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How can you detect a counterfeit coin? Why aren’t coins square? Why is the wizarding money used in the 
Harry Potter universe so implausible? In this lecture we discuss the mathematics of coins. I’ll focus on 
three main areas: creating, and testing for, the correct mix of metals, choosing the best coin shapes, and 
deciding on the ideal range of denominations. 

Creating and detecting the real thing 

Money has been used for thousands of years, and in that time there has been a huge range of materials in 
use, everything from gold and other precious metals to shells, leather, and of course paper. Many of these 
materials are “token” currency, in that they are not in themselves inherently of value. A five-pound note 
does not consist of five pounds worth of material. This is all very well if everyone agrees on the system. 
The advantage of gold and silver coins was that their value is intrinsic. If you have a gold coin then it is, 
literally, worth its weight in gold. Or at least, it is unless it is a counterfeit.  

Counterfeiting is as old as trade, and one of the first stories about detecting it involves Archimedes. The 
story goes that the king (Hiero II of Syracuse, where Archimedes was from) had commissioned a golden 
crown and had given his goldsmith a certain amount of gold with which to make it. But Hiero suspected that 
the goldsmith may have in fact kept some of the gold for himself, making up the weight with silver. So, he 
asked Archimedes to find out the truth, without, of course, damaging the beautifully-wrought crown. An 
object made of a mixture of gold and silver, which is less dense than gold, would have a larger volume than 
one made of the same weight of gold. But it’s surely impossible to measure the exact volume of so intricate 
an object as a crown. So how did Archimedes do it? Vitruvius, the Roman architect, wrote an account in his 
De Architectura (around 30 BCE) – it’s a story we all remember: Archimedes sitting in his bath pondering 
the problem, suddenly realising that when he got into the bath he displaced exactly the same volume of 
water as the volume of his body, and then jumping out of the bath and running naked through the streets 
shouting “Eureka”. The crucial realisation was that this is a way to measure volume without damaging an 
object (at least, not a metal one). Archimedes, goes the story, proceeded to take a block of pure gold the 
same weight as the crown, a block of pure silver the same weight as the crown, determine how much water 
they displace, and then compare how much water the crown displaced. With this information he could 
calculate exactly how much silver had been substituted. Legend has it that the goldsmith had indeed 
cheated the king.  

There’s an interesting postscript to this. Galileo, well over a thousand years later, wrote a short treatise on 
this problem, saying that he didn’t think Archimedes would have used the method described by Vitruvius, 
as it’s too imprecise. Galileo thought Vitruvius must have heard only that Archimedes had solved the 
problem using water, and guessed the wrong method. The issue is that the difference in the volumes with a 
small amount of silver mixed in is not very large, and there’s a risk that experimental error might outweigh 

any true discrepancy. The density of pure gold is 19.32g/cm3. Now, density =
mass

volume
, so volume =

mass

density
, 

which means that the volume of (for example) 1kg, or 1,000g, of gold is 
1000

19.32
= 51.76 cm3. On the other 

hand, pure silver has a density of 10.49g/cm3, meaning a kilogram of silver has a volume of 95.33cm3. If 

the goldsmith had swapped 10% of the gold for silver, then a 1kg crown would consist of 900g of gold 
(volume 46.58cm3) plus 100g of silver (9.53cm3), for a total volume of 56.12cm3, a discrepancy of 
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4.36cm3. If you are measuring by marking off the water level rise in a vessel large enough to contain a 
crown, this 4.36cm3 of water would be spread over the large surface area of the water in the vessel – it 
would be a negligible rise. But this isn’t the only technology available. A better approach would be to have 
a vessel with a small hole in the side, filled up exactly to the level of the hole. Then when you put the crown 

in it, 56.12cm3 of water flows out of the hole into a much narrower measuring tube that can be carefully 

calibrated. This method could certainly detect a difference of 4.36cm3 cubic centimetres (water clocks of 

the time were accurate enough to do this, for instance). However, Galileo’s idea for a method Archimedes 
might have used is rather ingenious, and illustrates a curious phenomenon. If you take equal weights of 
different metals (say gold and silver), then on a balance scale they will, well, balance. But if you now put 
that same pair of scales in water, they will no longer balance! Why? Well, let’s imagine that the gold is on 
the left pan of the scale, and the silver is on the right. With both pans empty, underwater, there is the same 
amount of water pushing down on the left pan as on the right pan. So the scales balance. When we add 
the gold, there’s the additional mass of the gold, but it has displaced its volume of water. So we subtract 
that amount of water. (If we have 1kg of gold, remembering that 1cm3 of water weighs 1g, the apparent 
weight of the gold would be 1000 − 51.76 = 948.24g. On the right-hand pan, when we add the silver, we 
get the additional mass of the silver, which equals that of the gold, but we now subtract the mass of water 
in volume to the silver. The apparent weight of the silver would then be 1000 − 95.33 = 904.67g. This 

means that the left-hand pan of the scales, with the gold in it, will have more mass pushing down on it, and 
so it will move downwards. This is a brilliant observation, and Galileo goes on to explain how to determine 
the exact mixtures of silver and gold by using submerged balances. Incidentally, even air weighs 
something – about 1.29g per cubic centimetre. To obtain truly equal weights we’d need to put our balance 
in a vacuum. If we measure in air, the denser substance will appear to weigh more. So perhaps the answer 
to that old trick question is that a pound of bricks really does weigh more than a pound of feathers! 

The tale of Hiero’s crown is an early instance of using the mathematics of density and volume to detect a 
forgery. The issue is somewhat simpler if you are comparing objects that are supposed to be the same size 
and composition, like coins. A suspect “gold” or “silver” coin can be weighed against one known to be 
genuine. It’s also possible to determine the composition of a particular class of coin (say ones minted by a 
different country’s mint) to determine exchange rates, by assaying. If you have a mixture of silver and gold 
plus other impurities you can determine the precise amounts by melting a sample, oxidising away the 
impurities, weighing what’s left, which will be a mix of silver and gold, then dissolving the silver with nitric 
acid, to leave only the gold. You can then work out how much silver there had been, and what proportion of 
both of these were in the original alloy. 

The other side of the coin, so to speak, is the challenge of the official mint: creating coins that have the 
precise legally required proportions of given metals. There’s a nice paper by former Gresham geometry 
professor Norman Biggs on it if you are interested – the details are at the end of the transcript. An Italian 
mathematician and merchant called Leonardo of Pisa described techniques for producing alloys of a 
desired purity, or “fineness”, in his extraordinary 13th century book Liber Abaci. You may not have heard of 
anyone called Leonardo of Pisa, but you probably have heard of him by his nickname Fibonacci. The so-
called Fibonacci sequence was not invented by him, it had been known in India and elsewhere for a long 
time, but Liber Abaci was probably the first Western book to include it.  

A typical coin-related problem Fibonacci describes is along the following lines: you have some rather 
impure silver bullion with fineness 4. (It doesn’t really matter what units are being used, but just for the sake 
of argument let’s say by “fineness 4” we mean that 4 ounces in a pound are silver.) and some very good 
quality bullion with fineness 9. And let’s say the law requires silver coins to have fineness 7. How should 
the bullions be mixed in order to obtain the right fineness for the coin? The rule that Fibonacci gives is that 
since the “bad” bullion is 3 worse than you want, and the good bullion is 2 better, they should therefore be 
mixed in the ratio 2:3, that is, two parts bad bullion to three parts good. The reason this works is the 
following. If you take the fineness of the bad bullion to be 𝐴, the desired fineness to be 𝐵 and the good 

bullion to be fineness 𝐶, then the recipe says to take (𝐶 − 𝐵) of bad bullion for every (𝐵 − 𝐴) of good 

bullion. Now, the total amount of alloy made here, for every C-B pounds of bad bullion used, will be 
(𝐶 − 𝐵) + (𝐵 − 𝐴) = 𝐶 − 𝐴 pounds. The total amount of silver will be (𝐶 − 𝐵)𝐴 + (𝐵 − 𝐴)𝐶 = 𝐶𝐴 − 𝐵𝐴 +

𝐵𝐶 − 𝐴𝐶 = 𝐵(𝐶 − 𝐴) ounces. Therefore, the fineness of silver in the alloy (in ounces per pound) is 
𝐵(𝐶−𝐴)

𝐶−𝐴
=

𝐵. This is a simple example of a much more general kind of problem, that’s applicable beyond just coinage, 

and came to be known in English as alligation. It’s relevant to many trades. You may be a winemaker who 
wants to blend wines of different unit costs to create one with a given cost. Or you may wish to know what 
possible combinations of a collection of differently priced items you can buy to reach a given total spend. 
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Fibonacci enjoyed puzzles, and in Liber Abaci he gives an alligation-related one called “The three kinds of 
birds”. You are told that thirty birds are bought for a total of thirty pence (or denarii, in the original). There 
are three kinds of bird: partridges, pigeons, and sparrows. Partridge cost 3 pence, pigeons 2, and sparrows 
are two for a penny. What are the possibilities for how many birds of each kind are bought? Fibonacci 
tackles this ingeniously by translating it into a problem of alloys. The desired “alloy” is of fineness 1 (30 
birds = 30 pennies, so on average 1 penny per bird). Partridges have fineness 3, pigeons 2, sparrows 0.5. 
If we pair partridge with sparrows, we see that partridges have 2 more fineness than desired, sparrows 0.5 
less. So we should buy 0.5 partridges for every 2 sparrows. We can’t buy half a partridge, so for every 
partridge we must buy 4 sparrows, a total of 5 birds. Similarly, for every pigeon we must buy 2 sparrows, a 
total of 3 birds. Pairing alloys like this and then combining pairs is one way to generalise allegation 
problems to more than two alloys. But most other authors in the centuries after Fibonacci rigidly said that 
the final alloy has equal amounts of each of the pairs. That wouldn’t work for this puzzle, because doing 
this would force the total number of birds to be a multiple of 8. Fibonacci’s flexibility not only allows him to 
think of this puzzle apparently totally unrelated to alligation, but also to find a solution. Remember the total 
number of birds bought is 30, so the problem reduces to the ways of making 30 as a sum of whole 
numbers of 5’s and 3’s. Assuming we have at least one of each bird, the only possibility is three 5’s and 
five 3’s. That is, 3 partridges (which imply 12 sparrows) and 5 pigeons (which imply 10 sparrows). In sum: 3 
partridges (total 9p), 5 pigeons (total 10p), 22 sparrows (total 11p), giving 30 birds for 30 pence. Clever!  If 
we didn’t have the restriction of whole numbers of birds, there would actually be infinitely many solutions to 
this puzzle. Today, the study of problems like this has developed into a subject known as linear 
programming.  

The shape of money 

Now we know how to make a coin of the desired composition. But what does it look like? Most coins 
through history have been circular, though not all. There are examples of triangular and square coins, and 
other polygons with up to sixteen sides, as well as coins with round, square, and hexagonal holes. There 
are also rectangular and oval coins. Holes are useful for storing coins on strings or necklaces. Originally, 
coins would have been basically rounded lumps of metal. Then, when they began to be stamped with for 
example the Emperor’s profile, they became flat. The round shape naturally forms a roughly circular shape 
when impressed with a stamp like this. A circular shape is more robust than one with lots of sharp corners, 
as these would wear down more quickly or possibly break off. A final reason is a more modern one. 
Vending machines find it easier to differentiate between different coins if each coin has a fixed diameter 
that’s different from all the other coins. Circles, of course, almost by definition, are shapes with a constant 
width – their diameter at any point is exactly twice the radius. (This is useful for coins because of vending 
machines, but it also explains why most manhole covers are round. You don’t want the cover to 
accidentally fall down the hole. With a circular cross-section, there is no way it can be aligned to be any 
narrower, so you are safe from that calamity.)  But the circle is not the only shape with this property. 

Take an equilateral triangle, and suppose each side length is 𝑠. Replace each of its edges with an arc of a 
circle whose centre is the opposite vertex, and whose radius is 𝑠. Imagine rolling this shape along a line. 

To begin with, vertex 𝐴 is directly above vertex 𝐵, and the height of the shape is 𝑠. Each curved side is a 

circle arc, so as we roll along from 𝐵 to 𝐶, the highest point of the shape remains 𝐴, and the height remains 
𝑠. When we reach 𝐶, the highest point is still 𝐴, which is now vertically above 𝐶, and now 𝐶 becomes the 

pivot, and the top part of the shape rolls along the circle arc from 𝐴 to 𝐵, still maintaining that height 𝑠. So, 

in fact, this shape would fit exactly in a passage of constant height 𝑠.  

The same reasoning works for any higher odd number of sides. We can have a “pentagon of constant 
width”, and also (pertinently for money) a “heptagon of constant width”. This is exactly the shape of British 
20p and 50p coins. (I have a soft spot for the 20p coin, which was introduced in 1982, because when I was 
a child it was the coin the tooth fairy brought me. My own children got one-pound coins: there’s inflation for 
you.)  

These curved shapes I’ve just described are called Reuleaux polygons (after the German engineer Franz 
Reuleaux who investigated their possible mechanical applications). The technique only works for odd 
numbers, because regular polygons with an even number of sides have the problem that every vertex is 
opposite another vertex, and the distance between two opposite vertices is always going to be greater than 
any other cross-sectional slice, however much you bulge out the sides. Reuleaux polygons do have some 
applications outside of coinage, too. For example, one property they have is that they can make a complete 
rotation inside a square such that at all times every edge of the square is in contact with the shape. A 
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Reuleaux triangle drill bit will produce a very nearly square hole. This isn’t just theoretical. One such drill bit 
was patented by Harry Watts in 1916 – it needs a special chuck to allow the centre of rotation of the bit to 
move, but with that in place, it covers over 98% of the square.  

As well as the heptagonal coins in UK currency, there’s also the Canadian one-dollar coin (nicknamed the 
“loonie” because it has a picture of a loon on one side): this is an eleven-sided Reuleaux polygon. Some 
Bermudian coins are Reuleaux Triangles. There’s the 1997 one dollar coin, as well as several “Bermuda 
Triangle” commemorative coins.  

This is cute, but why do it? Why not just make circular coins – it’s easier after all? Of course, it’s just fun to 
have a bit of variety. It’s also harder to counterfeit a Reuleaux polygon than a simple circle, but there’s one 
possible other reason, and it’s to do with areas. 

Firstly, there’s a theorem called Barbier’s Theorem that says all shapes of constant width 𝑠 have the same 
perimeter, namely 𝜋𝑠. This is fairly easy to see for circles (diameter 𝑠 means circumference 𝜋𝑠) and 

Reuleaux polygons, whose perimeters are arcs making up half the circumference of a circle of radius 𝑠, but 
far from clear that it holds in general. However, it does. On the other hand, the areas of these shapes can 
vary. A Reuleaux triangle with constant width 𝑠 can be thought of as the superimposition of three 1/6th 
slices of a circle of radius 𝑠. So you can find the area by adding three of these together, but then 

remembering that this counts the equilateral triangle inside three times. So the formula for the area is 

3 (
1

6
circle) − 2(triangle) =

1

2
(𝜋𝑠2) − 2 (

1

2
× 𝑠 × √𝑠2 −

1

2
𝑠2) =

1

2
𝜋𝑠2 −

√3

2
𝑠2 =

1

2
𝑠2(𝜋 − √3) ≈ 0.7𝑠2  

This is less than any other Reuleaux polygon and also less than a circle of diameter 𝑠, which would have 

area 
1

4
𝜋𝑠2 ≈ 0.79𝑠2. In fact it can be shown that the Reuleaux triangle has the smallest area of any shape 

of constant width 𝑠. So, in terms of material used, for a given width you save money with the Reuleaux 

triangle. You might like to work out the area of a Reuleaux pentagon with constant width 𝑠. Is it better or 

worse than a circle? 

Of course, anyone familiar with British coins will have spotted that not all coins can possibly have constant 
width, because we have a twelve-sided coin: the £1 coin. This has an even number of sides, so it can’t 
(and indeed doesn’t) have constant width. So, what’s going on? It’s not the first twelve-sided coin in British 
currency. Many years ago the threepenny bit had twelve sides. However, you’ll notice that the modern £1 
coin does have slightly curved sides. This makes the discrepancy between its smallest (23.03mm) and 
largest (23.43mm) widths small enough for vending machines to cope. The old threepenny coin would have 
caused more issues (if you wish, you can calculate the difference between smallest and largest width to 
confirm this), and that is why the curved sides were adopted.  

So, the coin is a “near enough” design that satisfies vending machines. That doesn’t mean I have to like it. 

Coin values and denominations 

Now we have coins made of the right alloys and the right shape. Our final currency decision is what 
denominations they should have.  

Essentially everyone has decimal currency nowadays – in other words, a currency where units are 
subdivided into powers of ten sub-units. For example, Euros, and US dollars, are divided into 100 cents; 
pounds sterling are divided into 100 pence. The Nigerian Naira is 100 Kobo, one Russian rouble is 100 
kopeks (and has been for over 300 years). And so on.  

There are only a handful of exceptions, mostly where the subdivisions are now too small to be used, or 
where the currency is not in use for other reasons. For example the scudo is still the official currency of the 
Sovereign Military Order of Malta, though everyone uses Euros and has done for many years. The scudo is 
divided into 12 tari, with 1 tari equivalent to 20 grani.   

But historically, the situation was reversed – almost every currency was non-decimal. Why? And why did it 
change? Just as an example, if we look at historical British money, we had shillings divided into twelve old 
pennies, and twenty shillings in the pound, or sovereign. (And 21 shillings in a guinea.) Pennies in turn 
were divided into four farthings (from the word “fourthling”). They were legal tender until 1960. So, you can 
divide up a shilling into two, three, four, six whole numbers of pennies, and into greater subdivisions with 
halfpennies and farthings. A few hundred years ago there were coins worth ¼ penny (the farthing), ½ 
penny, 1 penny, 2 pence (the half groat), threepence, fourpence (groat), sixpence, a shilling, half a crown 
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(2 shillings and sixpence), a crown (five shillings), and gold sovereigns (1 pound). This is simplifying 
matters slightly because the values of the silver and gold coins fluctuated with the prices of these metals – 
that’s why guineas ended up being worth slightly more than a pound – and the purity of the coins; silver 
coins had ever-increasing amounts of copper, with the currency being repeatedly debased because of it. 
The values weren’t formally fixed until later.  

You could divide a pound equally, using whole numbers of pennies, into 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 
20, 24, 30, 40, 48, 60, 80, 120 and 240. There’s not as much flexibility in the decimal pound, which can be 
divided equally into 1, 2, 4, 5, 10, 20, 25, 50, and 100. That’s the big advantage of pre-decimal shillings and 
pounds. The big disadvantage is the arithmetic. Once you start writing down calculations, it is very 
cumbersome to use our decimal number system for calculations in a system that has twelve pence to the 
shilling and twenty shillings to the pound. (Consider also our baffling imperial units of sixteen ounces to a 
pound and fourteen pounds to a stone, but obviously (!) twenty fluid ounces to a pint in the UK, and sixteen 
in the US. Our American friends have a rhyme for converting water volume to weights: “a pint’s a pound the 
world around”. Only it isn’t because in England “a pint of water weighs a pound and a quarter”.) 

If you think pre-decimal currency is bad, spare a thought for Harry Potter and his Hogwarts friends. In J.K. 
Rowling’s books, wizard money consists of golden galleons, silver sickles and bronze knuts. There are 17 
sickles in a galleon, and 29 knuts in a sickle. This is an insane system that wouldn’t even allow amounts 
like half a galleon, never mind the formidable arithmetic that would be required to make transactions.  

Back in the real world, people have been making the case for decimalisation for hundreds of years. In 
1696, Christopher Wren, former Gresham Professor of Astronomy, proposed the introduction of a silver 
“noble”, divided into 10 “primes” and 100 “seconds”, “which Centessimal Division will be very proper for 
Accounts”. The objections to this idea and others were mostly that, desirable though it would be, people 
would never be able to learn a new system. Of course, if a country is brand new that’s less of a problem. 
The United States dollar, introduced in 1792, was divided not into “pieces of eight” like the Spanish silver 
dollar from which it took its name and initial value, but from the start into tenths (dimes) and hundredths 
(cents). The debate in Britain rumbled on, and in the 19th century several commissions and a lot of 
parliamentary time was taken up with it. The florin (two shillings) was introduced in 1849 as a possible 
precursor to decimalisation, because it’s a tenth of a pound (and some of them – the so-called Gothic 
Florins – even had “one tenth of a pound” written on them). There was even a double florin, briefly, which is 
equivalent to our modern 20 pence piece, because it is a fifth of a pound. The double florin, though, worth 
four shillings, was very close in size to, and easily confused with, the five-shilling crown, so it was 
withdrawn. It was only minted for four years, from 1887-1890 [15]. After yet more Royal Commissions, 
including in 1918 and 1961, decimalisation was finally agreed, and the big switchover happened on 15th 
February 1971.  

So, what coins should we have? It makes sense for whole numbers of smaller coins to go into the pound. 
This means the possibilities for coins are 1, 2, 4, 5, 10, 20, 25, 50. In the UK we have six of these eight: 1p, 
2p, 5p, 10p, 20p, 50p (as well as £1 and £2 coins). A 4p coin would not be very useful – it can already be 
made with two 2p coins, and is too close in value to the 5p. In the US, they have fewer coins: 1 cent, 5 
cents (nickel, though at 75% copper and 25% nickel, perhaps it should be called a copper), 10 cents 
(dime), and 25 cents (quarter). There is a dollar coin but, due to the enduring popularity of the dollar bill, it 
hasn’t caught on.  

Is one system better than the other? The best systems combine simplicity (a small number of different 
denominations) while allowing change to be given using a small number of coins. The simplest system – 
just have 1p coins – would require us all to lug great big bags of coins around all the time. At the other 
extreme, if there were a coin of every value we would need gigantic cash registers for all the different coins 
and would no doubt never have a 47p coin when we needed one. As a measure of how efficient different 
systems are, Dr Adam Townsend at the University of Durham suggested using the average number of 
coins required to make up each amount of change up to the point where the currency switches to notes. 
For the US, that’s one dollar. For the UK, it’s five pounds. We can think about whether this is the right 
measure or not. Some currencies have notes starting at much lower values than others, and this may skew 
the results. I modified the Python script he recommended to calculate not just the mean but the median 
number of coins, and I also felt that a US – UK comparison would be more informative if we calculated the 
change up to the same amount in both currencies: 99p/99¢. My code, and links to his articles, are at the 
end of this transcript. 

For values of change from 1p up to and including 99p, the current UK system needs a (mean) average of 
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3.43 coins, and a median of 3 coins. For up to 99¢ the US system needs a mean of 4.75 coins and a 
median of 5. So it’s much worse, with some amounts needing eight or even (for 94¢ and 99¢) nine coins 
(the UK system never needs more than 6 coins). Adam Townsend calculates average change up to and 
including the smallest bill so it calculates 4.75 for the US system but 4.61 for the UK.    

By the way, if we had eight fingers like most cartoon characters, rather than ten, we’d probably use a base 
8 system with 8 × 8 pennies in the pound. Then we could have 1, 2, 4, 8, 16 and 32p coins, and with a £1 
=64p and £2 = 128p coin, we’d need only a mean (and median) of 4 coins to make change up to the 
smallest note being a £4 = 256p note, and you’d need at most one of each coin for any given amount of 
change. But I digress!   

Should the US switch to 20 cents rather than quarters? Then the coins are 1, 5, 10, 20. The mean average 
change is 5.05 coins, so the US should stick with quarters, unless it wants to add other coins, like a 2 cent 
or 50 cent coin. Does this mean the should UK switch to “quarters” rather than 20p? Curiously, this would 
make absolutely no difference to the amount of change received. The outcome is identical, given the other 
coins we have.  

All this assumes we are getting change in the most efficient way. Anyone who has used an automated 
checkout at a supermarket knows that’s not always the case. Because self-checkout machines are often 
based on global designs, and most countries have fewer different coins than us, these machines can take 
any of our eight coins but can usually only give six different kinds of coins in change. Most often, this is 1p, 
2p, 5p, 20p, £1, £2. If we just look at amounts of change up to 99p, we now find we get 4.75 coins on 
average (or a median of 5), which is much more than we would get from a human. If we test amounts up to 
£4.99, we get a mean of 5.91 and a median of 6. Interestingly, as Adam Townsend points out, things would 
be much better if the coins instead were 1p, 2p, 5p, 20p, 50p, £2. For amounts up to 99p you would get a 
mean of 3.84 coins and a median of 4. 

There are some issues with coins. The 5p is irritatingly small. The 1p and 2p are irritatingly heavy. (If you 
are outside the UK, you probably have similar gripes with your own currency.) Is it time to ditch some of 
them? We used to have halfpenny coins, even post-decimalisation, and we even had farthings within living 
memory. The farthing was discontinued in 1960 and the halfpenny in 1984. Now, I’ve done some 
calculations, with the aid of the Bank of England’s inflation calculator (at time of writing, as it only covers 
complete years, the calculator only compares a given year to 2021 prices.)  It turns out that £1 in 1960 
would be worth £16.18 today (or actually at the end of 2021). One farthing is a quarter of an old penny, and 
so 1/960th of a pound. So that farthing would be worth 1.7 new pence as at 2021, and with inflation at over 
10% in 2022, that’s only going up. By that token we should get rid of the 1p coin and we are close to the 
point where we might consider getting rid of coppers completely. 

How about halfpenny coins? They were discontinued in 1984, and £100 in 1984 is worth £263.02 today. So 
a 1984 halfpenny would be worth 1.3p today. Again, a strong case for getting rid of the 1p coin. (In fact, 
halfpennies would have been phased out sooner, except that the Bank of England were worried that it 
might worsen inflation, as all the prices might be rounded up to the nearest penny.) The halfpenny coin was 
not missed as a coin in itself, but some had other uses for it. A letter to the Times begged “let not its 
existence be imperilled. It is indispensable for levelling off pendulum clocks". We would manage perfectly 
well without the penny. The Canadian mint ceased production of the Canadian cent (fondly known as the 
penny) in 2013. They didn’t have a two cent coin so their smallest coin is now 5 cents. Items can still be 
priced in pennies, and electronic transactions can still be done to the nearest penny, but change is given to 
the nearest five cents. 

One day we may not use coins at all. But I think that day is still (happily) quite far off. I hope you’ve enjoyed 
this mathematical guide to coins. In my next lecture on “maths and money” we look at how maths can help 
us to find the best strategies when we buy, sell, bargain, barter, and bid at auctions. I hope to see you then. 

© Professor Sarah Hart 2022 
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Further Reading 

• Hiero’s Crown: for a description of how the account of Vitruvius could have been correct, see The 
Vitruvius Tale of Archimedes and the Golden Crown, by Amelia Carolina Sparavigna, 
https://arxiv.org/ftp/arxiv/papers/1108/1108.2204.pdf. Professor Chris Rorres at Drexel University 
has posted the relevant passages of Vitruvius, the treatise of Galileo, and other sources, alongside 
English translations, at https://www.math.nyu.edu/~crorres/Archimedes/Crown/CrownIntro.html   

• For a much more in-depth history than I can give on alligation and linear programming, read the 
excellent paper Linear programming from Fibonacci to Farkas, by Norman Biggs, which you can 
download at http://eprints.lse.ac.uk/106596/.  

• If you want to read Liber Abaci and your Latin is on the rusty side, there’s an English translation (we 
only had to wait 800 years!)  Fibonacci's Liber Abaci: A Translation into Modern English of Leonardo 

Pisano's Book of Calculation, by Laurence Sigler (Springer New York; 2002, ISBN 978-0387407371). 

• Marianne Freiberger wrote a good article in 2017 about the introduction of the 12-sided £1 coin in 
Plus magazine: https://plus.maths.org/content/new-1-coin-gets-even 

• You can read a short summary of the history of decimalization at the Royal Mint website: 
https://www.royalmint.com/discover/decimalisation/decimal-debate/ 

• Adam Townsend’s entertaining blogs about coin denominations in different currencies and about 
vending machine change appeared in Chalkdust magazine.  
https://chalkdustmagazine.com/blog/forget-a-new-1-pound-coin-we-need-a-1-pound-23-coin/   
https://chalkdustmagazine.com/blog/self-service-machines-give-awful-change/  
He also made a programme on change for Radio 4’s “Boring talks” about it, which is well worth a 
listen: Boring Talks Episode 33: Change https://www.bbc.co.uk/programmes/p06xvmpz  

• The Python script I used is adapted from the one Adam Townsend used. My script is below, and 
you can play around with it at one of the many free online Python compilers, for example 
https://www.w3schools.com/python/trypython.asp?filename=demo_compiler 

coins = [1,2,5,20, 100, 200] 
rangecoin=99 
min_coin = [100] * (rangecoin+1) 
min_coin[0] = 0 
for min_of_i in range(rangecoin+1): 
 for c in coins: 
  if c <= min_of_i and (min_coin[min_of_i - c] + 1 < min_coin[min_of_i]): 
                min_coin[min_of_i] = min_coin[min_of_i - c] + 1 
print(min_coin) 
print(sum(min_coin)/rangecoin) 
import statistics 
print(statistics.median(min_coin))  

• The Bank of England’s inflation calculator https://www.bankofengland.co.uk/monetary-
policy/inflation/inflation-calculator can show how prices compare to today, for any year since 1209!  

 

Image Credits 

Unless otherwise specified, the technical diagrams are drawn by me and are ©Sarah Hart; photos/images 
are either taken by me or are public domain images. 

• Hiero II coin, photo by Sailko, CC BY 3.0, via Wikimedia Commons. 
https://en.wikipedia.org/wiki/Hiero_II_of_Syracuse  

• Reuleaux triangle drill bit gif by LEMeZza, CC BY 3.0, via Wikimedia Commons. 
https://commons.wikimedia.org/wiki/File:Rotation_of_Reuleaux_triangle.gif  

• Images of coins (20p, 50p, £1, Canadian “loonie” dollar, Bermuda currency), are copyright the 
various national mints, but their use falls under the fair use policy.  
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