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You might think I’m just going to tell you about watching Match of the Day at 10.30 on a Saturday evening. 
But we are going to look at a variety of different situations in a number of sports and see how some basic 
physics illuminates what goes on. There is of course vastly more sport that I can’t talk about than I can, and 
if the sport that you do is not included, then I can only apologise. 
I want to start off with talking about balance. If you watch gymnastics or if you go to the circus and watch a 
tightrope walker walking along a high wire – I was hoping that one of the Gresham staff was going to 
demonstrate, but sadly not! – you will notice that they often tend to carry a long pole as they balance. The 
first question is, why do they do that? Why do people carry a long pole when they want to balance on a 
wire? 
If you go around and ask people what is going on, you will get a variety of answers, even from engineers 
and mathematicians. They think may be the pole makes your centre of gravity lower, so that when your 
centre of gravity is lower, you are more stable than when it is raised. In fact, the pole makes your centre of 
gravity higher; you’re worse off carrying the pole in that respect. If you want to maintain balance, obviously 
you want to be symmetrical about the centre. Generally, if you are trying to balance on the ground, you 
want to broaden your base, so with your legs apart, you can balance better than with your legs together. 
But the key to understanding balance and why these tightrope walkers are carrying a pole is the concept of 
moment of inertia. 
The thing that determines whether objects can move easily or not is called their moment of inertia, and 
what this measures is the distribution of mass in a body. If the mass is primarily far away from the centre, 
you have a high inertia; if it is close to the centre and concentrated, you have a low inertia. So if you have 
two bodies which have the same diameter, the same radius and the same mass, but one is a hollow shell 
and one is a solid sphere, if you try to move them, if you try to spin them or roll them, you will find the 
hollow object moves more slowly; it has a greater inertia. If you roll them both down the same slope, the 
solid object will roll down more quickly to the bottom than the hollow one. What determines your inertia is 
your mass and your size, but also some measure of the concentration of the mass. So when the mass is 
far away, you have a large inertia. Now, this is what is going on with the tightrope walker with the pole: by 
carrying the pole, you distribute mass far away from your centre, you increase your inertia, and that means 
that when you move, you move more slowly. So when you wobble, you wobble like an oscillator with a very 
long period, and so you have lots of time to correct yourself. 
If I try to balance a pointer on my finger when it I s contracted and rather small, it’s much harder to do it 
than when I completely extend it, when its inertia is larger, and again, it’s because when it wobbles, it 
wobbles more slowly in this case. What’s going on here is that the moment of inertia, the distribution of 
mass, is being increased, and it is harder and slower to move. 
There are many sports where this inertia effect is important, and particularly where any type of rotation or 
spin is involved. If you are a gymnast or a high board diver and you want to undergo several somersaults 
as part of a manoeuvre before you get to the water or the ground, then clearly you want to rotate as fast as 
you can in order to have room to do more somersaults. So if you want to rotate fast, you want to have a 
small inertia, and that means you want to have your mass distribution more concentrated; that’s why high 
board divers will tend to move into this tuck position of a ball: they will spin more rapidly. If you look at an 
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ice skater pirouetting, they will start to spin with their arms out: their inertia is high. As they draw their arms 
in, their inertia becomes smaller, and they will spin faster. 
There are other sports where this same type of effect occurs. For example, with the gigantic tennis 
racquets that have evolved over the years with enormous heads, there is more mass a long way away from 
the racquet handle. The inertia is higher, and so it’s more stable. It does not reverberate on your hand; it 
doesn’t move so easily. 
If you look at cyclists, then you will see that cycle wheels don’t look like the cycle wheels that you have on 
your bike. If you are trying to break the world sprint record indoors on the track, you may have wheels that 
are much more disc-like. So again, the moment of inertia of a fancy, high-tech racing cycle wheel is quite 
different to the moment of inertia of your ordinary cycle wheel. 
If you are a runner, this comes into play at a rather simpler level. If you run with your arms rather raised, 
you behave rather differently than if you have your arms down. When your arms are down, your inertia is 
larger, there’s more mass a long way away from the centre of movement; when you bring your arms up, 
then a very slight effort can make a small movement restore balance very easy. So a good running style 
optimises this inertial effect, reduces the inertia, makes you able to make small changes very quickly – the 
opposite to the tightrope walker, who wants lots of time to make small changes. 
Let’s move on from balancing to jumping. High-jump nowadays is a rather spectacular event, even more so 
if you don’t have an airbed landing area! Of course, almost every high jumper that you see on the television 
or at a top class athletics event nowadays uses the so-called Fosbury Flop technique, which first appeared 
on the international athletics scene in 1968 when Dick Fosbury, the American high jumper, introduced this 
technique at the American Olympic trials and then he won the gold medal at the 1968 Olympics, as the 
only jumper using this technique. The interesting question to ask is what’s going on here, so why is it 
effective to use such a technique? 
Well, what are you doing when you high jump? You are simply transferring energy in one form to another. 
You have a certain energy of motion, and you convert that into lift and you do work against gravity. What’s 
happening is that your incoming energy gets converted into your weight, your mass, times the acceleration 
due to gravity, times the height above the ground that it’s raised – when I say “it” is raised, what we mean 
by “it” here is your centre of gravity. This is the key about high jumping: you use your incoming energy of 
motion to raise the centre of gravity of your body, your weight, by some height. 
When you are at school playing around in the sandpit, you probably began by doing high jumping using the 
so-called scissors technique – so you basically just run in and step over the bar at high speed. This is a 
safe technique; it’s very simple, but it’s very inefficient, because not only is your body clearing the bar, but 
your centre of gravity is going over the bar, and it’s going really rather far over the top of the bar. With a 
scissors jump, the centre of gravity of your body goes way up here over the bar; it clears the bar by a large 
amount. But what goes on with a technique like the Fosbury Flop, your body is bent over, rather like a 
banana, it’s curved over in this way, and for a shape of that sort, the centre of gravity lies somewhere here. 
Using the Fosbury Flop technique, it is possible for your body to go over the bar but your centre of gravity 
to go underneath, so it’s a much more efficient way of using your launch energy to go upwards. 
Stefan Holm, who won the gold medal at the Athens Olympics, a remarkable high jumper, cleared 2.37m; 
that’s not a world record, but he’s only 1.80m tall, so he jumps way, way above his head height. One of the 
reasons he was so effective was he fantastic curvature of the body, which enabled his centre of gravity to 
go way below the bar, even though his body went over it. 
This type of technique we see not just in high jumping but also in pole vaulting. A pole vault technique 
plays a similar type of game: you have an incoming energy of motion, horizontal motion, which you want to 
convert to vertical lift, vertical work against gravity. Exactly the same principle holds: you have to convert 
the kinetic energy that you come in with into height that your centre of gravity is raised multiplied by your 
weight. High jumping is relatively inefficient at transforming that incoming energy into vertical lift. It’s 
technically complicated, you have to lose quite a lot of energy in the take-off process, but pole vaulting is 
rather efficient. There’s an intermediate step. Your energy of motion gets converted into elastic energy by 
flexing the pole, and then the pole unfurls and launches you upwards, and if you are good, you will make 
use of the same technique as the high jumper: you’ll curl your body over the top of the bar so that your 
centre of gravity goes underneath. 
With rather simple mathematics, I’ll show you a few equations in this talk, just to show you how you can 
understand what’s going on in these events very easily. In pole vaulting, the kinetic energy that you lose 
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when you take off goes into raising your potential energy or raising your weight. Well, here’s your kinetic 
energy – the half times the mass times the velocity squared – that you come in with, and that gets turned 
into your mass times acceleration due to gravity times the height that your centre of gravity is raised. So 
your mass cancels out; that doesn’t make any difference, and so the height just looks like the square of 
your speed divided by twice the acceleration due to gravity. Well, if you come in at ten metres per second, 
like a top class sprinter, acceleration due to gravity is about ten, you expect to raise your centre of gravity 
five metres, and that’s almost exactly right for an Olympic winning vault. The Athens Olympics I think were 
won in 6.01m. So given that your centre of gravity starts a bit over a metre above the ground at the 
beginning and when you go over the bar it’ll go a little below, this predicts that the height cleared will be 
about 6 metres.There’s almost perfect transfer of the initial energy into the final result. 
High jumping, the world record is 2.45m – fairly amazing, mark it out when you get home, it’s over eight 
feet, nearly eight feet one, but you can see it’s vastly less than this. It’s about half this, and so high jumping 
is about half as efficient at transferring horizontal into vertical energy. 
Well, one of the things that you have to have in those sorts of events is a lot of strength in order to launch 
yourself upwards. We’re going to look at little about what we can learn about strength, and how it depends 
on how big we are. Strength is something that does not grow at the same rate as your mass or your weight, 
so as things get bigger, their strength grows in a very particular way, and you can understand that if you 
think about what you have to do to break something. In this case, suppose you want to break this piece of 
paper. We just tear it. So all we have to do is to break it along a little cross sectional surface, so all we have 
to do is to break all the atomic bonds along a line here, so we have to break an area. You can see that in 
this picture, that if you want to break this stick here, you’ve got to break an area of atomic bonds. So in 
general, strength is proportional to an area, it’s proportional to the square of your size. On the other hand, 
your volume as you get bigger grows like the cube of some measure of your size; it grows more quickly. 
If you have animals that just change in size but have the same basic body plan, like the cat and the kitten, 
as they are getting bigger, they are getting relatively weaker; their strength grows more slowly than their 
weight. I picked cats because you can see for yourself this effect. If you look at a big cat and it puts its tail 
in the air, you’ll see the tail will curve over, but if you look at a kitten, you’ll see that the tail sticks up rather 
like a sharp spike. The big cat is not strong enough to keep the tail upright, so as it’s grown, its strength 
has not grown at the same rate as its size, whereas the kitten is still strong enough to do that. 
Well, we want to think about that idea in connection with people like this: weight lifters. As you know, 
weight lifting is one of those sports where there are weight categories. So if you weight 350 pounds, you 
will not be competing against people that weigh120 pounds. Well, what does looking a little more closely at 
the strength against size variation tell us? Just to restate what we’ve seen: your mass looks like your 
density times your volume. All people have about the same density; it’s fixed by the density of atoms and 
solids, and so your mass will look like your density times your volume, and your volume grows as the cube 
of some measure of your size. So as you get bigger, your mass will grow in proportion to the cube of your 
size. 
As we’ve seen, as we change the size, your strength will grow just as the square of your size, because it 
depends on the cross section area of your muscles and so on. You can see here that there is a sort of 
relationship between your weight, going like R cubed, and your strength, going like R squared. I call it the 
“two-thirds rule”, so your strength is proportional to your weight to the two-thirds power. 
Strength is proportional to weight to the two-thirds power, or if you like, your strength cubed is proportional 
to your weight squared. If you’re interested in a strength to weight ratio, then you would have to divide the 
strength by weight, and it would like one over weight to the third or one over the size. As with the cats, as 
you grow bigger, relatively speaking, your strength falls. A little dog can carry another little dog on its back, 
you can just about carry another person piggy back on your back, but a horse could not carry another 
horse on its back, and an elephant could not carry another elephant on its back. So as you get bigger, 
relatively speaking, you get weaker. 
Well, I thought to try this out by looking at the world weight lifting records. Remember that what we’re 
predicting is that your strength cubed is proportional to your weight squared. Well, the strength of a weight 
lifter is the weight that they lift, and their weight is tabulated rather meticulously by the World Weight Lifting 
Association. So if we plot the cube of the weight that’s lifted by a weight lifter against their own weight, we 
look up all the world records in the different weight categories, plot them on this picture, what you see here 
is really rather beautiful agreement with this simple rule, that the world weight lifting records simply follow 
this two-thirds strength against weight rule. You can even see – so here’s the two-thirds slop, here’s the 
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line giving that rule – you can even see who is the person who is really the strongest pound for pound lifter: 
that’s the person who is most above this line. There’s one person I haven’t put on the picture, and that’s the 
sort of super-duper heavyweight category, where the weight of the lifter can be absolutely unlimited, and 
the person who holds the record there has some stupefying weight of 350kg or something bizarre. If we 
were to put his weight lifted on this picture, it would be way below the line. He is easily the weakest pound 
for pound lifter. If he tried to lift the weight that this line would predict that he should lift for his weight, he 
would break, so the forces that would be exerted on his body would break the atomic bond. 
By a similar type of analysis, you could think about other sports, like shot putting, discus throwing, where 
size and strength clearly play a role, but there are no weight categories, so we don’t have weight 
categories for hammer throwers and other strength events. Of course in practice, only the biggest people 
tend to take on those events, but just as you have lightweight and non-lightweight crews in rowing, you 
could have weight categories in many other events, and the way you would figure out whether that was 
justified or needed would I think be simply by drawing a picture like this of what were the distances 
achieved by different competitors against their own weight. 
Well, that’s really a battle, as it were, against gravity of strength. I want to just point out a few other things 
about gravity that may not be so obvious. If you were awake just now when we talked about launching 
upwards to do the pole vault, you remember that the height being achieved depended on the launch speed 
squared divided by the acceleration due to gravity. It was actually V squared over 2G. Whenever you 
launch something upwards or you throw a projectile like a discus or a hammer, the height that you achieve 
or the distance that you go always depends on this combination: the square of the launch speed divided by 
the acceleration due to gravity. It couldn’t be otherwise, because they’re the only two things that affect the 
problem, and if what you’re interested in is a distance, either upwards or along the ground, the only way 
that you can combine a velocity and an acceleration to get a quantity with units of a distance is like this It 
makes sense if you increase the launch speed, you will obviously throw or jump higher. If gravity is weaker, 
so if G is smaller, then again, it will be a smaller force that you’re working against and you’ll be able to 
throw or jump further or higher. 
Well, the interesting thing about the Earth is that the acceleration due to gravity varies around the Earth’s 
surface: it’s not the same everywhere. That means of course that in some places it’s smaller than it is in 
others. This variation occurs for two reasons. The first is that the Earth is not perfectly spherical, so it’s 
slightly flattened, it’s slightly squashed, and in some places there are mountains and there are high altitude 
venues. So there is an effect on the acceleration due to gravity just because of the shape of the Earth. But 
the more significant effect arises because of the rotation of the Earth. If you’re standing at the North Pole or 
the South Pole, then the acceleration due to gravity is created by the force of gravity exerted by all of the 
mass of the Earth underneath you pulling you towards the centre; but if you move to the Equator, you have 
that same effect, countered by the centrifugal effect of the rotation of the Earth, pushing you outwards, so 
the net force of gravity, the difference between its intrinsic pull and rotation pushing you outwards, is 
smaller at the Equator than at the Poles, and obviously as you move from the Equator to the Poles, it 
varies steadily. 
This is a simple, interesting effect, so the value of the acceleration due to gravity at the Equator is smaller 
than it is at the Poles, so if you weighed something with a spring balance, so if you had a mass from the 
market with one kilogram on it, there’s one kilogram of atoms in it, and you weighed it with a spring 
balance, it would have a different weight at the Equator than what it has at the North Pole – tricky problem 
for market inspectors up in the Arctic climate. 
Well, how big is this effect? Well, it’s not very large, but it’s significant. So for example, if you had a 200 
kilogram mass, weightlifting barbell, then that 200 kilogram mass in Mexico City weighs 200.8 kilograms up 
in Helsinki. If you want to break the world weightlifting records, you should head towards the Equator. A 
place like Mexico City also happens to have high altitude, so there’s the Earth’s shape effect to help you as 
well. Similarly, if you are high jumping, just the effect on V squared over G, the effect on G, a two metre 
high jump in Helsinki is equivalent to 2 metres and 5 centimetres in Mexico City, just because of the 
change in acceleration due to gravity on the Earth’s surface. That’s very significant – easily enough to 
change places and medal positions in a major championship. An 8 metre long jump in Helsinki is worth 8 
metres and 20 centimetres in Mexico City. 
I want to move on to look at things to do with time, and timing, now. To begin with, a very simple example 
about why you might worry about timing. Here’s an athletics event – equally it could be a swimming event – 
and if this is the parents’ race at the school sports, which you’re probably taking notes about to get some 
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advantage, then you know how it works. You’ve got eight lanes on an international track here. The 
average, the maximum allowed size for a lane is 1.25m, the smallest is 1.22m, and there will be a starter 
over here. Now, suppose the starter just had an old-fashioned starting pistol, and says “On your marks, 
set,” bang. What then happens is the sound travels at the speed of sound, so at sea level in ordinary 
temperature conditions, that’s about 340m per second, 750 miles an hour. The first question is do you gain 
a significant advantage by being close to the starter as opposed to being far away? What you want to know 
is that what’s the time it takes for the sound, for example, to go from one lane to the next, so does the 
person in 8 hearing it before 7 gain a significant advantage, and then you might ask, well, what about then 
between 8 and lane 1? The interesting thing is that, easy to work this out, you know distance equals speed 
times time, so the time difference is just the distance between the lanes divided by the speed of sound. 
Well, for say, two people in lanes next to each other, the time delay is 4000 th of a second, so you wouldn’t 
worry too much about that. Electronic timing goes down to 100 th of a second, although that’s 10cm at the 
end of an Olympic 100m final, so it’s not a bizarrely small amount. But if you were to look between lane 1 
and lane 8, so you multiply this by 7, then the advantage to the person in lane 8 over lane 1 is 300 th of a 
second, and that certainly is significant. That’s almost the whole difference between coming first and fourth 
in last year’s world championships. However, don’t be alarmed: this is one of the reasons why, in top class 
athletics events, each athlete has a microphone behind their own lane, so you don’t have the school sports 
starter in the infield firing the gun, so everybody hears the sound electronically at the same time. This 
shows you that that really matters. If you are running in the parents’ race or the grandparents’ race at 
school sports, make sure that you are in lane 1! 
Another interesting matter of timing that one might think about, by using the same simple formula, that time 
is distance over speed, is to think about how quickly you have to react in different sports, so how dynamic, 
how alert do you have to be, how responsive. If you look at a football penalty kick, suppose you’re the 
goalkeeper, (because it’s football, there are strange irrational units like yards, so there are 12 yards from 
the penalty spot to the centre of the goal – it’s only a little bit more if you were to fire at an angle to the 
corner), a top class player, someone like Alan Shearer, will probably hit the ball at about 80 miles an hour, 
the goalkeeper’s got 0.3 of a second if he really doesn’t move before the ball’s kicked, so that’s the reaction 
time in football. 
If you’re at the wicket with Flintoff coming in, bowling in about 95 miles an hour, as he was this summer, or 
McGraff, you’ve got a bit more time, about 0.5 of a second to react. 
If you’re playing at Wimbledon, and you’re sort of a non-English player, that is, you know, near the final 
stage of the competition…you could be hitting, Ivanisevic I suspect probably serving 130, 140 miles an 
hour. Again, you have about 0.3 of a second if you’re at the other end and position yourself return or take 
the new position to receive the next serve. 
Table tennis, again, you have about 0.3 of a second to respond to the ball coming over. 
In a game like ice hockey, if you’re the goalkeeper in ice hockey, you have even less – well, you have no 
chance really. The goal is much smaller; you just have to fill it and hope the ball hits you. 
But you see, this is quite interesting. It’s presumably no accident here. I’ve looked at all these different 
sports, and there’s this, even at the top level, there’s this reaction time of about 0.3, 0.5 of a second, so 
presumably, this is challenging but it’s realistic. You couldn’t have sports where the reaction time was 
hundredths of a second, or it becomes rather boring if it’s sort of 5 or 10 seconds. It becomes a bit like 
bowls or something like that. 
Just for comparison, if you’re competing in say swimming or athletics, where if you move too soon you’ll be 
disqualified, so the computer will sense whether you make a deliberate or involuntary movement and press 
on your starting blocks, you’ll be disqualified if you respond less than 100th of a second after the starting 
gun has gone. But the top flight sprinters, the very fastest starters in the world, people like Colin Jackson, 
they make legal starts with response times of about 14 hundredths of a second. These are among the 
fastest human responses to stimuli. 
Well, these are ballpark reaction times to individual events. If you go to something like a team game, team 
games have a number of aspects. They have some pitch of a certain size, so it has an area. If it’s football, 
you know, it might be as much as 100m long or something like that. There are a number of players who 
move around in a semi-random way. As you go down the divisions of the football league, it becomes more 
random…and they have some sort of average speed…and there is a certain density of players. I’ve 
labelled this by – so N here is the number of outfield players per team. In rugby, it would be 15, but in 
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soccer, it would be 10. By treating this as a random process, you can work out what the average 
separation of the players is, divide the available area by the number of players, and you can work out the 
average time between encounters of players or encounters of players with the ball. The formula you get 
looks like this. It’s characteristic of a diffusion-type process, depends inversely on the speed, so as the 
speed of the players gets greater, obviously you have less time to react. It depends on the square root of 
the area of the pitch: as the pitch gets bigger, the players get rather lost, and there’s a long time between 
interactions; as the number of players gets bigger, things get crowded, you run into people, you receive 
passes more often. So if you take football, for example, the biggest pitch that you might get at Arsenal or 
Wembley Stadium, about 100m by 64m, 6400sq m, take the square root there, and you’ve got 80, and 
you’ve got 10 outfield players per team, average footballer probably moves around at about 5m per second 
when he’s feeling in a hurry. If you put the numbers in here, the typical reaction time in a game taking place 
on this pitch, with this type of speed, is 8 divided by the square root of the number of players in seconds. 
When N is 10, you’re looking at sort of 2 or 3 seconds as being the typical engagement time. If you have a 
game like rugby, where N is 15, then the time becomes a little shorter – there are more players on the 
pitch. Sn this way, you get a feel for how quickly you have to react in a game like football. 
Well, the next thing I want to say about football is something probabilistic, so I want to look at the results of 
football matches over a season, and show you how some rather simple probability can be quite revealing 
about what’s going on in a league championship. I just want to ask a provocative question: is the Premier 
Football League just a random process? So is there any skill element over and above what would be 
expected from a purely random statistical process? 
Well, let’s model the Premier League like a random process. There are 20 teams, and they each play 
everyone else home and away, so they play 19 times 2, 38 games. Just to simplify life, let’s look at the 
history a bit. So if you look at the statistics, pretty constantly every season, one in four of those games is a 
draw, so a quarter of Premier League games are a draw. We’ll assume that the probability of a game being 
a draw is one in four, 25%. Let’s be democratic and assume that the probability of a home win or a home 
defeat are the same, so we won’t pay attention to home advantage. Because one in four of the games are 
drawn, three out of four of them must be wins or losses, so it must be a three-eighths chance of a home 
win and a three-eighths chance of an away win. Three-eighths plus three-eighths plus a quarter is one. So 
these are the rules for our artificial league. Each game has a one in four chance of a draw, a three-eighths 
chance of a home win, and a three-eighths chance of an away win. 
Now, you just play the random league. You could do this with an eight-sided spinner or an eight-sided dice, 
marking two of the sides “Draw”, three “Home Win” and three “Away Win”. You would have to be fairly 
patient: it’s a lot of games to play. It’s better to write a little computer programme, and see what the results 
are. 
So you do this, and you just order the teams in terms of the number of points that they get, and here’s the 
result of our random league. So the team that comes out top here is Number 1, going all the way down to 
Number 20, and you can see there’s a fair spread. The top number of points - three points for a win, one 
for a draw, zero for a loss – has come out at 67, and down at the bottom of the table is 31. The average, 
which you can compute exactly from the rules, is actually 52.5, and sits about here. 
How does this compare with the actual League? Here you have a bit of a shock, because here’s what 
happened last season: so the bottom is Southampton, and at the top, Chelsea, and here you have Arsenal 
and Manchester United. What you notice here is that if you take out the top 3 teams, Chelsea, Arsenal and 
Manchester United, the rest of the League is really pretty completely mirrored by the purely random 
process, all the way down to the bottom, essentially the number of points, the spread between the top and 
the bottom. So what’s this telling you? The top 3 teams, they have a much better chance than three-eighths 
of winning games, more like seven-tenths, so they do much better than this random process, but once you 
get below them, it’s all completely consistent with a random process with the rules that I gave. This isn’t a 
quirk of last season. I did exactly the same thing for the season before. The structure’s the same, there’s 
just a slight transposition of names: it’s Arsenal at the top now, and Chelsea and Manchester United. 
Again, those three teams alone are doing better than the purely random model with a three-eighths chance 
of a win, but once you go below, look, 60 actual, 61 in the model, all the way down to 31, 33, the whole of 
the rest of the pattern of the League is consistent with the purely random process. So it’s worse than you 
expected! 
I want to move on to the last sort of main example I’m going to look at. It’s something that’s a little more 
complicated, so I’ll go a bit more slowly. One of the fascinating things about sport are the scoring systems. 
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Sport, for various historical and cultural reasons, has a multitude of different scoring systems. So if you 
play tennis, the whole game, set and match structure, 15, 30, 40 love, these strange numbers inherited 
from the values of French coins when the game began in France. If you go to table tennis, you have a 
more simplified type of scoring. They changed the scoring system in table tennis a year or so ago, and they 
now just play to 11 rather than 21. 
There are many games where there is an added ingredient, and you find this in squash and you find it in, 
say, volleyball, that you only score a point when you win a point on your own serve. If you’re receiving the 
ball and you win a point, that simply gains you a serve; it doesn’t gain you a point. 
Let’s think about the probability theory of a game like this. So suppose that your probability, your chance of 
winning a point that’s being played is P. We can put in a number for that later on. Your chance of winning a 
point when you’re serving is S for serving. But what’s the probability of you winning a point, scoring a point, 
when you’re a receiver? Well first of all, you’ve got to win a point with probability P to become the server, 
and then you’ve got to win your service. So, your probability R as a receiver winning a point is P, to gain 
the serve, multiplied by S, to win the point once you are serving. Well, if you then serve, what’s your 
probability of winning the point when you’re serving? Well, you could either win it straight off, with 
probability P, or you could lose it, with probability 1 minus P, but then gain service back and win the point 
for the second time. So your probability of winning it when you’re serving is the probability that you win it 
immediately times the probability that you lose your serve multiplied by the probability that you win the 
point when you’re receiving. So it’s this combination of two terms, so there’s a little bit of algebra here to 
solve, and the upshot is that you can work out what’s your probability of winning the point when you’re a 
server, what’s your probability of winning it when you’re a receiver, just in terms of P, your chance of 
winning the point in any rally. The answer is a sort of slightly messy algebraic formulae, and the interesting 
thing to note is that if you had 50:50 chance of winning any point, then your probability of scoring a point 
when you’re receiving is one-third, but it’s two-thirds when you’re serving, so you have a big advantage 
under these rules of being the server. That’s obvious because you can win, score a point immediately; you 
don’t have to go through the double track process. 
Now, squash has a strange rule – I don’t play squash, so I just asked people about this and I discovered it. 
If the score reaches 8 all, then the receiver can choose to play first to 9 or first to 10. So the question I ask 
when someone tells me this is which option should they choose? What should you do? Should you play to 
9 or should you play to 10? ell, the answer is not entirely trivial. Using what we’ve seen already, suppose 
that you decide you’ll play to 9 when you’re receiving, what’s your chance of winning? Well, it’s this thing 
that we called R just now, which is equal to P times S, so you’d have to gain serve and then it would be 
your chance of winning as a server. But what if you play to 10? There are 3 ways which you could win. You 
could either win the next 2 points, so as a receiver you would first win to gain serve and then while serving, 
you would win another point, so this would be R times S. Or you could win a point, then lose it, then win it 
again to re-gain serve. Or you could lose the point, but then win and win again. So you have these 3 
routes, and these are the probabilities for you going along those 3 routes, so your chance of winning if you 
start by receiving and you’re playing to 10, is the sum of these 3 probabilities. The question you’ve got to 
ask is that is this sum here bigger than R? Remember R and S we know just in terms of P. So the chance 
of winning if you play to 10 is this, winning to play to 9 is that If you look at the algebra here, there’s a 
rather simple answer, that playing to 10 will be best if S is bigger than a half. Go back to your other 
formula, this occurs when P is bigger than 0.38. So if you have a 38% or better chance of winning any point 
in the squash game, you should elect to play to 10 not to 9. Why is that? Well, intuitively you can 
understand it. ou see, if you’re a good player, so your chance of winning the point was 50 or 60%, you 
should play to 10; if you’re a bad player, you might fluke one point and win playing to 9, but your chances 
of fluking 2 points to win to 10 are less. So the good players should always play more points because he’s 
more likely to win out in the long run. 
This is an interesting example, that in a game like squash, with this type of only winning points on your 
serve and this added rule, there’s a rather complicated probability structure about what’s going on. In some 
games, you play a sequence of games and sets, and similar type of analysis would be able to tell you that 
if you had the probability of winning a point in tennis, how would that translate into the probability of winning 
the game, or of winning the set? What you’ll discover is that as the probability of winning a point gets, 
moves away from a half, so the players become more unequally matched, you really don’t need to play 
many sets. You’ll perhaps get away with just playing one. The probability of winning the set is very strongly 
determined by the probability of winning a point. But as the probability of winning a point gets close to a 
half, you really do need to play several sets to be sure that the better player in the long run is actually 
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winning the match. The better the players get, the more closely matched they are, the closer P gets to a 
half, the more sets you have to play to reliably pick out the better player in the long run. That’s why in the 
early rounds of a top tournament you might just play 3 sets of tennis, but at semi-final and final stage, you 
probably need to play 5 – unless Feder is playing, and then you don’t need to play very many at all! 
Finally, I want to mention something about judging. The Winter Olympics is of course the place for unusual 
judging, particularly skating. I don’t think we fully even know what the judging structure is going to be of the 
skating events at the Turin Winter Olympics. But judging is a complicated and paradoxical thing to set up, 
and you have to be very careful that seemingly straightforward judging rules don’t lead to logical 
paradoxes. So the Nobel Prize in Economics was given for discovering this in a very widespread way back 
in 1972, by Ken Arrow. Here’s a very simple example. 
Suppose that we’ve got 3 competitors, Alice, Bob and Chris, and they’re performing in some subjective 
judging event, like skating or gymnastics, and there are 3 judges, and the 3 judges have the job of ordering 
them, ranking them, first, second and third. Well, what we discover is that the first judge on their scorecard 
has Alice in first place, Bob in second place, and Chris in third place, but the second judge, a Russian 
judge as it were, has Chris in first place, Alice in second, and Bob in third, and then the third judge, has 
Bob in first place, Chris in second place and Alice in third. Now, the problem is that they now have to 
combine those judgements to get final results, and that can produce a very strange situation, because you 
can see from these results that what happens is that Alice beats Bob here, Alice beats Bob, Bob loses to 
Alice, so Alice beats Bob by 2 votes to one, and Bob beats Chris by 2 votes to one, because Bob beats 
Chris here and Chris beats Bob, but Bob beats Chris. So Bob beats Chris by 2 to one, but Chris beats Alice 
by 2 votes to one, so you have a sort of circular paradoxical situation: A beats B, B beats C, but A does not 
beat C. This is not a sort of obscure little trick, as it were: it turns out that almost any voting system that you 
care to create which is subject to a small number of reasonable rules ends up producing paradoxes of this 
sort. What’s happening here is something like preference, or liking something, is not something that has 
this transitive property as we call it. Something like being taller than does. So if Alice is taller than Bob, and 
Bob is taller than Chris, then Alice is necessarily taller than Chris – that’s a property of being taller than. But 
preferring, or liking, so if Alice likes Bob, and Bob likes Chris, that doesn’t ensure that Alice likes Chris. 
These preference voting systems have this in-built paradox. 
I think probably the International Skating Union has to struggle with problems of this sort. When political 
scientists and economists set up rules for trying to produce best possible or fairest possible voting systems, 
they usually require certain properties to hold of the voting system, and one of them is, for example, that if 
you voted for one particular person, then it couldn’t reverse the order of preference of 2 other candidates 
who have nothing to do with the one that you’re voting for. This is called the exclusion of irrelevant 
alternatives. You would expect that if you gave a score for a certain competitor in gymnastics then it 
couldn’t change the order of 2 other competitors. The one you gave the score for might go above both 
those competitors, but it couldn’t reverse their order. But I think the new way of scoring in ice skating does 
unfortunately have this property, so the one that’s usually excluded, that it’s possible for judges to give a 
score to one particular skater which will invert the relative order of 2 other skaters, because the mark 
somehow determines the total amount of marks that’s being distributed between all the competitors, and if 
this skater is given a low score, it lowers the total amount of marks available and lowers the relative weight 
for different types of performance. There’s an interesting and possibly sort of controversial situation I think 
brewing in certain sports that have this unusual type of subjective judging. 
Well, I hope I’ve at least given you some glimpse as to how it’s possible by rather simple mechanics, 
simple mathematics, simple probability theory, to shed some light on what’s going on perhaps in the minds 
of people scoring events, and what type of considerations might enable you to understand why human 
sporting performance has the approximate level that it does. Rather simple mechanical arguments, simple 
use of energetics, simple use of the study of projectiles and so forth, enables us to understand, in a fairly 
simple way, why the levels of human performance are roughly as they are, and perhaps what you would 
have to do if you want to improve your high jump or your sprint start at the parents’ race next summer! 
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