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Gresham Lecture

Beyond the Four Colour Theorem

Ian Stewati 19 November 1997

Introductory Concepts
A map is an arrangement of regions, either in the plane or on a surface such as a

sphere. Each region is a single connected portion of the plane or surface, and the regions
make contact rdong common boundaries, which are curves. Often we make additiond
assumptions — for example that no region completely contains another region.

A graph is a diagram formed from a number of blobs, called nodes or vertices,
which are joined together by a number of lines, known as edges. Graphs are simpler and more
abstract than maps.

However, any map can be represented by assigning a node to each region and ioining
two such nodes by& edge if and on~yif the co~espo~din~regions share a co-mon stietch of
border (Fig.1). hagine the nodes as capital cities, and the edges as highways that join cities
in adjacent countries, crossing at their common border. This is the map graph. It represents
which regions share a common boundary with others, but removes from consideration various
distracting complications, such that the shapes of the regions. For many questions, the
shapes don’t matter, and it’soften easier to get rid of them altogether — hence the map graph.

Fig.1 A map and tie corresponding graph.

A grap is said to be planar if it can be drawn in the plane without any edges crossing.
H we start with a map in the plane, then its map graph is obviously planar. More surprisingly,
if map is drawn on the the sphere, or on several disconnected planes and spheres — as is the
case for ‘EartWoon’ maps, introduced below — then the resulting graph is still always
planar. To see why, imagine a map drawn on a sphere. Put a node in each region and
whenever two regions have a common boundary, connect the corresponding nodes with edges.
The result is a graph that can be drawn on a sphere without any edges crossing. However,
any such graph can be opened up and spread out on a plane. To do this, imagine cutting a
small hole in the sphere, which does not meet any of the nodes or edges of the graph. Now
imagine that the sphere is made from elastic sheeting. You can pull that tiny hole, making it
bigger and bigger. The rest of the sphere stretches and deforms, carrying the graph with it.
By pulling it far enough you can flatten it out into a disk. Lay the disk on the plane, and
you’ve now drawn the map graph on a plane without any edges crossing.

If the map is drawn on several spheres, we just do the same for each of them, and lay
dl the resulting disks out in the same plane without overlaps. The resulting graph will be
disconnected — it wiU fdl into several separate pieces, one for each sphere — but that’s quite a
common feature of graphs, and is rdlowed by their definition, so it doesn’t matter.
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An important graph for this column is the
an an edge joining every pair of distinct nodes.
not planar.

K
5

complete graph Kn,
Fig.2 shows K5.

which has n nodes,
If n 25 then Kn is

F]g.2 me complete Waph on five nodes.

A map (on a plane, sphere, several spheres, whatever) is said to be k-colourable if its
regions can be coloured, using no more than k colours, so that regions that share a common
boundary curve receive different colours. (Regions that meet only at a point, or finitely many
points, can if necessary receive the same colour.) The analogous property for a graph runs
along very similar lines. A graph is k-colourable if its nodes can be coloured, using no more
than k colours, so that nodes joined by an edge receive different colours. It is easy to see that
a map is k-colourable if and only if its map graph is k-colourable. Just colour each capitrd
city, each node of the graph, with the colour of the corresponding country.

The smallest such k is called the chromatic number of the graph: it tells us the
minimum number of different colours needed for that graph — hence also for the
corresponding map, if it is a map graph. Evidently Kn has chromatic number n, because
each node is joined to every other node, so no two nodes can be coloured the same.

The Four Colour Theorem
Colouring problems have been the object of mathematical study for about a century.

The best bown result is the famous Four colour Theorem, which says that every map in the
plane can be 4-coloured. Percy Heawood proved long ago that every plane map can be 5-
coloured: the number was reduced to four in 1976 by Kenneth Appel and Wolfgang H&en in a
tour de force that combined mathematical analysis with extensive computer searches and
calculations. To this day, no proof that avoids heavy use of computers is hewn. M~y
generalisations have been studied too, among them Earth-Moon maps. Each Earthly country
has annexed a region of the Moon, to create an empire that consists of two connected regions:
one on Earth, the other on its satellite. Between them, these regions cover both worlds
completely. What is the smallest number of co]ours that will colour a map of any such
disposition of territory, in such a manner that both countries in any particular empire receive the
same CO1OW,but no two adjacent regions receive the same colour — either on the Moon or the
E~? The ~swer rem~ns un~own: it is ei~er g, 10, 11, or 12.

m-Pires
A problem closely related to EartMoon maps was introduced by Percy Heawood in

1890. The problem is set on the Earth only, but now each count~ is part of an empire
contining a maximumof m countries, and the same colour must be used for every country in
a given empire, again with adjacent regions having different colours. (Countries in a given
empire are assumed not to touch each other.) Such a map is punningly hewn as an m-pire.
Heawood proved that an m-pire can always be coloured with 6m colours, for dl m 22.

Since an m-pire is a particular type of map, it has m associated map graph with one
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node per country. However, it is no longer true that every legal colouring of the map graph
corresponds to a colouring of the empire. The reason is that the standard colouring rules for a
graph fail to fulfil the requirement that nodes from the same empire receive the same colour. It
is difficult to handle this condition using the map graph. hstead, the construction of the graph
is modified so that the colouring rules are automatically correct.

Here’s how.
The m-pire graph associated with a given m-pire map has one node for each empire

(not one for each region). If you find this confusing, think of the node as representing the
emperor. Two nodes are joined by an edge if and ordy if the corresponding empires include at
least one pair of adjacent countries. You might think of the m-pire graph as the ‘invasion
graph of emperors whose empires can go to war across a common border. One node per
emperor, one edge for eve~ possible two-sided war.

Conceptually, the m-pire graph is obtained from the ordinary graph by identifying dl
the nodes in a given empire — drawing them in exactly the same place. This construction
often leads to multiple edges — two nodes joined by several edges instead of just one.
Superfluous edges of this kind are removed, to leave just one edge.

Identifying rdl the nodes in a given empire automatically forces them to receive the same
colour, so the number of colours needed for an m-pire is the same as the chromatic number of
its m-pire graph.

In 1983 Brad Jackson (San Jose State U) and Gerhard Nngel (U Cdifomia, Santa
Cruz) used this approach to prove that the number 6m in Heawood’s theorem cannot be
reduced. They did this by demonstrating that you can find an m-pire whose m-pire graph is
the complete graph ~6m. Since ~6m definitely needs 6m colours, there is a m-pire that
cannot be coloured with less than 6m colours.

Eart~oon Maps
There are connections between EartWoon maps and m-pire maps. In fact, an

EartWoon map can be viewed as a particular kind of 2-pire, with a slightly curious
underlying geometry (two spheres) which splits dl the 2-pires into two pieces. Its graph
consists of two disjoint planar graphs — for example, one possible arrangement is shown in
Fig.3a. (The rounded shape has nothing to do with the Earth or Moon: recall that any graph
on a sphere, or several spheres, can be deformed so that it lies in a plane. It’s just easier to
show the shape of the graph here using curved edges.)

Suppose that we now think of this Eart~oon graph as a 2-pire graph, so that nodes
belonging to the same empire are identified to create Fig.3b. We see that the resulting graph
need no longer be planar. hdeed this one isn’t.

.. . . .. . . .. . .. . . . . . . . . . . .. . . . . . . .. . .. . .. .. . . . . . . . . . . .. .. . . .. . . . . . . . . . . . . .S--==saa-s-=---=--m--s=-s---m-~=m..

(a)
(b)

Flg3 ~oon map viewed m a 2-pire

However, the graph is ‘almost planar’. The way it is constructed shows that its edges
can be separated into two subsets, each of which forms a planar graph on the original set of
nodes. Here the two subsets are the edges in Fig 3a and those in Fig.3b.

Such a graph is said to have thickness two. In general, a graph has thickness t if its
edges can be separated into tsubsets, and no fewer, in such a manner that each subset forms a



4

planar graph. Now, every map graph is planar, even when the map lives on a sphere. h
Eart~oon map is made up from two separate planar maps: one on the Moon, the other on the
Earth. Each empire is represented exactly once in either of these maps. So every Eart~oon
graph has thickness two: one planar bit for the Earth part, the other for the Moon part. The
converse is also true: every graph of thickness two corresponds to an Eart~oon map
(although the territories involved may not completely cover the two worlds: there may be
regions unclaimed by any of the empires).

Because an Eart~oon graph is a special kind of 2-pire graph, Heawoods theorem
implies that 12 colours are suficient for any Eart~oon graph. However, we can’t conclude
directly that 12 colours are dso necessary. The reasonis thatnotevery2-pire corresponds to
anEart~oon map. h an Etioon map, each empire has one region on the Moon and one
on the Earth. H we think of this as a 2-pire, then the regions form two separate ‘islands’, and
there is exacfly one region from each empire on each island. h contrast, a 2-pire consists of a
number of pairs of regions, which need not be arranged to form two islands — and even if
they are, some empires might have both territories on the same island.

h fact, none of the known 2-pire graphs that actually require 12 colours can be turned
into Eart~oon maps. It therefore remains possible that~ewer than 12 colours tight always
be enough for an Eart~oon graph.

For instance, the complete graphs Kg, K1o,K11 and K12 are all 2-pire graphs, but
they have ttickness 3, and so cannot be Eart~oon graphs (because those have thickness
two). In fact, the thickness of Kn is 3 if n = 9 or 10, and is the greatest integer not
exceeding (n+7)/6, otherwise.

Fig.3b is in fact the complete graph K8, so K8 has thickness 2. This means that it
can be represented as an Eart~oon graph. This proves that at least 8 colours are needed in
the Etioon problem. Sulanke has increased this lower limit to 9 by showing that the graph
of Fig.4 has thickness 2 and chromatic number 9.

K
8

Fig.4 Sulanke’s ~aph has thickness 2 and chromatic number 9.

.
The concept of thickness, then, is the deep mathematical idea that underlies the

recreationrd puzzle of Eart~oon maps. You might like to think about Eart~ootiars
maps, where every emperor has three territories, one on each world. These maps are
partictiar kinds of 3-pire map, and their 3-pire graph rdways has thickness three. k general a
graph of thickness t can be thought of as the t-pire graph of a system of grdactic empires on a
co~ection of tplanets.

Application to Electronics
Map-colouring problems of this kind are great fun — but they have littie obvious

practical significance. Even if we had planetary empires, the geographers could always
colour their maps by trial and error — and in any case they might not want to follow our
colouring rules. However, there are applications of the concept of thickness; however, they
are not literal translations of the ‘map’image. Instead, they apply to the testing of electronic
circuits. In October 1993 Joan P. Hutchinson of Macrdester College, St. Paul, Minnesota
published a thorough survey of such questions: ‘colouring ordinary maps, maps of empires,
and maps of the Moon’, Mathematics Magazine vol. 66 No.4pp.211 -226. k one section of
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the article she described an application of EartMoon colouring to the testing of printed circuit
boards, discovered by researchers at AT&T Bell Laboratories, Murray Hill.

You can think of a graph of thickness two as a kind of ‘sandwich. On one slice of
bread we draw the edges in the first set, none of them crossing; on the second slice, we draw
the rest of the edges, again with none crossing. The nodes form the filling (Fig.5). A graph
thatneeds t layers of bread has thickness t.

Fig.5 ~ickness-two ~aph ~ sliced bread.

Fig.6 A simple PCB circuit. Circles are holes for components,
squares are components. Linked sets of squares are nets.
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This image makes it clear why graphs and their ttic~esses me relevant to electronic
circuits. To begin with, think of an electronic circuit as a graph in its own right. The nodes
are the electronic components, and the edges are electrical connections. If the circuit is to be
constructed on one side of a printed circuit board (PCB) then it must be planar to avoid short
circuits. By using two sides of the board — like the two slices of bread in the sandwich —
graphs of thickness 2 become available. By using several boards, the thickness of the graph
can be increased. Similar considerations apply in the more hi-tech world of silicon chips, too,
because VLSI (Very Large Scale htegrated) circuits have to be butit in layers.

A typical PCB is a 100x1OOarray of holes, where components can be attached, joined
by horizontal and vertical lines that can be plated with ‘tracks’ of a conducting material,
connecting the components together. An important problem for manufacturers of PCBS is to
detect boards with spurious connections — extra bits of track that result in components being
joined together electrictiy when they should actually be isolated from each other.

For practical reasons, manufacturers arrange the components on a PCB into ‘nets’. A
net is a collection of components, connected by tracks, so that the tracks contain no closed
loops (Fig.6). In a well-made PCB, distinct nets should not be electrically connected. The
problem that concerns us here is to determine, in an efficient manner, whether two distinct nets
have inadvertently been linked together by an unwanted bit of track — a ‘short circuit’.

2battery bulb

P 10 000000

om~oo
000000

00 0

00 000

Fig.7 Testing for a short circuit htween a red net and a green net.

The most obvious way to do this is to check ~1 pairs of nets to see whether they me
connected. The simplest method is to make a ‘test device’ that creates a circuit that runs from
one net to the positive pole of a battery, and from the negativepole~OUghalightbulb to the
second net (Fig.7). If the two nets are inadvertently connected by the pCB’S tracks, then



current will flow and the bulb will

7

light. If not, it won’t. Of course, a practical test device
would use more sophisticated elect~onics — such as a computer attached to a robot that
automatically discards a faulty board, instead of a light bulb — but that’s the basic idea.

The practical snag is that with n nets this method requires n(n- 1)/2 tests — the
number of pairs of nets. Since 500 nets is typical, that means 125,000 tests per board, which
is much too big to be feasible. I will now convince you that applying the concept of the
thickness of a graph quic~y reduces the number of tests to a mere 11. In fact, a little extra
thought reduces that number to just 4. This means that every board that is manufactured can
be tested quic~y and efficiently, so that those with unintended short circuits can be discarded.

The st~ing point is to turn the PCB design into a graph. The idea is to define the
simplest graph that conveys information about short circuits between different nets: let me cd
this the net graph of the circuit design. The criterion of simplicity makes the construction of
the net graph a little bit subtle, For example, because we are trying to fmd out whether or not
there exist short circuits between different nets, there’is no point in taking the nodes of the net
graph to be the individud circuit components. hstead, we assign one node to each net. The
edges of the net graph represent potential short circuits, not actual ones — because if we knew
where the actual short circuits were, we wouldn’t need to test the circuit. To be precise, two
nodes of the net graph will be joined by an edge whenever the corresponding nets are
‘adjacent’ — meaning that they can be connected by a horizontrd or vertical straight fine that
passes through no intermediate net (Fig.8).

Flg.8 me net graph for the circuit of Fig.6. colours of blobs correspond to colours of nets.
me graph has been 8-coloured so that no two adjacent nodes have the same colour.

Heawood’s theorem guarantees a sifilar colouring for any net graph, but perhaps needing up to 12 colours.

Of course in principle a short circuit might exist that connects non-adjacent nets.
However, nearly dl such short circuits must also connect adjacent nets, because of the way
the circuits are built. In a typical manufacturing process, the fabrication device makes two
passes over the board: one to create the horizontal connections, the other to create the vertical
ones. Errors arise when it lays down too much conducting material, inadvertently titing two
nets that should remain disconnected: ~11cdl such an error a ‘fabrication fault’. There are
other possible ways to create a short circuit and produce a faulty board, but they are far rarer
than fabrication fatits, and we can ignore them.

Because the connections are laid down as horizontal or vertical lines, any fabrication
fault must create an unwanted link between two adjacent nets. The extra line of conducting
material may run across several further nets, but the first two that it links will necessarily be
adjacent (Fig.9). k other words, we can detect fabrication fatits by looking for short circuits
between adjacent nets. h this sense, the edges of the net graph correspond to the possible
mistakes in fabrication. The condition about there being no intermediate nets simplifies the
graph, but does not lose sight of any possible mistake: instead of looking for dl short circuits,
it just looks for the ‘minimal’ ones.
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Fig.9 Anyshofl circuit caused byafabtication fault must connect adjacent neW,
even if it also connects others.

I said earlier that the graph whose nodes consists of the PCB’S components has
thickness two — one for each side of the PCB. The net graph dso has thickness two, for the
same reason. Last month I mentioned a theorem proved by Percy Heawood: any graph of
thickness two can be 12-coloured. That is, each node can be assigned one of 12 colours so
that nodes that are joined by an edge rdways have different colours. Heawood’s theorem
implies that the net graph of any PCB can be 12-coloured. We can transfer this coloming
(conceptually) to the nets on the PCB. So the nets can each be assigned one of twelve
colours, in such a way that nets of the same colour are never adjacent to each other.

Since we are seeking short circuits that link adjacent nets, we know that we can restrict
our search to short circuits between nets of different colours. To discover whether such a
short circuit exists, we can lump dl the nets of each colour together, in the following sense.
For each of the 12 colours we construct a ‘probe’. This is a treelike structure made from
conducting material that connects dl the nets of a given colour together when it is brought into
contact with the board (Fig.10) by the test device. Suppose that we choose two colours —
say red and green. We attach both the red and green probes to the PCB, keeping them
separate so that no electrical current can pass from the red probe to the green one except
perhaps along the conducting tracks of the PCB. Now we connect a battery and a light bulb
across the the two probes, and see whether any current flows.

If the PCB has been correctly made, no current will flow, because the red probe
connects only to red nets, the green probe connects only to green nets, and on the PCB no red
net should connect to arty green net. However, if the PCB contains a fabrication fault that
links a red net to a green one, then current will flow between the two probes. NOW,~Y
fabrication fault in the PCB necessarily connects two adjacent nets, and these must have
different colours. So when the PCB is tested using the Corresponding two probes, a current
wi~ flow in the test device.

Notice that this test doesn’t tell us where the error is. Since we are discarding dl faulv
PCBS, not repairing them, we don’t need to know. The upshot is that in order to detect the
presence of a fabrication fault, it is enough to check for the existence of electrical connections
— tiough the conducting material of the board — between dl possible pairs of probes. Since
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Fig.10 Attaching twoprobes: onetodlthe red nets,
one to all the green nets (here just one).
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Fig.11 Joining a complete system of probes with switchable gates.



\
“..

,.. .
*4 ,V

10

there are only 12 probes, the number of such pairs is 12x11/2 = 66. So instead of 125,000 or
more tests, we need only 66 — tieady a major improvement.

However, we can easily do better (Fig.11). Test probe 1 against probe 2; throw out
any PCBS with connections between them. Now add a ‘gate’ to connect probes 1 and 2. Test
probe 3 to see if it connects to the circuit formed by probes 1, 2, and the gate. If so, then
probe 3 connects either to probe 1 or to probe 2. Either eventuality is a mistake, so we don’t
care which one occurs: we just throw the PCB out. Now add a second gate connecting probe
3 to the previous two, and continue in this manner. That gets the number of checks down to
11.

Mien Schwenk west Michigan U, Kdamuoo) realised that a further reduction can be
made. Write the numbers 1, ... . 12 in binary: 0001 up to 1100. Make a ‘superprobe’ that
connects dl probes that start with O; make another that connects those starting with 1. Test
whether these two superprobes are connected. If so, throw out the PCB. If not, create two
more superprobes connecting probes that have the same binary digit in the second place.
Check whether these are connected. Do the same for the third place and the fourth place in the
binary expression. That’s it. To see why it works, note that if two distinct probes are
connected by a short circuit, then their binary expressions must differ in at least one of the four
places, so one or other of the four tests will detect the mistake.

Of course there maybe other errors in the PCB, but the ones eliminated by this method
are much the most common. hd a reduction from 125,000 tests per board to ordy four is
well worth having as soon as the production run becomes reasonably big — because you ody
need build those complicated probes and supe~robes once for each design of PCB. Indeed,
a suitable ‘programmable’ probe/superprobe unit could cover dl eventualities.

0 Ian Stewart ~

Further Reading
Joan P. Hutchinson, Colouring ordinary maps, maps of empires, and maps of the Moon,

Mathematics Magazine October 1993 vol. 66No.4pp.211-226.
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