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You sit at the keyboard ready to write your magnum opus. All is quiet — the peace of the blank 
page. Your computer waits unobtrusively, like a sort of electronic Jeeves, ready to leap into action 
should you command something. But underneath that passive exterior lies a maelstrom of activity - 
hidden from view is an intricate command and control structure - an electronic Court of Versailles 
scurrying around making sure the computer can do its business and that you, the user, are treated 
like Louis XIVth. All that hassle and bustle, the stuff that links your application to the computer 
hardware, that’s what’s called an Operating System. 

If you prefer a more prosaic example then I refer you to that radical magazine, The Beano, and the 
strip “The Numskulls” - imaginary little characters beavering away in the human brain and running 
the show. The numskulls are also just like a modern operating system - each process has its own 
function, and they communicate keep the brain working. 

Early computers had no operating systems. The user, the programmer and, often the inventor, were 
the same person and if they wanted the computer to do something, then they sat in front of it and 
fiddled around with switches — that was programming. But it soon became evident that computers 
could do pretty useful things and people were clamouring to use them. But they were fiendishly 
expensive, so sharing was necessary. Thus, the first operating systems were methods for humans 
to share the computer. The arrangement was known as the open shop model and in [1] George 
Ryckman recalls the operation of the one of the first IBM 701 systems - users had a fifteen-minute 
slot, most of this was wasted with setting up the input and output devices which led to inefficiencies. 
Furthermore, the IBM 701 had a mean time between failures (MTBF) of around 3.5 hours, so 
programming was laborious. 

The SHARE operating system took the dramatic step of removing programmers from the computer 
room - hence a closed-shop system. Programs were prepared offline and assembled onto to tape 
in a batch (hence batch processing). Batch systems made better use of machine time, but they were 
no less irritating for programmers: one would prepare the program then wait for hours for it to be 
added to the tape; then the output would be returned to discover that the program had terminated 
due to some trivial error. One the one hand we want to use the machine efficiently and on the other 
we want users to have seamless access to the machine. These two requirements pull in opposite 
directions and the operating system has to resolve a solution. As operating systems are 
complicated, it’s easy to get just in the weeds and wild grasses of interrupt handlers and scheduling. 
Fortunately, one the gurus of Operating Systems, Per Brinch Hansen has described some 
innovations with the delightfully sweeping phrase of “ideas of fundamental interest” which he 
describes in [2] as: open shop; batch processing; multi-programming; time-sharing; concurrent 
programming; personal computing and distributed systems. We have already covered the first two 
which are now somewhat arcane, but the remainder are still part of a modern operating system. 
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The original driver for multi-programming was the observation that peripherals were slow. So, if the 
program contained the command print(‘HELLO’) then there would be seconds of delay while the 
print head was configured to print the letters H,E,L,L and O. Meanwhile the computer was in wait 
states essentially doing nothing. The solution came in three parts: design peripherals with a 
modicum of intelligence so it can complete its task without intervention from the main computer; 
allow peripherals to signal back to the computer that they need assistance (these are often called 
interrupts); have a scheme that allows a computer to switch tasks. This latter aspect, although 
originally designed to allow computers to handle slow peripherals, soon became adapted to the 
more general problem of running more than one task at a time. 

A modern “context switch” involves several different processes - let’s look a case. The computer 
has instructed to the hard disc to retrieve a number held at particular address. Modern hard drives 
are smart and they figure that although it has been asked for the contents of one address it may 
was well retrieve the whole cylinder and put it in fast electronic memory - this is called caching. 
Having read the whole cylinder it sends a signal to the main computer, an interrupt, to say that it 
has the data. Sometimes interrupts have to be handled immediately - they have a high priority others 
can wait. The interrupt handler decides which interrupt matters the most and tells the main computer 
to stop doing what it is doing which is itself quite a complex process. 

Imagine you are kitting a pattern, you are following the knitting pattern, you have a record of where 
you have reached in the pattern (this is what we call the Program Counter (PC) in the world of 
computer hardware) and you have various records of how many rows of various yarns have been 
used (variables) and of course you have the pattern and the pieces created so far (the program and 
the output data). But now it is time to make supper, so you clear your table and carefully place the 
pattern, the knitting and records of the variables and PC on a side table. Now we start to make our 
Sheppard’s pie. The table has the recipe, a note of where we are in the recipe (the PC), the 
ingredients and tools for making the pastry and bits and bobs. “Waaaah!” eek a high priority 
interrupt, the baby is crying. Quickly we place a small table on to of our knitting table, we place all 
of half-made Sheppard’s pie on that table and up onto the table comes the bawling baby. We feed 
the baby - service the high-priority interrupt. But baby back in the crib and we take off our “stack” of 
side tables the pie and continue.  Ring, ring goes the telephone “Where is my jumper you were 
making?” asks an unhappy customer, “We make a note to work on that later” this is a low priority 
interrupt - we will pop the stack later for that job.  

We just about handle this with some additional hardware, the interrupt handler but the system clearly 
offers potential for switching between tasks that are not all screaming babies. Maybe we want to 
read a book while preparing supper and we also want to make-ready our porridge for breakfast 
tomorrow. Actually, humans do not do well under such situations and high-level cognitive tasks 
cannot easily be switched. Computers also take time to switch tasks but there is a stronger incentive 
to do so — if our computer is fast enough then it can switch between multiple tasks so quickly that 
it appears as though each task is running concurrently. When you move the mouse across the page 
of your computer is it obvious that the computer has stopped all its other calculations to move the 
mouse a tiny bit and then switches back? Usually not. And even bigger incentive is to run multiple 
tasks from multiple users — we now have a multi-tasking operating system. Let’s have a look at the 
programmer’s model though. 

Here is a simple program 
A = 2 
input B 
print B+A 

This is a program written in a high-level language. To make it useable by a computer we convert it 
into low-level instructions using another program known as a compiler. The compiled output is often 
a bit difficult to decipher but it a low-level version of our program might look like this: 
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STA &1000 2 
LDA &50, &1001 
print @1000+@1001 

The first line reads, store the value 2 at the address in memory 1000. The second line reads load 
in the value from found at address 50 (I’m assuming this is where the keypad inputs its numbers) 
and move it to address 1001. The final line, which would normally take a few hundred low-level 
operations, reads add the contents of address 1000 (that’s the value 2) to the contents of address 
1001 (that was where we stored the input). This compiler has made some choices - that the 
variables will be stored in a block of memory starting at address 1000 and that the keyboard input 
will be found at address 50. But what if we have another user using a different keyboard. What stops 
them reading my keyboard? Or over-writing my program? Multi-tasking operating systems bring 
with them major challenges of security and synchronisation. Maybe we allow users to write 
programs only with a special compiler that forbids users from doing dangerous things? That 
approach has been tried for experimental systems, but it is not flexible enough for commercial use. 
Instead, the usual solution is design special hardware that has some special instructions, protected 
instructions, that can only be used by a super-user. This is an important concept - with multiuser 
operating systems comes the class-system of the computer world: super-users who themselves are 
often classified into various classes. And hence, as with all class-systems there are in-jokes told 
about users by operators and about operators by users. With privileged instructions we can stop a 
user’s program even if they do not wish it to stop. But we still have the problem of memory overlap. 

Memory clashes are prevented by telling programmers that they have a clean-sheet to store 
variables where they wish. In reality, those addresses are passed through a secret look-up table to 
map the programmer’s model into reality. And reality could be quite messy - our real memory might 
have some internal variables which users cannot see, then a block of storage from user 1 and then 
a block from user 2 and then another block from user 1 and then, after we have run out of memory, 
perhaps user 2’s memory is stored on a hard disc somewhere — the operating system having 
gambled that user 2 doesn’t seem very active and maybe we could swap it out of main memory to 
give more working space to the system and user 1 who looks like he will need it. The convention is 
that these blocks of memory are made up of pages which are conveniently sized blocks for that 
particular machine. Large pages mean users have large blocks of physical memory available but 
use up much memory so are expensive for large numbers of processes. Small pages mean 
inefficient swapping in and out and can lead to highly fragmented memory which in turn leads to 
wasteful memory address calculations. By writing pages out to disc, using tasks which hopefully run 
in the background without anyone noticing, we can provide programmers with an impression of 
almost limitless memory - virtual memory. Unfortunately swap pages in and out of physical memory 
is a slow process and under certain conditions the machine can be brought to halt by the act of 
paging memory - an undesirable condition known as thrashing. When physical memory was very 
expensive, it was commonplace to rely on virtual memory and thrashing was commonplace 
especially on the smaller varieties of VAX computers, which dominated academia. Hence the 
parody of the Lewis Carol poem was often found pinned to the wall of the machine room: 

Speak roughly to your little VAX, 
And boot it when it crashes; 
It knows that one cannot relax 
Because the paging thrashes! 
Wow! Wow! Wow! 
 
I speak severely to my VAX, 
And boot it when it crashes; 
In spite of all my favorite hacks 
My jobs it always thrashes! 
Wow! Wow! Wow! 
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Once these developments had been realised, it became possible to write operating systems of the 
form that we know them today. However, a recurrent problem in the early days of operating systems 
was size — all these features made the operating system a large monolithic block of code. As the 
machine booted up the loader, loaded the ginormous operating system and there was no real 
memory space left for users. It was analogous to modern university in which a preponderance of 
government rules means that there are three administrators for every teacher, and we spend more 
time administering the university than we do teaching in it. There are administrators who do nothing 
but administer administrators. While universities seem to find this congenial, computer scientists do 
not like it and hence the birth of the kernel-based operating systems. The idea is write positively the 
smallest program possible to administer the computer — other more sophisticated functions are 
written as separate programs which are called when necessary. This is efficient in terms of space, 
but it brings two potential problems - the first is change control and standardisation. This is a familiar 
problem in mechanical engineering — will a BMW 7 series gearbox from 1985 fit into my 1986 9 
series? We tackle this by logging development software in and out of a code repository so we can 
not only track changes but roll-back mistaken changes. The second solution is borrowed from 
electronic engineering - standard components and interfaces.  

By standard components I mean libraries. Even in the very earliest days of computing it was soon 
obvious that there were certain mundane operations that everyone needed to do - print; add two 
complex numbers; read something from a tape and so on. Obviously one route, which is popular 
with undergraduates, is to copy code from stackexchange and hope the Professor does not notice. 
But for a commercial developer this is a nightmare - when Bloggs who wrote the code updates it, 
how do you know? A further challenge is that when we, say, install a new printer, we all have to 
write code specific to that device. So early operating systems had hundreds of drivers which were 
specific bits of code and which often had different programmer’s interfaces. The solution is to define 
a virtual printer with a standard interface and then to write code that allows conversion between that 
interface and reality. This means all programmers are now writing for the same thing - a virtual 
printer and their code is shorter because they are including mountains of computer code. This 
problem is particularly acute when you think about architectures that encourage multiple hardware 
manufacturers – there are hundreds of types of Android phone. In cases such as these, much effort 
is expended in abstracting the hardware. Indeed, Android has a special interface known as the 
Hardware Extraction Layer of HAL1.  

Because we are dealing with virtual memory in the user code, and possibly absolute addresses in 
the libraries, it is commonplace to compile the user program to nearly machine code (object code) 
but with some of the addresses left free then to link in the libraries and resolve addresses to form 
an executable. Libraries can be horrendously large - I remember writing a program that wrote “Hello 
World!” on an early windowing workstation and being astonished to discover the linker added over 
100,000 lines of code to handle the windows. Hence dynamic libraries are the norm in which only 
relevant parts of the library are used and executed. 

We have talked about how multiple users and multiple processes can be managed – the computer 
context switches and allows some time to each one of the important tasks. But there is much 
important detail in task scheduling and much ink has been spilled on varieties of scheduling 
algorithm. In the lecture I use one from Solaris which is a form of Unix developed by Sun 
microsystems and now maintained by Oracle. The basic ideas are as follows: 

1. Each thread2 is assigned a class and a priority. 

 
1 This is a little computer science joke – HAL 9000 was the name of the computer in 2001: A Space Odyssey  
2 The word thread has snuck into this discussion without much drama. A thread is a task that can be run as a 
separate process. When a programmer writes a program they may write it as a single sequential stream of 
instructions – a single thread. Or they may realise that there are multiple threads that could run in parallel. 
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2. The CPU runs a clock which slices time in discrete intervals (20ms is the default setting for 
Solaris) 

3. Most threads are allocated as time-sharing threads in which the higher the priority, the more 
likely it is to be scheduled but the less time it is allocated. 

4. One a thread has exceeded its allocated time; its priority is lowered thus hungry tasks are 
not allowed to “eat all the sandwiches” 

One interesting class of processes are those that are classified as real-time. The phrase real-time 
is often misused to mean jolly fast but it has a technical meaning which is a process for which we 
can guarantee a response within a fixed time. An example of a real-time process is the echo-
cancellation task which forms part of a modern video conferencing software – if the echo cancelling 
filter is not adapted quick enough then there is howl-around, and everyone has to turn off their 
microphones. Different computers have different processing power so you may have noticed during 
the pandemic that users with dated machines could cause whole meetings to be disturbed. 
Operating systems that specialise in Real-Time responses are often abbreviated to RTOSs and are 
often found in expensive systems such as stellar explorers.  

A scheduler is just one of the components that can affect how a machine runs code. Another is IPC 
or inter-process communication. Sometimes a programmer’s code can run using very little I/O – an 
algorithm to compute if one number is exactly divisible by another reads in the numbers, computer, 
computes, computes and gives the answer “yes” or “no”. Such is a CPU-bound process. More likely 
there is much interaction with the real-world and it is IO-bound. It’s obvious that an IO-bound process 
will have to wait for the peripherals and devices to do things – the device drivers and the program 
have to exchange signals – wait while I read this character – tell me when you are ready to receive 
my next block of audio samples and so on. But CPU-bound processes communicate too – especially 
if they consist of multiple threads.  

While inter-process communication is essential inside lurks many a danger. Let’s imagine we have 
two processes running in parallel – let’s consider two processes operating in parallel. Each process 
reads a global number, a count, and increments it by one. So, if we run process after another our 
count would go 0, 1, 2. But let’s say the second increment starts a bit early – maybe we have an 
optimising compiler which has automatically parallelised the process and it starts the first 
incrementor before the second is finished. Now the count goes 0, 1 but the second process started 
before 1 had been written out so it also reads a 0, adds 1 and now we have 1. The count reads 1 
even though we have run the increment twice. This is called a race condition because it can lead to 
never ending loops. Let’s imagine we wanted to terminate when our count reached two – in the case 
above we would never terminate. Nasty. 

Good inter-process communication can help minimise the possibilities of deadlocks and races but 
it also requires some skill to anticipate the way in which the operating system might choose to run 
your tasks3. 

So far, we have been largely describing the historical situation as it existed a few years ago. But the 
most recent trend is what is loosely called cloud computing. Cloud computing comes in a variety of 
flavours. At the top of the hierarchy is a form known as SaaS or Software-as-a-Service. If you use 

 
Furthermore, a modern compiler might well decompose your single thread into multiples for speed. As we saw with 
context switching there may be quite a lot of overhead associated with switching between full processes but threads, 
because they are children of processes, can be more lightweight meaning that the processor has to save less stuff 
when it switches threads. 
3 A famous example of a block happened on the 1997 Mars Pathfinder mission – a long high-priority task was forced 
to wait for a low-priority task to release some resource. One of the tasks took an unexpectedly long time to complete 
and everything fell in heap. Fortunately, the system had been safely designed so it realised there was a problem and 
rebooted. Engineers were alerted to the problem by frequent reboots. The whole legend is described in [4]. 
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the online version of Word or Google Docs then this is SaaS. Of course, it doesn’t entirely run in the 
cloud – when you use the online version of, say Apple’s Pages, then you are downloading a program 
written in Javascript which runs in your browser. It can access your local files but only in a strictly 
controlled way – the application runs in sandbox environment that blocks any attempt to access 
naughty things. More difficult to describe but more powerful is PaaS or Platform-as-a-Service. 
Examples of PaaS systems include Amazon’s Web Services, Microsoft Azure, IBM’s cloud and so 
on. Whole systems for doing machine learning, advanced computation and large-scale storage plus 
development tools are all available remotely. And beneath this level we have Infrastructure-as-a-
Service – remote machines that are hosted by a provider and are available for your use. 
Commercially these are quite popular for several reasons, among which are the cost of running a 
secure server room and the possibility of hosting servers in locations with plentiful green electricity. 
These may be physical machines owned by the customer (or rented) but more likely now they are 
virtual machines.  

Virtual machines are operating systems which run inside a sandbox which captures all the hardware 
calls and reroutes them to appropriate hardware. The software that runs all these virtual machines 
is also an operating system (sometimes called a hypervisor). Type 0 hypervisors often use specialist 
hardware but more common now are Type 1 hypervisors which are specialist operating systems (or 
in the cases of Red Hat Unix and MS Windows Server general purpose operating systems with 
some add-ons). Not only does cloud computing offer financial benefits to corporate customers, it 
can also offer considerable flexibility – as your commercial service scales-up one can spin-up some 
more virtual machines and, in the case of the UK government at least, one can procure virtual 
machines under a standard contract [3]. 

In this lecture series we have looked at inventions which are enormously important to the modern 
world but seem to be understood by only a few people. To most people the Operating System is the 
“look and feel” or the Graphical User Interface but, as we have seen in this lecture, that is just the 
surface. Underneath that serene exterior there is an electronic bedlam of context switching, memory 
shuffling, input/output and constant evaluation, and optimisation. Operating Systems have a 
reputation for being incredibly difficult to write so it is small wonder that there has been a 
considerable convergence and, ignoring embedded and industrial systems, we are now down to 
three options: Windows (which has been so several different incantations – the current one, 
Windows 11, being based on OS/2); Unix (of which there are zillions of variants – the most 
prominent being MacOS/iOS/watchOS which is based on Mach and Linux (which almost comes in 
multiple versions but is dominated by Android which dominates the mobile device market). Given 
that Linux is a Unix rewrite it looks very much as though one OS has dominated. Unix was conceived 
by two chaps working at AT&T Bell labs – the same labs that developed Information Theory, the 
transistor and the telephone. Quite a record!  

© Professor Harvey, 2022 
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