

Compression

Professor Richard Harvey FBCS

23rd November 2021

It’s evening, you fancy watching a film1, Netflix beckons, you kick off your shoes and tune-in to the latest 4K
blockbuster. “Click!” – you press the button and, with no fuss at all, a modern digital miracle happens:
terabytes of video, audio and text are shuffled around the planet, your internet connectivity is measured and
in less than a second you are watching “Scream V” in 4k UHD video and 5.1 audio. It’s a modern marvel,
because that blockbuster occupies terabytes of space on the Netflix video servers, yet you are connected by
a piece of wet string and Wi-Fi. What makes this is all possible is compression – the unsung technical hero
of the internet. Nothing works without compression and that was this lecture is about.

Let’s try and put some numbers on it. The latest Bond film “No Time to Die” has a running time of 163 minutes.

Let’s assume we are watching it in 4K resolution. 4K video is 3840 by 2160 pixels = 8294400 pixels. Let’s

assume 8 bits (although it could be more) per colour channel = 24 bits per pixel, and let’s take a frame rate

of 50Hz. So that is 829440  24  50 roughly equals 10 Gbits s-1 which means the whole movie accounts for
100 Tbits. Of course, were we to measure the size of the original film, which was probably filmed at a
considerably higher resolution and colour depth, then it is easy to find digital assets which exceed petabits
(that’s 1015). Now, back to Netflix, you have pressed the button and you want 10 Gbits s-1 to arrive down your
25 Mbits s-1 cable. Somehow, we need to compress the video by a factor of 400 – a 400 to 1 compression
ratio.

In the slides I demonstrate what 400:1 looks like. I randomly deleted pixels in the same ratio and the resulting
image is incomprehensible. Yet the images we look at everyday are indistinguishable from the original. A
further cleverness is that the encoder may not know precisely how your decoder will fill in the gaps – think of
YouTube where you might be using any number of platforms and operating systems. How can the encoder
remove information without the decoder having intimate knowledge of what it has done?

As is often the case with compression, well known compressors build upon other ones. So, to explain video
coding, I first need to explain lossless coding. And, in order to explain that I need a simple domain - let’s pick
text. In a previous lecture [1], I drew attention to the fact that written text contains characters at different
frequencies. In French and English, “E” is the most common character2. In the most common encoding of
text, which is called UTF-8, the uppercase and lowercase English letters are represented by an 8-bit word.
On the face of this is a little strange, 8-bits are enough to represent 256 = 28 combinations and the letters a-
z and A-Z is considerably less than 256 but even allowing for additional characters which are needed to
represent returns, quotes, exclamation marks and so on, there is clearly some redundancy. Maybe we could
use a much smaller number of bits for the letter “E” and for uncommon letters, such as “X” we could use
more? Well, that’s an interesting idea but it leaves a few further questions? How can we create a unique code
of variable length? Obviously, we cannot have a short code that is a prefix of any other code, or we will not
be able to work out the joins between codes. And then there is the knotty problem of how to choose the
length of the code in a way that is optimal?

1 Or movie if you are in the rest of the English-speaking world.
2 Thus, novels that omit the letter “E”, are much prized curios sometimes known as lipograms.

2

Strangely the first person to examine this was an undergraduate called David Huffman at the Massachusetts
Institute of Technology3. Huffman was able to show that his code reduced that amount of information and did
so in a nearly optimal way [2]. Let’s take one of David Huffman’s original examples. For explanatory purposes
let’s imagine we have only eight symbols in our alphabet which I’ll call ATCGSBZP. (Eight alphabet systems
have recently come back to popularity via studies of DNA [3]). If we follow through the Huffman algorithm
then we can see that, by using a variable number of bits per symbol, we save 0.2 bits per symbol — assuming
our probability estimates are right. That might not sound very much but for a million symbols that is a saving
of 200 kbits. And, on bandwidth sensitive applications such as broadcast radio, tv or satellite communications,
that is definitely worth having. Eager readers are probably wondering if Huffman is the best compressor. And
how would we know? Well, the polymath Claude Shannon looked at that question [4]. He made the following
argument:

Let’s imagine we had a symbol appearing with a probability, p. Well, another way of writing that is p = 1/N
where there are N possibilities. How many bits does it take to encode N possibilities? Well 2I, thus, with a
smidgen of logarithms, we can show that I = -log2(p). I is called the Shannon information, and it just another
way of representing probability. If someone says something is one-in-a-million, you could equally well say it’s
20 bits. So, the average information for this code, which is sometimes called the entropy, is, according to my
calculations, 2.75 bits. From which we know that there is around 0.5 bit per symbol missing.

To reach that lower limit, and not lose 0.5 bits per symbol, we need to switch to a coding system that is not
restricted to modeling probabilities as powers of two — I did not prove this, but it is the case that Huffman is
only optimal in the case that the symbol probabilities are exact powers of two. We’d also like to be able to
realise some more gains by handling groups of symbols. And we’d like a system that, if the probability
estimates are wrong, can adapt to the measured probabilities. All those features are found in arithmetic
coding.

The concept behind arithmetic coding is represent a block of characters, or string as we call it in computer
science, as a binary decimal number. A binary decimal number might something like .1101. By using a
decimal, we can account for arbitrary probability distributions. The precise description of arithmetic codes is
beautiful but very long (one of the more comprehensive YouTube tutorials takes at least five hours).
Arithmetic coding represents the peak of achievement in general lossless coding and, if all we know are the
symbol probabilities then arithmetic coding is a good choice.

Oftentimes however, we might know something more about the data. For example, if the data are human
language, then we know that certain clusters of characters, words and sentences, are more likely than others.
If we are dealing with speech, then we know there are periods of silence which do not require high-fidelity
coding. Were we to consider a binary image, that’s an image with only black or white pixels, then we will have
data with long intervals of repeats. We would say there are long runs of identical values. Hence run-length
coding which codes every value with an additional number that is the length of the run. There are a few ways
you can code it (some systems use Paris of numbers (value, run length), if there are only two values as in
this example then you do not need to code the remaining values as one can flip the value at the end of each
run). Run-Length Encoding or RLE used to be a popular coding method especially in the day of faxes and
now survives via the TIFF pack bits option but in little else. This illustrates another useful point about
compression – compression is often specific to the source and the technology – when technology changes
the compression needs to change.

Another wheeze is to reorder the data before compression so that it is easier to compress. Maybe we could
create runs, so that run-length coding might work better? On the face of it, this sounds tricky as we might end
up sending as much data about the reordering as there are data itself! One particular piece of magic is the
Burrows-Wheeler transform, as used in BZip (the B stands for Burrows Wheeler). It uses the data to re-order
itself via a combination of cyclic shifts and permutations. For encoding the first stage is to put the data into
blocks. We then create all the cyclic shifts of the block, sort them lexically and then the output is the final
column of the data (which is the same size as the input data but with many repeated characters next to each
other, which makes subsequent coding easier). Decoding is slightly more complicated – the data are put in
a column and each row is sorted lexically, the data are then augmented by the input data again, which is
added to the first column, and sorted. This is repeated until we have a block of data the same size as the
input. The decoded sentence is the one that has the final symbol at the end of the sentence (Burrows Wheeler
usually uses a special “end of block” marker so the decoder knows where to stop).

Lossless compression, with or without Burrows-Wheeler, is theoretically very attractive but it’s only really

3 Strange because it is highly unusual for undergraduates to make research discoveries.

3

used in specialized circumstances when all the data must arrive intact. Examples might be when we are
transferring files or when it is essential that all data arrives intact. A further issue with lossless compression
is that the compressor must have an identical twin called a decompressor. This does not allow for much
innovation – if a manufacturer designs a coder, then they had better build the decoder and the decoder had
better exactly invert the coder. Lossy compression is quite different – the coder gives an impression of the
signal, and the decoder reconstructs as best as they can.

In the modern world, by far the majority of compressors are lossy. The idea behind a lossy compressor is to
model the imperfections of human perception. Just as a skilled illusionist can persuade the audience to fill in
the gaps, a good lossy coder sends just enough information that the receiver believes the signal has been
received. I hope it follows from that, that each signal domain has its own lossy compression – you would be
unwise to use JPEG to compress a Beethoven symphony or CELP 32 to compress DNA sequences. One
considerable downside of lossy compression for the educator is that the transmitted bitstreams can be very
complicated. Because the coder and decoder are often made by different people, there are complex
specifications for what must be sent, and the detail absorbs many a fun hour. My solution to this is to focus
on only a few lossy compressors and steadfastly ignore the detail

The most famous of the lossy standards is JPEG which was named after the Joint Photographic Experts
Group4. The group started its work in the mid-1980s and was led by Graham Hudson from British Telecom
(in those days BT did research) [5]. There were several aspects of JPEG which have been widely copied
subsequently but the first, and most obvious one if you have used it, is that it provides a “quality” parameter.
As the quality is lowered, the size of the image decreases. In the lecture I show an image taken from an
image compression test set [1]. Although it is not designed to win awards, the image is quite striking and
shows a handsome lady striding off a ferry in Ho Chi Minh City dressed in some very natty pyjamas. Above
her is the lowering tropical sky that is commonplace in Vietnam. The image was taken “raw” from a digital
camera5 and, by adjusting the JPEG quality threshold we can plot the reduction in size. The results are quite
spectacular. Depending on the device on which you are viewing the slides, I would suspect that very few
people would know, nor care, if the quality parameter was set as low as 30% which represents a compression
ratio of 100:1.

If we zoom into the lady’s striped pyjamas then there are clues to how JPEG works – we can see a certain
blockiness — but actually JPEG is a series of tricks that experience has found can fool the human eye6. In
order of application these tricks are

1. The eye does not have equal acuity in all colours. Although computers usually manipulate
photographic images as three images, Red, Green and Blue (the RGB format), a better mapping to
the human visual system is a luminance or brightness channel (usually denoted Y) and two other
channels that contain only colour information. There are quite a few alternatives for those two
channels, but the pair that JPEG chose, probably because of their legacy with old TV systems, are
chrominance channels Cr and Cb (the red and blue chrominance). The eye is not as sensitive to
spatial variations in chrominance, so JPEG allows coders to discard chrominance pixels if desired.
This practice is quite commonplace in digital video processing, and you might see references to 4:2:2
4:2:0 video which, to the cognoscenti, reveal how much chrominance information has been
discarded7.

2. JPEG dices the input image into blocks of 8 by 8 pixels8. JPEG then makes use an innovation that I
will describe in a later lecture, an integral transform. It makes an assumption, which is that any eight-
by-eight block can be exactly represented by a weighted summation of cosines. Fortunately, it turns
out that we can compute the weights of those cosines very quickly indeed, and it is easily done in
hardware, using the Discrete Cosine Transform or DCT. The DCT is a one-to-one transform meaning
that the 64 input pixels generate 64 DCT coefficients — no saving there — but, very often, only a few
DCT coefficients are needed to approximately represent a block which leads to potential efficiencies

4 JPEG does have a lossless mode but nine times out of ten, when someone sends you a JPEG it is lossy.
5 Getting uncompressed images out of a digital camera is not easy. So commonplace is lossy compression, that many
cameras compress the image directly as it is read from the image sensor and do not provide raw data at all.
6 Important caveat – JPEG is designed for humans not Geckos (who have a different eye physiology).
7 The notation 4:2:0 is quite maddeningly illogical, so I refer the interested reader to any number of online tutorials on
the subject.
8 If the image size is not a multiple of eight, then the image is usually “padded” with zeros or spurious pixels to make
its size a multiple of eight. The effect of this is usually quite obvious as a thin border around the image.

4

by not sending some coefficients or sending only approximations.

3. Given a fixed number of bits, we can decide how to allocate those bits across the DCT coefficients.
This is called quantisation. Because there are 64 numbers to be represented, we sometimes call
these a vector – hence vector quantisation. Whole theses are written on interesting algorithms for
vector quantisation and the JPEG standard doesn’t tell you how to do it, which means there is space
for innovation and improvement. One simple method, which you can see from my examples in the
lecture is to set small coefficients to zero.

4. Generally speaking, the coefficients of the DCT that correspond to static or slowly varying
components, will be much larger than the others. So, if we scan out the coefficients in the right way,
we can cause there to be runs of similar coefficients which compress nicely.

5. Use Huffman coding to compress the data.

Phew! What a complex sequence of steps. Notice that JPEG, like many successful coding standards
builds upon other compressors – in this case Huffman coding which is used to squeeze any remaining
redundant information out of the DCT coefficients. I have skipped a lot a detail here – I have not talked
about the lossless JPEG modes, nor have I noted that JPEG does allow for arithmetic coding (although
it is rarely used) not have I talked about JEPG2000 which is the successor to JPEG. However, the basic
principle of block coding and the use of the DCT turned out to be critical and has been very widely copied
in all commercial image and video coding standards.

I started this lecture with some observations about movies. The predominant coding standard for movies
is MPEG (named after the Motion Picture Experts Group). MPEG has defined a series of coders from
MPEG-1, now largely obsolete, MPEG-2 and MPEG-4. MPEG-4 was enacted as an ITU standard where
is confusingly known as H264. It is also sometimes known as AVC or Advanced Video Coding. It has
been estimated the over 90% of digital video in use today is transmitted using the H264 standard. The
standard is multifaceted and has many parts and it is commonplace for manufacturers to claim that they
have an MPEG-4 compliant coder when they are implementing only the easy bits!9 Nevertheless the
principal idea, motion coding, is quite easy to illustrate.

As a movie is just a sequence of images, one of the simplest video coding standards merely uses JPEG
to code each frame. Although though this, Motion-JPEG or M-JPEG, sounds a bit primitive, it is actually
used, particularly in simple cameras such as those found in security systems. However, the real coding
gains arise when we consider sequences of frames. I’ve taken one of the famous MPEG sequences10,
the “foreman” sequence to illustrate the problem. Although the camera is handheld (so moving a little),
we can see that many of the eight-by-eight DCT blocks are little changed from frame to frame. Of those
that have changed, they are well modelled by moving a block in one frame from somewhere else in a
previous frame. That is what a good video coder does, it fully codes certain frames, MPEG calls them I-
frames, and then it computes appropriate block movements from I-frames to construct the other predicted
frames. If those predictions are good, then the coder does not need to send many corrections and
bandwidth is saved. These movements are known as motion vectors and a fancy coder will conduct an
expensive spatial search to find the best motion vectors. Note that the decoder need not be fancy – it just
follows the instructions from the motion vectors. This is why encoding video on your computer is a slow
process yet decoding can take place in real time on a computationally puny device such as your mobile
phone.

In the MPEG parlance the frames that are estimated from the I frames are known as either P-frames, or
B-frames. P-frames are predicted forwards from previous I-frames, whereas B-frames can be constructed
from previous and future I-frames. This is potentially more efficient, but it implies a frame buffer to hold

9 Needless to say, there is already an H265 which is known as HEVC, the High Efficiency Video Coding Standard.
And needless to say, many people claim to be implementing H265.
10 When MPEG was being developed it was frightful hassle to pipe around video (largely because there was no, er,
video coding standard then) so a number of standard sequences were developed. These became so well known that
everyone can visualise the “Claire,: “Akiyo” or “Foreman” sequences. Standard images are not without danger,
however. It turned out that standard test image known as “Lena” was a scan of the Playboy centrefold in 1972. In the
2000s it became highly embarrassing that Lena was still being used and there was a concerted effort by the model,
Lena Forsén and others, to not use the image. Technically it was also embarrassing since the early image came in
two versions – one of which had been “up sampled.” Clearly compression worked much better on the up sampled
image so could cause highly spurious results. In summary, Lena has become a snare for ignoramuses the world over
– maybe that is a fitting legacy.

5

groups of incoming frames. This in turn introduces latency into the video chain which may be
unacceptable in some circumstances11. What may not be obvious from the above description is that the
amount of MPEG information transmitted depends heavily on the motion in the scene. If there is a jump-
cut, then every block has to change and suddenly large amounts of bandwidth are required. For the
internet this might not be so problematic, but for broadcast there may not be that much flexibility on
bandwidth and blocks will be dropped. You may still see this on some live-event coverage – rapid camera
pans, zooms, and jump cuts-can overwhelm the system and, at some vital sporting moment, our view is
obscured with blocking artefact.

It goes without saying that evaluating lossy codecs is particularly challenging. Firstly, although there is
an emerging science on what constitutes good quality, for the time being we rely on the judgements of
humans. And measuring the performance of humans means entering the horribly equivocal world of
psychology. Even if you step around that and use one of the proxies for visual quality such as PSNR,
SSIM, or VMAF then you need to carefully control for rate, as some codecs work well for high-rate video
and others well for low rate. Then there is computation. In broadcast, the compression must take place
in realtime, so nebulous tasks such as “find the best motion vectors” have to constrained to “search in a
such a way that you get a solution to all the vital motions vectors in a fixed time”. Thus, computational
limits constrain visual quality. If the three-dimensional problem of quality versus rate versus computation
is not challenging enough, then we should also mention that video compression results can vary
dramatically by source material: compression algorithms that work for Formula 1 may not always work
well for Antiques Roadshow.

A critical feature of lossy compression is that each type of source material demands a different
compressor. This feature means regretfully I have to leave out discussion of audio compressors such as
the ubiquitous MPEG Layer III (mp3). However, just as human speech audio sounds different to a
symphony, there are specialist compressors for human speech, particularly in bandwidth sensitive
applications such as mobile telephony – audio compression will have to be another lecture in the future.

However, what I hope I have done is given an accurate picture of the challenges that face designers of
compression systems: lossless and lossy. What I may not have done, is to demonstrate how incredibly
ubiquitous compression is. Every aspect of digital technology now contains some form of digital
compression. Without compression, the internet would run like treacle and most of the modern digital
services would be unviable. It truly is one of the technological miracles of the modern age which is why
I’ve put it into my hall of fame.

There are two unresolved issues. The first I am going to leave hanging, but I will quickly note that lossy
compression is fundamentally a bad idea in certain application domains such as forensic science or
archival imaging or medicine12. The second is that, as compression removes redundancy from a signal,
I hope it is obvious that the effect of errors in storage or transmission can be magnified. Is there a way
that we can build codes that not only resilient to errors but can self-correct? Yes! And that is the topic for
my next lecture: Error Control Coding – another miracle of the digital age.

© Professor Harvey, 2021

References and Further Reading

[1] R. Harvey, ""It from BIT: the science of information"," 23 October 2018. [Online]. Available:
https://www.gresham.ac.uk/lectures-and-events/it-from-bit-science-of-information. [Accessed
19 Nov 2021].

11 I’m sure you have noticed that digital television is bedevilled by latency — the digital news arrives a few 100 ms
after the analogue news and it not unknown for vision engineers to forget about the video latency and then the audio
and video get out of synchronisation.
12 Amazingly this does not stop them being used in those domains. I expect there is a nice line as an expert witness
demonstrating that video evidence shows nothing of the sort!

6

[2] D. A. Huffman, "Method for the Construction of Minimum-Redundnacy Codes," Proceedings of
the I.R.E, pp. 1098--1101, 1952.

[3] S. Hoshika, N. A. Leal, M.-J. Kim, M.-S. Kim, N. B. Karalkar, H.-J. Kim, A. M. Bates, N. E.
Watkins Jnr, H. A. SantaLucia, A. J. Meyer, S. DasGupta, J. A. Piccirilli, A. D. Ellington and
SantaLucia Jnr, "Hachimoji DNA and RNA. A Genetic System with Eight Building Blocks,"
Science, vol. 363, no. 6429, pp. 884--887, 2019.

[4] C. E. Shannon, "A matheMtical theory of communication," The Bell System Technial Journal,
vol. 27, pp. 379--423, 1948.

[5] G. Hudson, A. Léger, B. Niss and I. Sebestyén, "JPEG at 25: Still Going Strong," IEEE
Multimedia, vol. 24, no. 2, pp. 96-103, 2017.

[6] 1. D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, G. Boato, “RAISE - A Raw Images Dataset for
Digital Image Forensics”, ACM Multimedia Systems, Portland, Oregon, March 18-20, 2015.

	23rd November 2021
	References and Further Reading

