets of A4 could you put in it before you tip the scales and go above the Post Office’s 100 gram limit for your letter at a particular first class or second class rate. Well, you can see that if you have 16 pages at 5 grams a page, plus 20 for the envelope, that is 100 grams, so this is a good rule of thumb. You can put 16 sheets in that C4 envelope before you go over the limit.


So, more generally, if you look at a whole stack of papers, of any A series or B series, you can very easily work out the weight, just by knowing the standard weight per sheet.  This is why sometimes you see paper quality is described as a weight, so someone will say this 100g paper, which sounds a bit odd – it means that that is the weight of the standard area of that paper.

Another rather neat feature of these scalings is that, if you are a technical draughtsman and you had made a drawing on a piece of, say, A3 paper, and the drawing is then reduced to A4, and you wanted then to amend the drawing if you tried to use the same pen, the nib size would be too big and the amendments would stick out and look peculiar. Well, draughtsmen have thought of that, and if you go down to your local branch of Staples or wherever you buy pens and technical drawing equipment from, you will find that there is a group of standard sizes sitting on the shelf of technical drawing pen nibs.  The standard sizes may be 2mm, 1.4mm, 1mm, 0.7mm, 0.5mm, and so on.  You are probably also already recognising a certain pattern here: √2, 1/√2, 1/√2 x 1/√2 etc.  It is exactly the same sequence.  So the sizes of technical drawing nibs have been chosen so that they scale in the same way as the paper sizes, that to go up the scale, to larger nibs, you multiply by √2, and to go down to the next smallest size, you divide by √2.
So, the consequence of this, when you look in practice, big companies like Castell tend to have 4 standardised choices. In a mass-marketing show, you will find just 4, and they colour-code them white, yellow, red and blue, so that you can easily recognise them. So, the trick is that, if you draw on a piece of A3 paper with the 35mm pen, and then you reduce the drawing to A4, you can carry on drawing on that piece of paper using the 25mm pen, and the 35mm lines will have been reduced to the size of the 25mm lines.  So to add to your drawing, your lines to the drawing after it has been reduced or enlarged.   

If you look at stencils, you have exactly the same type of structure. With stencils, you are looking both at the thickness and at the height and width of the letter, so the series of stencil sizes follows the same pattern.  So, if you use the next size of stencil up, you will be able to use that on the next larger magnified paper, and if you use the next stencil down, it will look like the reduced size copy of the previous document. Most people are not aware of this sort of thing, unless they do technical drawing professionally, but there’s rationality to the sizes of the nibs, the size of the stencils, and it’s locked to √2 aspect ratio, just like the paper sizes.

I mentioned American paper sizes.  This is one of these things that you really just want to draw a horrible curtain across and forget about. There are only three countries in the world that do not use the paper size aspect ratios I have talking about so far, the so-called International Standard, the USA, Canada and Mexico. They use a curious collection of historically somewhat ad hoc paper sizes.  The commonest ones in America are called Letter Legal, which is not used for legal documents; Executive, which does not tend to be used by executives; and something called Leisure or Tabloid.  They do not have this scaling aspect ratio, so when you go to the United States and you use the Xerox machine for the first time, you have a horrible shock because suppose you start with 2 sheets of A4, you have put on the Xerox and you are going to make a copy which is going to have the 2 on one, you find that a great big margin has been created on each side.  So there is not a coherent scaling between the different sizes of paper. If you want to end up with a result that we are familiar with here, you would have to introduce new paper trays, with different sizes of paper at each stage.  So you do not have a situation where 2 pieces of A4, side by side, produce a reduced copy on a piece of A5 paper. So, if you are interacting at a business level with Americans and they are sending you documents that you then want to Xerox and distribute, they all end up looking rather ugly.  Exactly the same problem exists for lettering sizes, for stencils and for technical drawings.

The next type of ratio I want to talk about a little is the so-called Golden Ratio, about which many mystical things have been written.  You notice that we do not use the Golden Ratio for paper sizes – there is no reason why we would want to.
The Golden Ratio has a long history.  People were attracted to it aesthetically, it is used greatly in art, perspective and sculpture and people associate all sorts of mystical significances to it.  We have encountered it already in this course when we looked at continued fractions, before Christmas. The Golden Ratio had a most remarkable continued fraction expansion: it was farthest away from any rational number, so it is the irrational number that is farthest away from any rational number and the worst approximated by rational numbers.

Suppose you have an oblong, and say that the width is one unit and the height is going to be something else, which we will call φ. Imagine that you take out a square from the top, so that has side lengths 1 and 1, then what is left will be of side length φ - 1, and the width is 1.  We want to have one of these aspect ratios again, so that the ratio of the height to the width of this new object is the same as the initial ratio. So φ:1 is the same as 1/(φ-1). Thus φ/1 = 1/(φ-1). 

Well, if we multiply up by (φ-1), we get the quadratic equation that we saw before in the December lecture: φ2 - φ -1 = 0. We can solve it straightforwardly, and φ = √5 + ½. 

It is clearly an irrational number.  It is an algebraic number because it is the solution of an algebraic equation. √5 to 3 decimal places is 1.618. This is the famous Golden Ratio.  You sometimes come across its reciprocal, 1/φ. You get this by doing 1/φ which, by dividing the quadratic by φ gets φ – 1 which comes to 0.618.
Somehow, this is the most appealing shape to us aesthetically. Once people start looking into this, there is not very much evidence for it. ‘Looking into it’ would mean giving people a lot of oblong shapes and saying, “Which one do you like the most?” or asking them to draw a rectangle.  On its side, the claim would be that the long one is 1.618 and this would be the Golden Rectangle.  If you look far enough, you can find people that do indeed draw rectangles a bit like that.

Euclid had a slightly different definition.  It is an extremely old one, coming from 300BC, and it is worth seeing.  He did not use rectangles and areas; he just used a line, where A and B are points at the end of the line, C is a point on the line. AC = φ and BC = 1. φ = AC/BC = AB/AC = (φ + 1)/φ, which gives the same equation as before: φ2 – φ – 1 = 0. 

The Golden Ratio has all sorts of rather remarkable mathematical definitions and properties.  One that we saw in the December lecture was that, if we expanded as a continued fraction, then this staircase has ones all the way down.  So, once you look at it in the form of a continued fraction, its extraordinary and symmetrical properties become remarkably evident.

So you might have wondered why on earth would people regard this as being so magical and profound and significant – it just looks like any other old decimal. It just happens to be the solution of this funny quadratic equation. However, once you start looking at it as a continued fraction, it clearly is uniquely specified and rather remarkable. You can also write it as a continued surd – √(1 + √(1 + √(1 + etc. So, it does have these very remarkable properties, and in some sense, it is the most irrational number because it’s farthest away from any other rational number.
There are amusing, but extremely accurate, simple approximations that people have hit upon for this. It is roughly √(5π/6) and even more interestingly 7π/5e. These approximations are accurate to a few parts in a hundred thousand. Of course, people try to find some deep mystical reason for these approximations, but they are, in a sense, just coincidences.
If we look at that continued fraction expansion of the Golden Ratio, with all the 1s in it, then we can cut off the continued fraction expansion at each step and work out the rational approximation to φ. If we take the first one, we get 1.  If we take the next one, we get 1 + 1/1.  The next one is 1 + 1/(1 + 1/1).  If we round these up, the first approximation is 1/1, the next one is 2/1, then 3/2, 5/3, 8/5, 13/5 ad infinitum. These are rather remarkable because each number appearing here is one of the Fibonacci numbers.
The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, so you make each number by adding the previous 2 together.  Start off with 1, 1, and then it is 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8, 8 + 5 = 13, and so on forever.  You will see this is how we are arriving at the numbers in this rational approximation sequence.  Every one of them is a Fibonacci number divided by the previous Fibonacci number.  So you begin to see, again, why people think that there is something rather magical about this number.

Well, the places where one starts to find people using this number in interesting ways, in creating paper sizes, documents and artistic creations, reside in ancient times, particularly in medieval times. We are going to finish today just by looking at a few examples of what you might see as the medieval counterpart of deciding on paper sizes today for Xerox machines.
The problem is of making, first of all, books, and then designing book pages.  If you are making paper or making a book in medieval times, you are going to create a group or what might be called a choir of pages, which will then be sewn into a book together, and you will make those from one very large sheet of paper. You might be using paper, later on, or parchment, or more commonly, from vellum, which has a different texture on its 2 sides – so one side of the vellum will be fleshy and the other side will be rather hairy, so you actually have some worry about what the facing pages might look like. 
To make your paper sizes you start off with a big piece of paper. One side is one colour and on the other side is a different colour. You would fold it half and this is called folio.  Folding paper down the middle produces this folio size.  What you do next is then to fold in the other direction and then to fold again, in the first way, and you now have what is called quarto because there are 4 thicknesses of paper.  If I folded down and then across again, I would end up with 8 thicknesses of paper and that is called octavo.  I am not going to do that because it gets a bit small.

So, at this stage, if I do what you do in the library when you consult books that nobody has bothered to look at for hundreds of years, use your paper knife and cut all these pages along the folds to get one which I did earlier!  So, I cut all these earlier, and what you end up with is rather elegant, because, on the outside you have 2 white pages; when you go inside, you have got colour facing colour; if you turn over, you have white facing white; go over, you have colour facing colour; and so on forever. If you had done the same with the octavo, folded again, you would have exactly the same pattern.  So this simple folding rule ensured that if your book was made of vellum, for example, you would end up with 2 fleshy pages facing each other here, 2 hairy pages facing each other and then 2 fleshy pages throughout the book.  So it was a very simple rule, and no matter how many times it is carried out, you will end up with this rather elegant and simple structure.

Well, paper layout is an interesting problem.  You may not have noticed.  If you spend much time gazing at ancient books – here is one that I showed in my very first lecture of the year; Adelard’s edition of Euclid, in Latin, that is hand-inscribed.  There are no diagrams – these have been added by the reader for himself in the margins, they are not integral to the text.  It is a book of geometry, theorems and proofs, and the different paragraph headings show when a theorem is being announced and slightly bigger text is used to state the theorem and then smaller text for the proof. When you look at this, you notice that it is set out in a rather beautiful way, not a random way. You notice the differences in the margin size at the top and the centre at the top.
A counterpart, in a way, of our modern deliberations about convenient paper sizes are the structures of these margins compared with the size of the page. Here is a printed Gutenberg Bible. You see the same type of considerations here, with a very large bottom margin. The centre, the top, and the outer are the same as in the previous book to high accuracy, and they are certainly not random.
So, we need to know what this so-called medieval book page canon of rules about laying out a page and creating margins. Sometimes people used the Golden Ratio in some of these volumes, but it was not really common. The commonest was a very convenient type of layout, which used a ratio of 2 to 3.  
So, this picture here shows the text area and the page area and the nice choice was to choose the proportions of the inner to the top to the outer to the bottom in proportions 2 to 3 to 4 to 6, and this is a geometrical construction.  We will see another one in a moment – it is a bit clearer – about how to arrive at that.  You get this when the page proportion is in the ratio of 2 to 3.  More generally, if you made the page proportion ratio 1 to R, then these margin ratios would go 1 to R to 2 to 2R, and so, this case is when R is three halves, and this has the rather neat property that the height of the text area is equal to the width of the page.

These are the sort of medieval counterparts of the considerations of our paper sizes, and here is a construction that Tschichold had reconstructed. He claimed that this was the way people tended to do this in ancient books, or how easy it would be to do it, if you wanted to do it systematically.
Here is a double page, and suppose the page width and height were each divided into ninths.  Then, by drawing this diagonal across to the corner of the page, and this diagonal here, and then the hypotenuse, okay, you can construct this rectangle over here. The centre of the circle allows you to draw a circle which touches so that its diameter is the page width, and its diameter is therefore a way to work out the text height to make sure it is the same as the page width.  So, the scalings that you have, because this is one-ninth of the height, this is one ninth of the width, this guarantees that you have two-ninths over here, one-ninth here, two-ninths at the bottom, one-ninth at the top.  So it is a simple, rough and ready way, on your double sheet of paper, to make sure that you have the grid size and the text area, rightly laid out. You can work out, rather simply, from these ratios the ratio of the page area to the text area, and it is just (3/2)2, so 9/4.  

It is not terribly efficient, but probably, when you look at these pages, you agree that they have a certain appeal. There is something aesthetically rather nice about the way in which they have been laid out, and pretty much all the books that you look at of this classic sort have this type of scaling ratio, unless there is some other reason to enlarge a margin - to have diagrams, other notes, index footnotes or something like that.
I hope I have given you some taste for the way in which, both today and in ancient times, people worry about paper sizes and paper layout. Next time you copy something on the Xerox machine, remember, there is a reason why it tells you 0.70 or 0.71 or 141%. You have to think √2 or 1/√2 and the next time you look at ancient manuscripts or books in the library – there are no doubt one or two up here perhaps, hidden away, on display – notice that the layout of these books is just not random.  There is a mathematical scaling and geometrical construction sitting in the background that became habitual for the people who then inscribed their rather beautiful calligraphy onto those pages of vellum or paper.
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