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Merely mummering the words “Fourier transform” are enough to send shivers through the heart of an average 
engineering student and in most computer science courses the words never cross the lecture hall.  Even 
experts regard them as a somewhat recherché topic.  Yet integral transforms are a vital part of modern 
society.  We have already encountered them several times in lectures in this series: digital image and audio 
compression uses them; mobile telephony uses them and not mentioned so far, digital audio broadcast, 
digital video and many others. 

The difficulty is that they are regarded as a very difficult topic – only the brightest students master integral 
transforms.  The very word is off-putting – clearly, they contain an integral, yuck, and a difficult integral, 
double-yuck.  So, this is one of those lectures that might be a triumph of clarity or a disaster of obfuscation 
and needless maths.  Shall we begin? 

It is an old engineering joke that if something moves, and it should not, then use gaffer tape; if something 
does not move, and it should, use a hammer.  Indeed, engineers are sometimes portrayed in the movies as 
wandering around mechanised environments tapping things with a hammer.  One might say that predicting 
what will happen to something if I hit it is indeed an antique problem.  But in classical mathematics predicting 
the motion of a “dynamical system” is not so easy — we have to solve the differential equations associated 
the system given some initial conditions (the starting point of the system) and the forcing function (that might 
be a hammer blow but, in the case of a car suspension, then it would be the shape of the lumps and bumps 
in the road).  Many hours of undergraduate time are spent solving such problems.  I’ll show you one from 
electrical engineering. 

This picture is known as a potential divider and, if the boxes contained resistors, then you might remember 
from your school days that the output voltage is a fraction of the input voltage where that fraction is 
determined by the size of the resistance, R2 to the total resistance R1 + R2.  Now, what if the box on the right-
hand side contained not a resistor but something more complicated like a capacitor1.  In that case our circuit 
would look like this.   

 

A resistor is a device where the current through it is proportional to the voltage across it, we write V=IR 
(Ohm’s law) but a capacitor has a more complicated arrangement in which I = C dV/dt.  If you unfamiliar with 

 
1 Don’t panic (yet) – a capacitor is a standard electrical component that can be thought of two conducting plates held 
very close together but not touching.  No direct current can pass between the plates but if the voltage changes then 
electromagnetic waves couple the plates and alternating current can flow.   
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the notation dV/dt do not worry – it’s the rate of change of V (measured in Volts per second).  Looking at our 
little circuit above the voltage we argue that the current flowing through the resistor and the capacitor are 
identical (no current flows out of the circuit) so we can put these together to give a first-order ordinary 
differential equation: 

𝑅𝐶
𝑑𝑣(𝑡)

𝑑𝑡
+ 𝑣(𝑡) = 𝑣𝑖𝑛(𝑡) 

It looks a bit daunting, and it is hardly surprising that undergraduates are not very keen on such things. 
However, Professors are very keen on them and will often run through a gamut of possible inputs so that 
they can illustrate, not only how the circuit works, but also to demonstrate how clever they are.  One popular 
input is the Heaviside unit step, named after Oliver Heaviside, and if we use that we get something that looks 
like this: 

 

 

 

 

 

 

 

 

But solving these things is a bit of a faff.  If we were interested in the response to a sin or cosine wave, we 

might set Vin = A cos(t).  I can tell you that this is going to get a bit messy unless we make some swift 

realisations.  The first one is called the LTI assumption – the circuit is Linear Time Invariant.  Time Invariant 
is easy - it means the circuit does not change over time.  Linear is very useful – a system is linear if the output 
to the sum of two waveforms can be written as the sum of responses to the two components.  One way of 
writing the output of an LTI system is to write 

𝑉𝑜𝑢𝑡 = 𝑓(𝑉𝑖𝑛) 

which reads as the output voltage Vout is some function f() of the input Vin.  How does this help?  Well let’s 
imagine that the input signal Vin can itself be written as the weighted sum of two simpler waveforms.  Maybe 
we have: 

𝑉𝑖𝑛(𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑦(𝑡) 

In which case the output can also be written as weighted sum of the outputs due to x(t) and y(t): 

𝑉𝑜𝑢𝑡(𝑡) = 𝑎𝑓(𝑥(𝑡)) + 𝑏𝑓(𝑦(𝑡)) 

This is a massive convenience since it might mean we do not have to solve a new differential equation for 
every single signal that comes into our system.  Maybe, if we chose some of those component signals, what 
I have called x(t) or y(t), very carefully then we could use them as building blocks for more complex cases?  
But what signal? 

 

The RC circuit I considered earlier had responses that looked like e-t/RC or 1 – e-t/RC so what is we tried a 
component signal of the form est?  Here s is just some variable yet to be defined. I’ve made it positive est 

rather than e-st just to stop us having minus signs floating around the place.  So, let’s assume in our RC circuit 
above that  

𝑣(𝑡) = 𝑣𝑒𝑠𝑡 ,                         𝑣𝑖𝑛(𝑡) = 𝑣𝑖𝑛𝑒𝑠𝑡 

in which case the derivative2 is  

 
2 Don’t panic if you cannot remember, or do not know how to compute derivatives, as the gradient of an exponential is 
also an exponential multiplied by the exponent.   
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𝑑𝑣(𝑡)

𝑑𝑡
= 𝑠𝑣𝑒𝑠𝑡  

How convenient, now each component of, 

𝑅𝐶
𝑑𝑣(𝑡)

𝑑𝑡
+ 𝑣(𝑡) = 𝑣𝑖𝑛(𝑡) 

Has the form of something multiplied by est.  Thus 

𝑠𝑣𝑅𝐶𝑒𝑠𝑡 + 𝑣𝑒𝑠𝑡 = 𝑣𝑖𝑛𝑒𝑠𝑡 

or with a bit of algebraic jiggling about 

𝑣

𝑣𝑖𝑛
=

𝑍𝐶

𝑅 + 𝑍𝐶
, 𝑍𝐶 = 1/𝑠𝐶 

Which is exactly the form of equation I gave earlier when we were dealing with two resistors.  The resistor 
R2 has become something called ZC but suddenly, instead of faffing about solving differential equations, I’m 
doing circuit analysis with these Z-thingies3.  

So far, so nice, but this only seems to work if my input voltage is either of the form of est or, e-st, or, 
remembering superposition, some weighted combinations of waveforms like est or e-st. 

Well one way of measuring how similar two things are is to multiply them and average.  Let’s try that.  Here 
is a waveform of me saying “Gresham”  

 

and we can multiply it by our “kernel” e-st, 

 

to give: 

 

And if we average this signal then the result is a measure of how similar the “Gresham” sound is to our 
exponential.   

Mathematicians call that average an integral and it has funny sign, like an elongated S4, 

𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡
∞

0

𝑑𝑡 

It looks a bit daunting but let me write it more simply 

𝐹(𝑠) = ℒ{𝑓(𝑡)} 

Put simply, F(s) is a measure of how similar your waveform, f(t) is to e-st and it’s called the forward Laplace 
transform.  It has an inverse 

𝑓(𝑡) = ℒ−1{𝐹(𝑠)} 

 
3 Z is what electronic engineers called impedance. The impedance of a capacitor is 1/sC and the impedance of an 
inductor is sL.   
4 S for a sum and the dt means a continuous sum with respect to t, time.  In this case the sum runs from zero to infinity. 



 

4 

 f(t) and F(s) come as a pair and are known as a Laplace transform pair.  They are completely equivalent – 
you give me F(s) and I can compute f(t) or vice versa. We write 

𝑓(𝑡) ↔ 𝐹(𝑠) 

Suddenly we free of the tyranny of differential equations.  We can take any waveform, convert it into its 
Laplace transform, use simple tools for analysing systems and, if we want, invert the output.  I have skipped 
some rather nasty bits – notability the computation of the inverse requires something quite interesting called 
a complex contour interval but, in practice this nastiness is often avoided by tables of pre-computed Laplace 
transforms.  The engineer looks up the Laplace transform of the signal and converts the circuit or system 
into the Laplace domain.  Computing the output now involves just simple algebra and no nasty differential 
equations. If needed the time-domain output signal can be computed from the inverse but many engineers 
work directly in the Laplace domain. 

Despite being named after Pierre Laplace, the French mathematician, it seems as though its use was 
pioneered by the Norwegian Niels Abel.  Laplace did also use transforms, but he was interested in, not 
differential equations but difference equations.  Difference equations are the norm in computers using digital 
filters – instead of having time signals f(t) we tend to have sequences f(n) and instead of differentials we 
have differences.  The equivalent transform is known as the z-transform.   

𝑓(𝑛) ↔ 𝐹{𝑧} 

Now, I think it is fair to say that the Laplace transform, and z-transform are highly recherché devices that are 
extensively used by circuit designers, digital signal processing designers and control system experts.  The 
latter is particularly important – the reason that your local chemical plant or nuclear plant does not go bang 
is that control engineers have very carefully converted the system into the s-domain or z-domain and made 
sure that the plant has stability5. 

So far, we have avoided mentioning the most famous of the transforms: the Fourier transform. 

𝐹(ω) = ∫ 𝑓(𝑡)𝑒−𝑖ω𝑡
∞

−∞

𝑑𝑡 

It looks a bit like the Laplace transform – there is an integral which is measuring how alike our waveform, f(t) 

is to something6 but now that something is not e-st but something slightly different e-it. The Greek letter 

omega, , is one of the standard mathematical symbols for frequency but most people use the letter, f, 

measured in Hertz or cycles per second7.  The Fourier transform is a particular tool of engineers who analyse 
signals or systems, and there are two bits of additional maths which help us handle some two problematic 
issues.  The first issue is that, if the signal we are analysing is infinitely long then there is a possibility that 
the integral can blow up.  We handle that with a lovely bit of maths known as generalised functions – we 
allow the answer to be infinite but only in an infinitely small interval – which are drawn as little spikes with a 
height that represents their area.  Those arrows represent a spike of infinite height and zero width – sounds 
a bit weird but it works fine.  Such spikes are usually named Dirac Delta functions after the great physicist, 
Paul Dirac – a Bristolian trained as an engineer but later turned theoretical physicist. 

So, what is the Fourier transform of a cosine wave of frequency f0?  It is two spikes – one at a frequency f0 
and another at frequency -f0.  There is often much scratching of heads about the meaning of negative 
frequency among students but, once we have grown-up, we realise that the negative part of the spectrum is 
not needed for most circumstances, and we often plot only one-sided Fourier transforms.   

The second issue is randomness - most signals have some randomness. Does the Fourier transform help in 
such circumstances?  Yes – randomness can be measured in the time domain via a similarity measure 

known as correlation – if you measure a signal against itself you get auto-correlation usually designated R()  
The Fourier transform of the autocorrelation is known as the Power Spectral Density (PSD).  When people 
talk loosely about a spectrum they are often talking about the PSD. 

 
5 Deciding if a system is stable turns out to be very simple in the Laplace and/or z-domains.  It depends entirely on the 
locations of where the denominator of the transfer function are zero.  These locations are called poles and, for stability 
they need to be located in a region known as the “left-hand half-plane”.   And hence have led to series of obscure 
engineering jokes involving Polish people on aircraft. 
6 That something is often called the kernel in transform parlance. 
7  signifies angular frequency and =2f. 
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Symmetries abound in Fourier transform theory.  When we are dealing with real signals, it is usually the case 
that the signal is zero before we start the experiment – thus outputs happen after the inputs.  We call this 
causality which means that half of the Fourier transform integral is zero.  One solution is to define the 
transform over a half interval – the unilateral transform but engineers don’t like remembering a lot of things 
so we tend to stick with the bilateral transform but recognise that causal signals will have FTs with redundant 
symmetry – which is why people often sketch only half the spectrum.   

In a computer system, signals are not continuous, they come in samples.  And they are not infinitely long, 
they have a start and an end.  The transform of a set of samples is known as the Discrete Fourier Transform 
or DFT and, in reality, when someone shows you a spectrum or a spectrogram, they will have used the 
Discrete Fourier Transform: 

𝐹(𝑚) = ∑ 𝑓(𝑛)𝑒
−2πi𝑛𝑚

𝑁

𝑁−1

𝑛=0

 

It looks a bit daunting, but it’s just the discrete version of the integral form.  Again, we are multiplying our 

sequence f(n) by a kernel function, which is this case is e-2imn/N. Then we average it -- that’s the summation.  
Obviously, we cannot do infinite summations in a computer so instead of running to infinity the sum stops at 
a number we’ll call N.  From a computational point of view, the good thing is that the exponential kernel 
repeats itself and this repetition means one can create fast algorithms known as Fast Fourier Transforms or 
FFTs.  The name FFT is often used interchangeably with the DFT which is understandable – there’s no point 
implementing a DFT slowly when Fast algorithms exist for almost all useful situations.  On the slides I show 
some examples of a computed FFT.  Note that while the Fourier transform is a useful theoretical concept the 
reality is that when we are computing the FFT we have sampled data and only a finite amount of it  – these 
imperfections mean that the transform of a cosine wave is not a couple of perfect spikes but there is ‘leakage’ 
into adjacent bins8. 

 

FFT algorithms are used extensively in MPEG audio.  We take a block of audio data, compute the FFT and 
look for features which the human ear might not hear due to “masking”.  One example of masking is that loud 
tones conceal the presence of others.  This offers the potential to delete some acoustic information: we can 
compute the FFT; look for distinct tones; and delete any nearby tones on the grounds that humans cannot 
hear them.  This is happening thousands of times per second when you record your voice, record a video or 
replay some audio on any one of your numerous electronic devices. 

Another approach, which is favoured in image processing, is to replace the complex exponential in the DFT 
with a cosine – this is the Discrete Cosine Transform or DCT.  It is often applied in two dimensions so now 
we have a two-dimensional quantity.  We can get quite a good approximation to an image by completely 
discarding the high-end coefficients as we saw in a previous lecture on compression.  This is exactly what 
the world’s favourite image compression standard, JPEG does [1].  It dices images into 8-by-8 pixel sub-
images, applies the DCT, discards small value transforms and sends only the large ones.  At the received 
end we reconstruct the blocks via an inverse transform.   

One interesting integral transform is the Radon transform.  If you have ever had a CT-scan, then you may 
have wondered what is going on.  That ring that is around your body contains sources of energy and receivers 
– we can measure the integral of your body in a straight line from the transmitted to the receiver.  But how to 
reconstruct the image? Step forward the Radon transform.  And it turns out that one quick way to compute 
the Radon transform is via the FFT. 

If your head is spinning at this point then humorously I might point out that there is also an integral transform 
for problems with circular symmetry – the Hankel transform which uses Bessel functions but, more seriously, 
I should pause before we overdose on transforms and point out that the general idea behind an integral 
transform is to take a signal in a domain which is a bit awkward – often time or space and convert into a new 
domain (f, z, s etc) in which the maths is easier.  In this sense transforms are quite a venerable mathematical 
technique.  Sometimes the new domain becomes the de facto domain for analysis – everyone is quite familiar 
with an audio spectrum in which high frequencies (high pitched sounds) are on the right of the graph and low 

 
8 There is a whole sub-genre of signal processing that discusses this.  One solution is to ‘window’ the data so that it fits 
perfectly into the N samples we have available.  This is the norm when dealing with real-time data.  Another approach, 
which is relevant when you are using the FFT as a measurement device, is to build better approximations to power 
spectral density. 
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frequencies (low pitched sounds) are on the left.  Not many people are aware that they are looking at an 
estimate of the power spectral density which is the Fourier transform of the autocorrelation function – their 
intuitive understanding is enough. 

But transforms also appear as algorithms that are used, not just for analysis, but for signal manipulation and 
information control.  In this category the dominant algorithm is the FFT which is completely ubiquitous in 
modern IT systems.  And in Gresham lectures FFTs have arisen many times:  audio and speech processing 
relies on the Fourier transform [2] [3], image processing uses the DCT [4], control theory uses the Laplace 
transform, digital filters use the z-transform, digital TV and cellular phones use OFDM coding which uses the 
inverse FT.  Transforms are absolutely everywhere. If you are watching this online then my voice is coming 
to you via an integral transform system, the video is compressed via an integral transform, the signal is further 
packed into the small amount of bandwidth using a transform system and that’s without me pointing out that 
there is now considerable evidence that your brain does something like an integral transform when it analyses 
visual or audio signals. 

This lecture ends with a minor pedagogical puzzle – esteemed Computer Scientists have declared that the 
FFT is one of, if not the, most important algorithms of modern times.  Modern computers will be computing 
millions and millions of FFTs everyday – a substantial part of the substantial carbon emissions of IT are due 
to the FFT.  There are great number of efficient algorithms for computing the FFT [5].  But the FFT is not part 
of the standard Computer Science syllabus. If you are one of my students who will learn it, provided you 
choose the right modules, but its not guaranteed.  For some, this is a triumph of abstraction: our libraries and 
operating systems are now so good that programmers do need to be bothered with the tedious minutiae of 
the DFT algorithm but for others it is another example of the danger of modern systems – how can we be 
sure that they are doing what we think they are doing?  To answer that question, I think it would be helpful 
to look at how a program that you are I write interacts with the hardware.  That ‘glue” between the program 
and the hardware is called the Operating System and it is the topic of the next lecture. 

 

© Professor Harvey, 2022 
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