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Introduction 

Today, I want to tell you about roulettes. In geometry, a roulette is a curve obtained by rolling one curve 
along another. This simple idea leads to some lovely curves. Among other things, we’ll see the curve so 
appealing it was nicknamed the “Helen of Geometry”, not just for its beauty but for the squabbles it caused 
among mathematicians, as well as the curve so versatile it has applications in everything from clockwork to 
nuclear reactors. 

The Cycloid 

The first kind of roulette I want to show you is the cycloid. It is the path traced out by a given point on the 
rim of a circle as you roll it along a straight line (a rather special case of a “curve rolling along a curve” 
roulette, because one of the “curves” is a straight line). Given that wheels have been rolling along roads for 
thousands of years, it’s perhaps surprising that there’s no convincing evidence of this curve being studied 
until the 16th century at the earliest. The first written mention of the question comes with Charles de 
Bouvelle, in 1501, when he was working on the problem of squaring the circle. But he didn’t get very far 
with it – he thought that the shape was made from arcs of circles. Galileo studied the question in more 
depth. He knew that these weren’t circle arcs, and gave the curve the name “cycloid”. 

 

So, what is this curve? Drawing it accurately, we can see the arches aren’t circle arcs. The French 
mathematician Marin Mersenne thought that each arch might be half an ellipse. Lots of mathematicians in 
the century after Galileo named the cycloid tried to find out its properties. There are two obvious questions: 
to find the area under its arches (the “quadrature of the cycloid” problem), and to find the length of each 
arch of the cycloid. The answers to both these questions were found by more than one person, and they 
often fought bitterly over who had done it first. Both of these questions can be solved nowadays through 
techniques of calculus, but this is well before those tools were available. Galileo tried to work it out by doing 
a physical experiment. He got a circle cut out of metal, then rolled it along another piece of metal and 
marked out a cycloid. He then cut this out too, and simply weighed both the circle and the cycloid. The 
cycloid seemed to be about three times the weight of the circle, so he wondered if perhaps the area under 
it might be some irrational multiple, like 𝜋, times the area of the circle. But he couldn’t resolve the matter. 
Remember, this was before even concepts like “the equation of a curve” had been invented, so the tools 
really weren’t available yet to solve this problem. 

The next development was that Mersenne got interested. Mersenne was an important figure in European 
mathematics in the 17th century. Firstly, he was a good mathematician himself, making important 
contributions to many areas of mathematics (Mersenne’s Laws governing how the frequency of strings on 
musical instruments changes with their length, tension, and linear density, are named after him, as are the 
famous Mersenne primes that he studied). But secondly, he corresponded with dozens of mathematicians 
across Europe, keeping them in touch with the latest developments. This was one way that news about 
cycloids got around. One person that Mersenne talked about cycloids with was Gilles de Roberval. Within a 
few years Roberval had managed to work out the area under the arches of the cycloid – it turns out to be 
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exactly three times the area of the rolling circle that made it, which is a lovely and surprising outcome. But 
Roberval had a habit of being very secretive about his work. Sometimes he didn’t reveal that he had solved 
a problem, and then when someone else announced their proof, he would angrily intervene saying that he 
had done it first. One reason for this odd behaviour is that Roberval’s job depended on it. He held a post 
that was reappointed every three years, the best candidate being decided by their answers to a set of 
questions posed by…the current incumbent. This meant there was a strong incentive, if you had developed 
a particular technique, not to reveal your methods. You could then set questions that could only be solved 
with your method, banking on the fact that nobody else would be able to do them. And you’d be back in 
post again for another three years. I’m glad the Gresham Professorships aren’t arranged like that!  

We’ll come back to Roberval later, because I want to show you one of the arguments he used. But first I’ll 
tell you a little more of its surprising history.  

Many famous mathematicians were drawn to the beguiling cycloid. Fermat, Descartes, Pascal, Newton, all 
worked on it, as well as Galileo, Roberval, and Mersenne. It even lured Blaise Pascal back to mathematics. 
He had decided to give it up, but one night was troubled by a terrible toothache. He distracted himself by 
thinking about cycloids, and the toothache miraculously went away. Taking this as a sign from God that 
studying mathematics is OK, he continued thinking about the cycloid for eight more days, proving lots of 
lovely results in the process, and he carried on studying mathematics after that, which is good news for 
mathematics (though I have to say cycloids have not replaced the local anaesthetic in dentistry). Some of 
these mathematicians were pretty rude about each other. When Fermat and Descartes both came up with 
ways to find tangents to the cycloid, Descartes said that Fermat’s method was “ridiculous gibberish”. 
Meanwhile, when an Italian mathematician called Torricelli published a proof that the area under the arches 
of a cycloid is three times the area of its corresponding circle, an irate Roberval went round telling 
everyone that Torricelli had stolen the idea from him – it’s not clear how – and it was even claimed that 
Torricelli had literally died of shame when his plagiarism was discovered. It’s a good story, but he did also 
happen to have contracted typhoid at the time, which may not have been unrelated. Still, these beautiful 
curves can drive a person a bit crazy. These, among many other stories, are how the cycloid came to be 
called the “Helen of Geometry”. 

 But the story of the cycloid doesn’t end there. Let me tell you something about clocks. Until 1656, 
sundials were the most accurate way to tell the time – if the sun happened to be shining, that is. The 
problem of telling time at night or in inclement weather was dealt with in a huge range of ways. There were 
water clocks, sand clocks or hourglasses, candle clocks, and so on. In the 15th and 16th centuries, 
mechanical clocks began to come into use. They relied on springs to regulate movement, but they were 
very inaccurate, losing up to 15 minutes a day. So what happened in 1656? Well, the scientist Christiaan 
Huygens built the world's first pendulum clock. Galileo had earlier studied pendulums, and suggested that 
the regularity of their motion could be useful in timekeeping, but had not put these ideas into practice.  

Let’s see why pendulums are useful. Imagine a very simple mathematical version of a pendulum. We’ll 
assume the string has negligible mass compared to the bob on the end, that it doesn’t stretch at all, and 
that there’s no friction or air resistance at play. The only forces acting, then, are the tension 𝑇 in the string, 
and gravity. Newton’s law that force is mass times acceleration tells us that the force downwards, if the 
mass of the bob is 𝑚, is 𝑚𝑔. The bob has to stay the same distance from the fixed top of the pendulum, so 
the component of the gravitational force pulling it in the direction of the line of the string is exactly cancelled 
out by the tension. This leaves the force along the circular arc, which a bit of trigonometry tells us is 
𝑚𝑔 sin 𝜃, where 𝜃 is the angle between the string and the vertical at the point of release.  

 

Now, for small angles, sin 𝜃 is approximately equal to 𝜃. If we approximate the force by 𝑚𝑔𝜃, then we can 

use this to calculate the period (the total time for the pendulum to swing all the way to one side and return 
to the other), and it comes out to be  
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This is independent of both the initial angle of the pendulum and on the mass of the bob. And that’s why 
pendulums are useful in timekeeping: once you set a pendulum swinging, even though the system 
gradually loses energy and so the amplitude (the height of the swing) gets lower over time, the period stays 
constant. So you can use this constant period to measure time. This one development meant clocks were 
now accurate to 15 seconds a day, not 15 minutes, a vast improvement. However, this neat formula is only 
an approximation that’s accurate when the angles involved are very small. Huygens wanted to improve on 
clock design, and reasoned that what would be really helpful is if he could engineer things so that the 
pendulum could be made to move along a path with the following property: whatever point along the path 
the bob is released, it reaches the bottom in the same time. This is known as the “tautochrone” problem 
(from the Greek for “same” (tauto) and “time” (chronos). Huygens managed to solve it, and it turns out that 
the required curve is a cycloid (inverted of course). How do you make a pendulum move along a cycloidal 
path, though? Huygens managed to resolve that as well, and here is our next example of a roulette: an 
involute. This is the special case of a roulette where the curve that’s doing the rolling is a straight line – a 
tangent to a given curve. We can think of it as the path of the end of a piece of taut string as it is unrolled 
from a curve. Involutes can look very different from the original curves. The involute of a circle looks like a 
spiral, for example, but the involute of a cycloid turns out to be another cycloid. This means that to create a 
cycloid path for your pendulum, you just need to suspend it at the cusp of the inverted cycloid (and make 
the pendulum half the length of a cycloid arch). Unfortunately, it turned out that cycloid-based pendulum 
clocks had more friction than normal ones, so weren’t any more accurate in practice. But it’s still a great 
piece of mathematics.  

While we are talking about curves relating to speed, I can’t resist mentioning a problem posed in 1696 by 
Johann Bernouilli, who asked not about the curve where all particles will reach the bottom in the same 
time, but instead about a curve of quickest descent. If I have two fixed points, what shape of curved wire 
should I link them with, such that a particle falling under gravity along the wire will reach the bottom in the 
shortest time? This was called the brachistochrone problem (from the Greek brachistos, for shortest). 
Johann and his brother Jacob both solved it, as did Leibniz, and so too did Newton – he published his 
solution anonymously but upon seeing it, Bernouilli is supposed to have said “tanquam ex ungue leonem” – 
we know the lion by his claw. Guess what curve solves the brachistochrone problem? That’s right, it’s the 
cycloid.   

Before we think about other kinds of roulette curve, I want to show you Roberval’s ingenious argument for 
finding the area under the cycloid (true to form, his methods weren’t published until 1693, years after his 
death). The argument is perhaps not quite as mathematically rigorous as we might desire nowadays, but it 
can be made rigorous with calculus. If you have studied that subject, you might like to try it. 

What Roberval did was to consider something he called the companion curve, and use it to work out the 
area under half the cycloid arch, and then double it. First, picture a semicircle standing upright at the 
starting point of the cycloid. (The semicircle should have the same radius as the circle that generates the 
cycloid.) This semicircle is made up of a lot (infinitely many, in fact) of horizontal line segments. What we 
do is, at each point of the half-cycloid, draw a horizontal line precisely the same length as the width of the 
semicircle at that point. This marks out a new curve – the companion curve. Now we use an argument that 
is extremely plausible, and is in fact correct, but proving it rigorously is more of a challenge, and wouldn’t 
be possible for another few decades. The idea is that if you have two shapes that you can build up by 
parallel lines, and at the same level the length of the lines are equal to each other, then those shapes have 
the same area. This is sometimes called Cavalieri’s principle – more often applied to three dimensional 
shapes. In that case, it would say that if corresponding slices through two shapes have equal areas, then 
the shapes have equal volumes. One example of this would be the formula for the area of a triangle. We 
know that if we chop a rectangle in half, we get two equal right-angled triangles. So the area of a right-
angled triangle is half the base times the height. We can make any triangle with a given base and height by 
starting with a right-angled triangle of that base and height, and then just sliding the horizontal slices along 
until we have the triangle we want. Because we have exactly the same slices involved, the area must stay 
the same, goes the argument. And indeed this is the case. The area of any triangle is half its base times its 
height, whether it’s right-angled or not. 
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Anyway, the construction of the companion curve guarantees that the area between it and the cycloid is 

exactly equal to the area of the semicircle, which, if the generating circle has radius 𝑟, is 
1

2
𝜋𝑟2. The next 

step is to think about the rectangle that encloses the half-arch of the cycloid. At the top of the cycloid, the 
rolling circle has gone half a revolution. So the distance rolled along the ground is half a circumference, or 
𝜋𝑟. Meanwhile the height of the rectangle is a diameter, which is 2𝑟. The great thing is that this picture is 
symmetrical – you could rotate the whole thing around its centre and get the same image. As a 
consequence, the companion curve actually divides the rectangle into two parts of equal area. (If you work 
out the equation, you discover it is in fact a sine curve, suitably scaled and translated – but Roberval 
probably didn’t know that.) 

The total area of the rectangle is 𝜋𝑟 × 2𝑟 = 2𝜋𝑟2. So half of that is 𝜋𝑟2. Now we can add that half-rectangle 
to the area between the cycloid and the companion curve to show that the area under half the cycloid arch 

is 
1

2
𝜋𝑟2 + 𝜋𝑟2 =

3

2
𝜋𝑟2, meaning that the area under the whole arch is precisely 3𝜋𝑟2, which is exactly three 

times the area of the generating circle. Just as surprising is that the length of the cycloid arch turns out to 
be a whole number multiple of the radius – exactly 8𝑟, with not a 𝜋 in sight. This fact was first proved by a 

former Gresham Professor of Astronomy, Sir Christopher Wren. (Wren died in 1723, so watch out in 2023 
for several Gresham events marking this 300-year anniversary.)  

Cycloids have caught the imagination of not only mathematicians, but writers. I mentioned in one of my 
lectures last year about mathematics and literature, that cycloids are discussed in Moby-Dick. But they are 
also mentioned in two great 18th century novels: Gulliver’s Travels and Tristram Shandy. For those wishing 
someone would write a book about the many links between mathematics and literature, fear not: my book 
“Once Upon a Prime” will be published in 2023.  

Epicycloids 

So far, we’ve looked at a circle rolling along a straight line. What happens if a circle rolls along a more 
exciting curve? The curve made by a circle rolling along the outside of a circle is called an epicycloid; if it 
rolls round the inside of the circle it’s called a hypocycloid. There are variants of all these too – the popular 
Spirograph Toy almost draws hypocycloids. However, the point we follow is not quite on the rim of the 
rolling circle, it’s a little way inside. So, technically, these curves are called hypotrochoids and epitrochoids 
(a trochoid being what you get if you roll a circle along a straight line but the point you follow is not on the 
circumference, but somewhere inside or beyond the edge of the circle). We won’t worry about those today. 
I’ll focus on epicycloids, and in particular, ones where the radius of the fixed circle is a whole number 
multiple of the radius of the rolling circle. The first two examples are the cardioid, when the rolling circle has 
the same radius as the stationary one, and the nephroid, where the stationary circle has twice the radius of 
the rolling one.  

The name cardioid (meaning heart-shaped) was first used by de Castillon in 1741, in a paper in the 
Philosophical Transactions of the Royal Society, though the curve had been studied for a long time before 
that. If the radius of the circles is 𝑟, then the length of the cardioid is 16r, and the area between it and the 

stationary circle is five times the area of the rolling circle that generates it. This is nice, and rather 
reminiscent of the cycloid. Suppose our circle of radius 𝑟 is rolling round the outside of a circle of radius 𝑘𝑟. 

Then we’ll get 𝑘 “arches” around the bigger circle. It can be shown that the total length is 8(𝑘 + 1)𝑟, and the 

total area enclosed in the curve is 𝜋𝑟2(𝑘2 + 3𝑘 + 2). You can check this fits with the cardioid calculation. 

For values of 𝑘 higher than 1, we’ll get 𝑘 arches, each of which has length 8 (1 +
1

𝑘
) 𝑟. Meanwhile, the area 

under enclosed between the arches and the circle (the “petals”, if you like, of this flower) will be the total 

area, minus the area of the big circle, which is 𝜋𝑘2𝑟2. This comes out at 𝜋𝑟2(3𝑘 + 2). So the area under 

each arch is 
1

𝑘
 of this. That is, 𝜋𝑟2 (3 +

2

𝑘
). Think what happens as 𝑘 gets larger and larger. In the limiting 

case, we get a circle rolling along a straight line. As 𝑘 tends to infinity, 
1

𝑘
 tends to zero. So we would get an 

arch length of 8𝑟 and area 3𝜋𝑟2. And sure enough, these are indeed the correct values for the cycloid.  

There’s a really nice way to draw a cardioid (or at least a very good approximation of one). Get a circle and 
mark off points equally spaced around the circumference. Let’s try with 12 to begin with, like a clock face. 
Just like with a clock, we count round the hours and when we get to 12 the next hour is 1 again, but in the 
24-hour clock it’s 13, then 14, 15 etc. So each point does double duty, 4 = 16, 5 = 17 and so on. Now we 
follow this process – join each point to its double. So join 1 to 2, 2 to 4, 3 to 6 and so on, 6 to 12, 7 to 14 
(which is the same as 2 because 14 hours is 2 o’clock), 8 to 16 and so on. The last one would be 12 to 24, 
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so there’s actually no line there, because it’s the same point. This gives a series of lines, and we are 
interested in the shape they form. With 12 points it’s not particularly good, but if we increase the number of 
points we get an increasingly curve-like shape. It’s not obvious, but it turns out (and again I won’t prove this 
as it’s a bit technical) that in the limit, we precisely get our friend the cardioid. 

You might also sometimes see things that look a bit like cardioids in your kitchen, in the light patterns 
created in a cup of tea in some specific kinds of lighting. In general, a curve whose boundary is made by 
light rays reflected off a curved surface is called a caustic. If you have a light source at a point inside a 
circular mirror, rays from that source will bounce off the inner surface. The curve to which each of those 
reflected rays are tangent will be visible as a concentrated region of light. If we look at the geometry of the 
situation, imagine we have our ray coming out from the point 0, and we have divided up the circumference 
again into equally spaced points. What happens to the ray that hits point 𝑝? It bounces off the circle and 
heads towards some point q. It’s a law of optics that “angle of incidence equals angle of reflection”. So we 
get symmetry here and the distance round the circle travelled between 0 and 𝑝 equals the distance round 
the circle between 𝑝 and 𝑞. So 𝑞 = 2𝑝. This means that the curve we end up with is the cardioid again. 

Now, in our cup of tea example, the light source isn’t on the rim of the cup, but some way away. If it were 
very far away, we could assume that the light rays hitting the rim of the cup are parallel. In that situation, it 
can be shown that the caustic is actually not a cardioid but a nephroid. Since a strong overhead light is 
somewhere between these two extremes, the curve we get is usually going to be somewhere between a 
cardioid and a nephroid.  

Are there any applications of cardioids? Yes, if you are a sound engineer you’ll be familiar with cardioid 
microphones. These microphones are sensitive to sound only in a cardioid shape around the microphone – 
they pick up sound at the sides and in front, but not behind the microphone. It’s precisely this arrangement 
that you want when recording something like live music, where you want to capture, say, the singer’s voice, 
but not so much the sound of the audience. 

One final place you might have seen a cardioid – the Mandelbrot set. If you know about complex numbers 
you’ll know that squaring a complex number squares its distance from the origin and doubles the angle. 
The Mandelbrot set is generated by repeatedly squaring things and adding a constant, and seeing if the 
sequence zooms off to infinity or not, so it’s at least plausible that there’s a link between the doubling 
process I described, and areas of stability in the Mandelbrot set, and indeed that turns out to be the case. 

Involutes 

I already mentioned the idea of involutes. Any curve has an involute, but I want to focus in the rest of our 
time just on involutes of circles, and that’s what I’ll mean from now on when I say involute. The point at the 
end of a straight line segment rolling along a circle will sweep out a curve, called the involute. The straight 
line will always be tangent to the circle, and another way of looking at this is that the involute is the curve 
produced by the end of a taut thread being unravelled from a circle (or maybe cotton reel).  Involutes look a 
bit like spirals, but they are something different.  

I want to tell you about two uses of involutes – the first is something you’ll almost certainly have 
somewhere in your house, and that’s gears, or cogwheels, the sort you find in clockwork toys and other 
machinery. Gears transmit energy when their teeth mesh together. For maximum efficiency you want the 
teeth to be in constant contact and, if the input gear turns at a constant speed, you want the output gear to 
do the same (it might be a different constant speed if the gear wheels are different sizes). If the teeth of the 
gears have an involute profile, then where they meet, the line of force is going to be a line tangent to both 
circles, and the energy will be transmitted very smoothly. While there are other curves that do this 
(including cycloids), the involute design has several advantages, the main one being that as long as you 
keep the same number of teeth per inch (the so-called diametral pitch), you can use identical teeth on any 
size gear, which is a huge advantage in manufacturing. On a bigger circle with correspondingly more teeth, 
the part of the involute that’s used is smaller but is the same shape as the larger part of the involute 
required on the smaller circle. The involute profile also does better than the cycloid if there are slight 
inaccuracies in the manufacture, particularly if the axle of the gear is slightly off-centre. Cycloid gears are 
still used in some mechanical clocks, though – they are stronger, so can have fewer teeth, and this allows 
a gear chain that has large gear reductions to fit into a small space. (In other words, the ratio of speeds 
between adjacent gears can be higher if you use cycloidal gears.)     

To finish, I want to tell you about one other very important application of involutes: in nuclear reactors. At 
the High Flux Isotope Reactor at Oak Ridge National Laboratory, in Tennessee, their job is not to create 
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energy but to create high mass elements, for use mainly in scientific research. They do this by using a 
nuclear reaction to create neutrons with which they bombard lighter elements to create heavier ones. The 
nuclear reactor cores are cylinders into which are put the fuel – Uranium Oxide (𝑈3𝑂8). The fuel is 
sandwiched between aluminium plates and then rolled out into long strips, which are then shaped into a 

particular curved shape to fit into the cylindrical core. Lots of heat is produced by 1015 (a million billion) 

neutrons bouncing around every square centimetre, and it’s vital to be able to draw this heat away. So 
what’s then needed is for these fuel strips to be curved in such a way that they are equally separated, in 
order that the water coolant can pass between them with no hotspots or places where the strips are too 
close together. And here’s where involutes come in. They have an extremely useful property. If you draw a 
series of involutes starting at equally spaced points on the circumference of a circle, then the distances 
between the involutes remains constant. The involute is the only curve for which this is true – it wouldn’t be 
the case for arcs of circles, for instance. That’s why it’s used in the nuclear reactor core. 

We’ve really only scratched the surface of roulette curves today – I’ll have to tell you another time what 
happens if you roll an ellipse along a sine curve, but I hope you’ve enjoyed the talk and next time you have 
a coffee break, look out for those cardioids.   

© Professor Sarah Hart 2022 
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https://chalkdustmagazine.com/features/cardioids-coffee-cups/ 
 

Image Credits 

Unless otherwise specified, the technical diagrams are drawn by me and are ©Sarah Hart, and the photos 
are either taken by me or are public domain images. 

• The sculpture of Pascal studying the cycloid is by Augustin Pajou (1730 – 1809). The photo is 
Public domain, via Wikimedia Commons. 

• The picture of Huygens’ pendulum clock design is public domain, 
https://commons.wikimedia.org/wiki/File:Huygens_first_pendulum_clock_-_front_view.png 

• Cardioid gif: https://commons.wikimedia.org/wiki/File:Cardiod_animation.gif by AtomicShoelace, CC 
BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons.  

• Nephroid gif: https://commons.wikimedia.org/wiki/File:Nephroid.gif by Zorgit, CC BY-SA 3.0 
<https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons. 

• Involute gif: https://commons.wikimedia.org/wiki/File:Involute_of_circle.gif by 09glasgow09, CC BY-
SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons. 

• Involute gears gif: https://commons.wikimedia.org/wiki/File:Involute_wheel.gif by Claudio Rocchini, 
CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons 

• Mandelbrot set: https://commons.wikimedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.PNG  
Created by Wolfgang Beyer with the program Ultra Fractal 3., CC BY-SA 3.0 
<http://creativecommons.org/licenses/by-sa/3.0/>, via Wikimedia Commons 

• Pictures of the involutes in the nuclear reactor are stills from the High Flux Isotope Reactor video 
linked in the references. 

https://mathshistory.st-andrews.ac.uk/Curves/
https://scholarship.claremont.edu/jhm/vol11/iss1/3/
https://www.gresham.ac.uk/lectures-and-events/maths-worlds
https://www.gresham.ac.uk/lectures-and-events/maths-worlds
https://www.youtube.com/watch?v=P99C051arMo
http://www.periodicvideos.com/
https://chalkdustmagazine.com/features/cardioids-coffee-cups/
https://commons.wikimedia.org/wiki/File:Huygens_first_pendulum_clock_-_front_view.png
https://commons.wikimedia.org/wiki/File:Cardiod_animation.gif
https://commons.wikimedia.org/wiki/File:Nephroid.gif
https://commons.wikimedia.org/wiki/File:Involute_of_circle.gif
https://commons.wikimedia.org/wiki/File:Involute_wheel.gif
https://commons.wikimedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.PNG

	14th March 2022
	Introduction
	The Cycloid
	Epicycloids
	Involutes
	References and Further Reading
	Image Credits

