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In our exploration of the brain, we have examined its size, its convolutions, and the geomet-
ric marvels that define i t s s  t ructure. Yet, t hese a natomical f eatures a l one c annot e xplain the 
remarkable abilities of the human mind or the intricate behaviours of other species. To un-
derstand how the brain operates, we must shift our focus from the static geometry of its folds 
to the dynamic connectivity of its components. The brain is, at its core, a network—a web of 
interconnected neurons that communicate through intricate pathways of electrical signals to 
achieve all aspects of cognition. These networks, much like the complex systems governing 
transportation, communication, or the internet, exhibit principles that transcend their individual 
components, giving rise to emergent phenomena.

Networks in neuroscience offer a framework to understand how information flows t hrough the 
brain, how regions interact to produce coordinated activity, and how disruption in these in-
teractions leads to dysfunction. By representing the brain as a network (aka as a graph in 
mathematics)—where nodes correspond to neurons or brain regions and edges represent con-
nections or interactions—we can apply mathematical tools from graph theory to characterize 
its topology. Is the network organized hierarchically or modularly? Does it follow small-world 
principles, allowing efficient c ommunication a cross d istant r e gions? T hese q uestions a re not 
merely theoretical; they underpin our understanding of cognition, learning, memory, and even 
consciousness. In this chapter, we shall explore the mathematics of networks and how they 
provide a lens to study both the remarkable capabilities of the brain and the vulnerabilities that 
arise from its intricate connectivity.

3.1 Networks everywhere

From the tangled web of blood vessels in an organism to the sprawling infrastructure of high-
ways connecting cities, networks are ubiquitous in both nature and human design. In its ideal 
form, a network is defined as a  collection o f n odes, representing t he f undamental units o f the 
system, and edges, which encode the relationships or interactions between these units. For 
instance, in a social network, individuals are nodes, and the edges connecting them may rep-
resent friendships or professional ties. In the World Wide Web, web pages form the nodes, 
and hyperlinks are the edges facilitating navigation between them.

Mathematically, a network is defined as a set N  of N  nodes labelled 1 to N  and a set of edges
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E connecting them. For instance, Figure 3.1 shows a simple network with

N = {1, 2, 3, 4, 5, 6}, (3.1)
E = {(1, 2), (1, 5), (2, 5), (2, 3), (3, 4), (4, 5), (4, 6)}, (3.2)

Where the pair (1, 2) means that node 1 and node 2 are connected.

Figure 3.1: A simple network with 6 nodes and 7 edges.

3.2 Connectomes

At the heart of neuroscience lies an ambitious question: can we fully map the wiring diagram
of the brain? This map, known as the connectome, captures the complete set of neurons
(nodes) and their synaptic connections (edges) in an organism. The connectome is akin to a
country map, where each city represent neurons and the roads linking them represent synaptic
pathways. Much like a map will give you the best way for people and goods and people to move,
the connectome reveals how signals flow through the nervous system, orchestrating behaviour
and cognition. While the idea seems straightforward, the task of creating a connectome is
immensely challenging, requiring unprecedented levels of precision and resolution. In this
Section, we will explore the concept of the connectome, the methods used to map it, and the
broader implications of decoding the wiring diagrams of living organisms.

3.2.1 The worm turns

The full connectome of the humble worm Caenorhabditis elegans stands as the first and, for
many years, the only example of a complete neural wiring diagram. With its 302 neurons
and 7,725 synaptic connections, C. elegans was chosen for its simplicity and ease of study, a
scientific marvel, especially when compared to the billions of neurons found in more complex
organisms. Yet, mapping even this modest network was an extraordinary feat. Researchers
spent over a decade reconstructing the connectome using thousands of electron microscopy
images, painstakingly tracing each neuronal process and synapse by hand. This endeavour,
completed in 1986, marked a monumental milestone in neuroscience, laying the foundation for
connectomics as a field. Despite its simplicity, the C. elegans connectome continues to inspire
new discoveries, offering profound insights into the relationship between neural architecture
and behaviour.

3.2.2 The fly

In 2024, neuroscience achieved another landmark breakthrough with the publication of the full
connectome of the fruit fly, Drosophila melanogaster. With an astonishing 139,255 neurons
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(nodes) and 54.5 million synaptic connections (edges), this connectome is by far the most
detailed neural wiring diagram ever produced for a complex organism. Drosophila holds a
special place in biology as a model organism, celebrated for its genetic tractability and well-
studied behaviours. The connectome now offers a comprehensive blueprint of its nervous
system, linking neural architecture to the circuits underlying sensory processing, motor control,
learning, and memory.

Mapping the Drosophila connectome was a Herculean task, requiring cutting-edge technolo-
gies and an international collaboration spanning several years. Using high-resolution elec-
tron microscopy, researchers captured terabytes of data from thousands of ultra-thin brain
slices. Advanced machine learning algorithms were employed to reconstruct neuronal path-
ways, while painstaking manual curation ensured the accuracy of synaptic connections. The
result is not merely a map but a treasure trove of data, revealing the brain’s intricate modularity
and hierarchical organisation.

3.2.3 The human

Unlike smaller organisms such as C. elegans or Drosophila, where a connectome can be
painstakingly reconstructed using electron microscopy, the sheer complexity of the human
brain makes it impossible to obtain a full connectome. Yet, we can look at the problem from
a different perspective that only relies on non-invasive imaging techniques. One of the most
powerful methods for this purpose is diffusion tensor imaging (DTI), a specialised form of
magnetic resonance imaging (MRI) that tracks the diffusion of water molecules within the brain.
Since water preferentially diffuses along the direction of axonal fibers, DTI allows us to infer
the pathways of white matter and reconstruct a map of the brain’s structural connections.

The process of obtaining a structural connectome using DTI involves several steps. First, high-
resolution MRI scans capture the brain’s anatomy, while DTI sequences measure the diffusion
of water in three dimensions. These measurements are represented as tensors—mathematical
entities that generalises the notion of vectors and describe the direction and magnitude of dif-
fusion at each point. Fiber-tracking algorithms then use these tensors to estimate the trajecto-
ries of axonal bundles, reconstructing the brain’s white-matter tracts. The net result is a graph
where the nodes correspond to distinct brain regions (defined by cortical parcellation schemes)
and the edges represent the strength or density of the connections between them. While DTI
is not without limitations—such as its inability to resolve crossing fibers or infer synaptic con-
nections—it remains a cornerstone of human connectomics, providing a macroscopic view of
how structural networks support brain function.

3.3 Network and matrices

Now that we have shown how to obtain connectomes, we need to find ways to analyse them to
obtain meaningful information about their architecture. The first step is to transform networks
into matrices (think of them as just table of numbers).

To translate a network into an adjacency matrix A, we follow a systematic process to represent
the connections (edges) between nodes numerically in a matrix form. Here’s how it works, step
by step:

1. List the nodes: We assign a unique label to each node in the network. In this example,
the nodes are labeled {1, 2, 3, 4, 5, 6}.

2. Create a matrix grid: Construct a square matrix where both rows and columns corre-
spond to the nodes. For a network with N nodes, the adjacency matrix will be N ×N .
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3. Mark the connections: For each edge in the network, place a 1 in the matrix at the
intersection of the row and column corresponding to the connected nodes. Since the
network is undirected, ensure that the matrix is symmetric by placing a 1 in both (i, j)
and (j, i). If there is no edge between two nodes, place a 0.

Let’s try on our example shown in Figure 3.1. The adjacency matrix for this network is con-
structed as follows: There is an edge between nodes 1 and 2, so we mark A1,2 = 1 and
A2,1 = 1. Similarly, other edges are added symmetrically for all pairs in E .

The resulting adjacency matrix is:

A =



0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0


If we are given an adjacency matrix we can always obtain the corresponding network: Each
row and column corresponds to a node, numbered 1 to 6 in our case. A 1 in position (i, j)
indicates that there is an edge between nodes i and j. The matrix is symmetric because the
network is undirected, meaning connections between nodes are bidirectional.

Using the same procedure we can obtain the adjacency matrix from dTI brain data as shown
for the case of a parcellation with 83 nodes in Figure 3.2. The particular adjacency matrix
that we use for our simulations is obtained from the tractography of diffusion tensor magnetic
resonance images of 418 healthy subjects of the Human Connectome Project and is based on
the Budapest Reference Connectome v3.0 (Szalkai et al., 2017). The original graph contains
1015 nodes and 37,477 edges and it is further reduced here to a graph with N= 83 nodes and
1,130 edges (see [1] for details).

Remarkably, we already see a lot of structure in this matrix. For instance, we see two big blocks
along the downward diagonal that look similar. It corresponds to the two brain hemispheres.
Indeed, while the two hemispheres are a bit different, they mostly mirror each other. Hence,
we expect to have the same overall connectivity in each one. We also see that there are few
connections between the two hemispheres (which are contained in the two big blocks on the
upward diagonal), another typical feature of the human brain.

Figure 3.2: The adjacency matrix of the brain for an atlas with 83 different nodes.
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This adjacency matrix provides a compact and precise representation of the undirected net-
work, capturing all its edges and nodes. More importantly, it can be used to compute important
quantities related to the network as we shall now see.

3.4 Many paths

In graph theory, a path of length 2 between two nodes consists of exactly two edges, connect-
ing the nodes via an intermediate node. For an undirected network, the adjacency matrix A
provides a convenient way to calculate the number of such paths. By squaring the adjacency
matrix, we can determine all paths of length 2 between any pair of nodes in the network.

When we compute the square of A, denoted as A2 = A × A, the entry (A2)ij (rows i and
column j) represents the total number of distinct paths of length 2 between nodes i and j.
Indeed, each entry of the matrix product sums over all possible intermediate nodes that form
a path of length 2. Mathematically, the entry A2

ij is given by:

(A2)ij =
N∑
k=1

AikAkj , i, j = 1, . . . , N.

It is a routine operation on a computer that only takes a few nanoseconds for small matrices.
For example, consider a network with six nodes and the adjacency matrix:

A =



0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

 .

To find all paths of length 2, we compute A2 by multiplying A by itself:

A2 =



2 1 2 1 0 0
1 3 1 2 1 0
2 1 2 1 0 0
1 2 1 3 1 0
0 1 0 1 2 1
0 0 0 1 1 0

 .

Reading the entry (1,3) of this matrix we find A2
13 = 2, which means there are exactly two

distinct paths of length 2 connecting node 1 to node 3, passing through intermediate nodes 2
and 5, something that can be easily checked by inspection of the network.

This approach is particularly useful for networks where direct enumeration is computationally
impractical. For instance, it would be unthinkable to work out by inspection all paths of length
17 between two nodes even for a small matrix like the one in our example. A quick computation
on a computer gives

A17 =



29376 36640 26437 29638 38019 11866
36640 42570 36691 32788 51262 16887
26437 36691 19334 31668 29587 8171
29638 32788 31668 24304 43534 14781
38019 51262 29587 43534 44392 12751
11866 16887 8171 14781 12751 3382


and we find, for instance that there are 32,788 paths of length 17 between node 2 and node 4
(row 2, column 4, indicated in bold).
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3.5 Hubs and clubs

Another important notion about network is the notion of degree

3.5.1 Degree

In a graph, the degree of a node represents the number of edges connected to that node. It
provides a simple measure of how connected that node is within the network. It is simply the
count all of edges incident to a given node. For our example, the node 2 is connected to node
1,3, and 5. Hence node 2 has degree 3.

Mathematically, the degree of a node i can be computed directly from the adjacency matrix
A. To find the degree of a node, we sum the entries in the row (or equivalently the column,
since the matrix is symmetric for undirected networks) corresponding to that node:

degree(i) =
N∑
j=1

Aij = Ai1 +Ai2 + . . .+Ai,N−1 +AiN .

As an example, we can compute the degree of node 2

degree(2) = A21 +A22 +A23 +A24 +A25 +A26 = 1 + 0 + 1 + 0 + 1 + 0 = 3,

3.5.2 Hubs

In the world of networks, a hub is a highly connected node that plays a critical role in holding
the network together. Think of a hub as a major airport in a global flight network. While smaller
airports connect to just a few nearby destinations, major hubs like Heathrow link to many cities
worldwide, ensuring efficient travel between distant locations. Similarly, in a network, a hub
is a node with a high degree, meaning it has a large number of direct connections to other
nodes. In social networks, the “influencers" are hubs as they are connected to many others,
spreading information quickly, even though not always correctly. In biological networks, hubs
can represent proteins or genes that interact with numerous others, making them essential for
the system’s stability and function.

Mathematically, we identify hubs by examining the degrees of the nodes in the network. Nodes
with degrees significantly higher than average are considered hubs. For example, in a network
where the average degree is 3, a node with a degree of 10 would likely qualify as a hub. These
hubs often serve as shortcuts, allowing information or resources to move efficiently across the
network.

However, hubs also have vulnerabilities. In a flight network, disrupting a major hub like Heathrow
could severely affect global air traffic. Similarly, in other networks, targeting hubs can lead to
cascading failures. This makes hubs both powerful and fragile, emphasising their importance
in understanding and maintaining the structure and function of networks.

3.5.3 Rich clubs

Imagine a group of influential people—celebrities, politicians, or business leaders—who not
only have many connections but are also closely connected to one another. This elite circle,
where the most connected individuals form their own tightly-knit group, is known as a rich
club in the world of networks. Just as hubs are the nodes with the highest number of connec-
tions, a rich club refers to a subset of hubs that are disproportionately well-connected among
themselves. An example of such a structure is shown in Figure 3.3.
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In networks, rich clubs often emerge in systems where cooperation or coordination among
the most important nodes is beneficial. For instance, in the internet’s network of servers,
the richest nodes—those with the most connections—frequently link directly to one another,
creating a highly efficient backbone for data flow.

Figure 3.3: An example of a networks with hubs, clubs, and communities. The nodes in red
are hubs. They have high degrees (many more connections to other nodes than on average).
They are also connected with each other making them a rich club. The nodes of lower degrees
they are connected to form a community.

Mathematically, a rich club is identified by analysing how densely the high-degree nodes are
interconnected. If the connections between hubs are significantly more frequent than what
would be expected in a random network, we say that a rich club exists. This can be quantified
using a “rich club coefficient”, which measures the density of connections among the top k%
of nodes ranked by degree. A high coefficient indicates that these elite nodes are not just hubs
but are also preferentially linked to each other.

Rich clubs play a critical role in the resilience and efficiency of networks. Their interconnec-
tivity creates robust pathways for communication, allowing information to flow even if some
nodes are removed. However, this same feature makes them vulnerable to targeted attacks;
disrupting a rich club can have far-reaching consequences for the entire network.

In the human brain, neuroscientists studying the connectome have identified rich clubs struc-
ture, with regions like the precuneus, superior frontal cortex, and thalamus, which play pivotal
roles in integrating sensory input, attention, and executive control. These regions work to-
gether to distribute information efficiently across the brain, much like a network of highways
linking major cities. However, rich clubs also highlight the brain’s vulnerabilities. Damage to
these regions—due to injury or diseases like Alzheimer’s—can severely disrupt global commu-
nication, leading to widespread cognitive impairments.

3.6 Small-worldness

When we think of communication in a network, we want to be able to connect two nodes in
a network by a short path with few edges overall. To formalise such an idea, we need two
introduce two notions.

First, the average path length tells us how many steps, on average, it takes to travel between
two nodes in the network. First, we find the shortest length between two nodes and construct
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a distance matrix D, where the entry dij represents the shortest path length between nodes i
and j. The distance matrix for our example is:

D =



0 1 2 2 1 3
1 0 1 2 1 3
2 1 0 1 2 2
2 2 1 0 1 1
1 1 2 1 0 2
3 3 2 1 2 0

 .

To compute the average path length, L, we sum all the finite entries in D and divide by the total
number of node pairs (N × (N − 1)). For our network, we have

L = Average Path Length =

∑
i 6=j dij

6× 5
=

5

3
.

A short average path length means the network is efficient, allowing information, traffic, or
signals to travel quickly. In the brain, for example, a short path length ensures that different
regions can communicate rapidly, supporting high-level cognitive functions. For our 83 node
network, we have L = 10490

6806 ≈ 1.54. On average, it takes about 1.5 steps to go from any 2
nodes.

Second, the clustering coefficient, C measures how tightly nodes are grouped together. It
answers the question: If two of my friends are connected to me, are they also connected to
each other? A high clustering coefficient indicates that nodes tend to form tightly knit groups,
like neighborhoods in a city or specialized regions in the brain. In the brain’s connectome,
clusters often correspond to areas working together on specific tasks, such as processing
visual input or coordinating movement.

Mathematically, it amounts to find all the triplets of nodes that are connected among the nodes
that have at least 2 neighbours. For our graph, 5 nodes are connected to 2 nodes but there is
only 1 triplet (nodes 1,2,5), hence we have C = 1/5.

Now, let’s combine these two ideas to explore small-worldness. A network is said to have
“small-world” properties if it combines a short average path length (like a highway system con-
necting distant cities) with a high clustering coefficient (like neighborhoods where everyone
knows everyone else). Small-world networks are efficient, striking a balance between local
specialization and global integration. This property is found in many real-world networks, in-
cluding social networks and the internet.

In neuroscience, small-worldness helps explain how the brain operates with both speed and
precision. Local clusters of neurons can specialise in specific functions (a process called
segregation), while global connections between clusters ensure coordination across the brain
(or integration). This small-world structure is thought to be critical for processes like memory,
learning, and adaptability.

Epilogue

The use of networks in neuroscience has revolutionised how we understand the brain, provid-
ing a new fundamental tool and theoretical framework to study its complexity. One of the most
significant achievements is the discovery of the brain’s “small-world” architecture—a design
where local clusters of neurons handle specialised tasks while global connections between
clusters enable efficient communication across the brain. This insight helps explain how the
brain achieves both speed and adaptability, allowing us to think, move, and react in real time.
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Networks have also shed light on the concept of hubs—highly connected brain regions that
act as control centres, coordinating information flow. For example, regions like the precuneus
and thalamus are critical hubs for integrating sensory input and executive functions. By map-
ping the brain’s structural and functional networks, researchers have identified disruptions in
connectivity patterns that are linked to conditions such as Alzheimer’s disease, autism, and
schizophrenia. These discoveries have opened new avenues for diagnostics and therapies,
making network neuroscience a cornerstone of modern brain research.

Yet, there are two important aspects of brain networks that we have not discussed. First, the
brain is a dynamic organ where change is the only constant. While the structural networks are
static, the way information flows is dynamics. To capture this dynamic, there is another type
of networks that encode how different parts of the brain interact with each other, the functional
network that we will encounter in our next lecture. A second important feature is that what
makes the brain so efficient also creates potential weaknesses. We will see in future lectures
that some neurodegenerative diseases hijack the axonal highway to spread efficiently through
the brain.

Further reading

The ideas of using graph theory and networks to study the brain are so powerful and successful
that there are many great books available to learn more about it, both technical and popular
science. Here are a few.

• Networks of the Brain (2016) by Olaf Sporns, one of the leaders of the field is a technical
but very readable book [4].

• Sync: The emerging science of spontaneous order (2004) by Steven Strogatz recounts
in wonderful terms the genesis of the discovery of small-worldness [5].

• The 1998 paper by Duncan Watts and Steven Strogatz is a must-read classic. It is one
of the most cited papers of mathematics, yet it is very clear and readable [6].

• As the title suggests Connectome: How the brain’s wiring makes us who we are (2012)
is all about the progress in connectomics. [3].

• The entangled brain: How perception, cognition, and emotion are woven together (2022)
by Luiz Pessoa is well written and informative presenting a more in-dpeth analysis of
brain networks than most books [2].
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