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Chapter 6: The Deceived Brain: 
Coding and Illusion 

Professor Alain Goriely 
17 June 2025 

Visual illusions have bewildered humans and animals for millenia. They have been a constant 
source of amusement but also a unique doorway for scientists to understand the way the brain 
processes visual information. In the simplest classic visual illusions, a main object, such as a 
line or a circle, is deformed or displaced through the interactions of other nearby objects such 
as line segments or other circles. These interactions can be modelled in terms of effective 
interactions acting on the object, leading to small deformations. I will show that the introduction 
of simple phenomenological laws is sufficient to explain many visual illusions. Further, these 
laws can also be obtained from simplified models of the visual systems, linking visual formation 
processing to illusions. 

 
6.1 Introduction 
Geometrical-optical illusions are relatively simple visual illusions where the geometry of a two- 
dimensional pattern leads to a misleading perception of the physical reality of its spatial layout. 
They typically involve easily recognisable geometric shapes such as lines, squares, circles or 
triangles. A line, for example, may appear longer, shorter, or bent depending on the lines or 
patterns surrounding it. In other cases, our visual system perceives contours and shapes that 
are not actually present which is due to the arrangement of surrounding elements. 

As an example, consider the illusion in Figure 6.1. It is called the Shepard table after the 
psychologist Roger Shepard [21] from Stanford University. It shows two tables, the one on the 
left appears to me long and skinny, whereas the one on the right is short and wide. Surprisingly, 
both table tops are the same geometric shape as shown on the right. 

Illusions are not just curiosities, they have been subject to extensive research in multiple scien- 
tific fields such as psychology, neuroscience, and computer science, as they provide insights 
into the workings of the human visual system as already advocated by Helmholtz in 1881 [2]: 
“The study of what are called illusions of the senses is however a very prominent and important 
part of the physiology of the senses; for just those cases ... which are not in accordance with 
reality are particularly instructive for discovering the laws of those means and processes by 
which normal perceptions originate." 

The end of the nineteenth century was a particularly fertile ground to natural philosophy as 
they were no strict disciplinary barriers and scientists from mathematics, physics, biology, and 
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Figure 6.1: Shepard’s table tops is for me a striking illusion where the two table tops appear to 
have different shapes whereas they are actually the same two-dimensional shape as can be 
appreciated by rotating the figure on the right. 

 
physiology became interested in aspect of human perception. It became the golden age for 
visual illusions. Rapidly, a few key visual illusions were selected as particularly prominent. 
Among these, there are essentially three classes of interest for our discussion: illusions that 
involve changes in orientation and shape such as bending or misalignment; illusions that in- 
volve misjudgments of size or length due to the surrounding geometric context; and illusions 
that suggest a certain shape or contour despite the fact that they are not present. These basic 
illusions are often referred to as geometric-optical illusions, a term coined by Oppel in 1855 
[16]. I prefer the term visual illusions as distortions or misjudgements are due to the visual 
system and not to any optical effect. Before we review them, please do not disappointed if you 
do not see the illusions a I see them. Everyone sees illusions differently and not all appear as 
illusions. It just means that you are not as easily fooled as I am. Since I do not know what 
you see, I will describe these illusions as I see them but since I will mostly deal with simple 
illusions, they are typically observed by most people. In most cases, I will show in red the 
perceived object that is misjudged by the effects of extra features, the modifiers, shown in 
black. 
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6.1.1 Illusions of orientation 
In what I call illusions of orientation, we misjudge angular information. In particular, parallel 
lines may not appear parallel and straight lines may not appear straight. The most famous of 
such illusions is the Hering illusion, first described in 1861 by the German physiologist Ewald 
Hering [3]. He was exploring how our visual system interprets space and motion when he 
 

 
Figure 6.2: In the Hering illusion, two parallel lines (in red) appear bowed outward. 

 
noticed a strange effect: two straight, parallel lines placed over a background of radiating lines 
looked as if they were bending outward as shown in Figure 6.2 . This simple but powerful 
illusion quickly became one of the most studied in visual perception. 

You too can play the Hering game. All you need is a ruler, a sheet of paper, and a pen. Start by 
placing a ruler horizontally on a sheet of paper and draw two thick parallel horizontal lines—one 
on each side of the ruler. Then place a dot in the centre, half way between the two thick lines. 
Then start drawing light rays emanating from the centre and crossing the two lines, just like in 
the Hering drawing. How many small lines do you need before the line starts bending? Does 
the illusion changes with the orientation of the parallel lines or the small lines? 
 

 
Figure 6.3: In the Zöllner illusion, parallel lines (in red on the right) appear to be converging or 
diverging. 

Another classic is the Zöllner illusion, discovered in 1860 by Johann Karl Friedrich Zöllner, 
a German astrophysicist [25]. With a strong interest in what was called at the time psy- 
chophysics, he noticed that parallel lines appeared to diverge or converge when crossed by 
short diagonal lines.1 Though the main lines are perfectly parallel, they look skewed or tilted 

 

1There is a myth that Zöllner discovered these illusions while experimenting with patterns for textiles in his 
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because of the added intersecting strokes as shown in Figure 6.3. 

Now that you have played the Hering game, you should play the Zöllner game. With your ruler 
make a series of parallel lines on your sheet of paper. Then add series of crossings at about 
45◦ on all the lines, roughly equidistant. Do the lines appear to diverge now? How does it 
change as you rotate the sheet? Is the effect stronger? 

 

Figure 6.4: In the Poggendorff illusion, a line appear shifted as it passes behind a shape. The 
lower red line on the right of the rectangle is the corrected version (for the author) where it 
looks like the continuation of the line on the right. 
 
When Zöllner sent his newly found illusion for publication to Johann Christian Poggendorff, the 
editor of the journal Annalen der Physik, Poggendorff noticed something strange, the small 
lines on top of the long lines appeared broken. Doing so, he discovered a new illusion [18], 
shown in Figure 6.4. In the Poggendorff illusion a diagonal line appears to be misaligned as it 
passes behind a rectangular shape, even though it continues in a straight path. The two ends 
of the line seem offset, creating a puzzling break in continuity, that I call the alignment problem. 

Even though the illusion is attributed to Poggendorff, it can be found in many classical and 
modern paintings, where the effect has been corrected. A striking example of this “correction" 
can be seen in Peter Paul Rubens’ masterpiece, The Descent from the Cross from 1612–1614 
that is still on display at his original location in the Cathedral of Our Lady in Antwerp, Belgium. 
On the right side of the painting, a ladder leans diagonally behind a figure. Although the top 
part of the ladder is actually shifted to the right, it appears to align perfectly with the lower 
part. This creates a corrected version of the Poggendorff illusion, where our eyes mistakenly 
perceive the two misaligned sections as forming a continuous straight line [22]. 

Since we have no record about the creative process of Rubens, we do not know if this correc- 
tion was done on purpose. I have now studied this correction in some detail and have observed 
that it appears in all versions of the same painting and in many other paintings from Rubens. 
It is clear that Rubens knew how to use a ruler and did not find such a misalignment troubling. 
Indeed, despite extensive comments and studies of his paintings over the centuries, these 
misalignments have remained unnoticed, apart from the original paper by Topper in 1984 [22]. 
Even then, Topper failed to realise that the versions owned by the Courtauld Museum in Lon- 
don also have the same correction, albeit not as strongly. Finally, as long as you are admiring 
this beautiful painting. Have a look at the left side of the same ladder. You will soon reach 
 

father’s factory. It is true that there is a well-known textile brand called Zöllner, but I found no direct evidence that 
little Johann was influenced by fabric patterns. 
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Figure 6.5: In the Descent from the cross, the top part of the rightmost ladder is shifted further 
right. Despite this misalignment, the ladder seems perfectly straight. To test if the same effect 
could be related to the Poggendorff illusion, I extracted the shape (black rectangle) and the 
bottom part of the ladder (in red), I then moved a parallel segment at the top until it looked 
aligned. The resulting correction of the illusion is exactly the same as the one found in the 
original painting. 

 
the conclusion that the top part is missing. Where did it go? Why hasn’t anybody reported it 
missing in the last 400 years? 

As I was preparing my Gresham lecture, I found many more such corrections in various paint- 
ings. The most spectacular one is The Scream by Edvar Munch (1893), arguably the most 
iconic painting in modern art. Look at the set of diagonal railings that frame the walkway in 
Figure 6.6. They recede into the distance and are partially blocked by the central figure. Al- 
though they appear continuous, their alignment is visually adjusted. Munch “corrected" their 
positions and the net result is that it avoids triggering the Poggendorff illusion, where diagonals 
interrupted by a shape seem misaligned. The same misalignment appears in all eight versions 
of the same painting, including the two versions of Despair featuring a man standing quietly at 
the railing at the same location. We can conclude that this misalignment was probably deliber- 
ate, the purpose of which is best left for the many art lovers who spent their lives arguing about 
such questions. 

You too can play the Poggendorff game. Follow the instructions given in Figure 6.7: Start by 
placing a ruler vertically on a sheet of paper and draw two, parallel vertical lines, one on each 
side of the ruler. These lines represent the sides of a “barrier.” Next, on the left side, draw a 
diagonal half-line at a 45◦ angle, starting from the middle of the left vertical line and extending 
to the edge of the paper on the left. The challenge is to guess where that diagonal line would 
continue on the right side. To test yourself, place a dot on the right vertical line where you 
believe the diagonal would emerge if it passed straight underneath the hidden space. It is very 
important to keep the paper aligned so that the vertical lines appear vertical at all times (no 
cheating by rotating the paper or your head, using a ruler, or one eye). When you have a dot 
on the right line, check with your ruler if it is aligned with the diagonal half-line. What do you 
conclude? What would Rubens do? 
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Figure 6.6: The bridge railings in The Scream are misaligned. Following the same (non- 
scientific) self-experiment, I moved three lines parallel to the railings until they seemed to align 
with their counterpart, matching remarkably the ones drawn by Munch. 
 
 
 

 

 
Figure 6.7: Play the Poggendorff game by following these instructions (do use a real sheet of 
paper, its more fun and do not cheat!). 
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6.1.2 Illusions of size 

Another category of illusions is related to our judgment of relative sizes. The best known 
illusion in this category is the Müller-Lyer illusion introduced in 1889 by Franz Carl Müller- 
Lyer, a German sociologist [13]. At the time, due to the influence of Wilhelm Wundt who 
established the first psychology laboratory in Leipzig in 1879, psychology was beginning to 
shift from philosophical speculation to experimental science. One of the key aspects of this new 
scientific discipline was the study of visual illusions. In the Müller-Lyer illusion in Figure 6.8, 
both horizontal lines are identical in length, yet they appear dramatically different (by around 
30% for most people). The line with outward-pointing fins seems longer than the one with 
inward-pointing fins, even though they are the same. Many variations of the original Müller- 
Lyer illusion exist as I show in Figs. 6.8–6.9. 
 

Figure 6.8: In the Müller-Lyer illusion, both horizontal lines have the same length, despite the 
fact that the one with outward-pointing fins seems longer than the other one. The original 
version is at the top, the middle one is a version due to Franz Bentrano, and the bottom one is 
further simplified by removing the lines. In this case, the distance between the two red dots on 
the left is the same as the distance between the two red dots on the right. 
 
 
 

 
Figure 6.9: The Müller-Lyer illusion is so strong that the fins can be replaced by more com- 
plicated patterns and the red lines can be removed as I have done here. I called these the 
Müller-Lyer-duck illusion and the Müller-Lyer-clown illusion for obvious reasons. In both cases 
the distance between the two red dots on the left is the same as the distance between the two 
red dots on the right. 
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Move this piece of paper 
left or right so that the dot 
is exactly between the 
other two. 

You can play the 3D version of the Müller-Lyer game. Cut two sheet of papers halfway vertically 
and keep three of them, Now fold each of them in half to make fins as shown in Figure. 6.10. 
Draw a big dot at the top of the fold. Now place two of them in the same orientation at each 
side of the table (say a metre apart). The game is now to place the third one as in the picture, 
so that the middle dot is exactly in between the two other dots (no cheating, just looking straight 
at them). Then, use a piece of string to compare the distance between left-middle dots and 
middle-right dots. 
 
 
 

Figure 6.10: The Müller-Lyer game. With three pieces of paper as shown, try to place the 
middle one so that the middle dot is exactly in between the other two dots (indicated by red 
arrows). Then check the distance. 
 
 
 
 

 
6.1.3 Illusory contours 
 
The Kanizsa illusion is a powerful example of how our brains fill in missing information to create 
shapes that aren’t actually drawn. In the classic version shown in Figure 6.11, black “pac-man” 
shapes and angled lines are arranged so that we perceive a bright white triangle floating on top 
despite the fact that no such shape is outlined. This illusion was introduced in 1955 by Italian 
psychologist Gaetano Kanizsa, who used it to show how the mind actively constructs reality 
by organizing visual information into familiar patterns [7, 8]. The original illusion of this type 
is credited to Friedrich Schumann, a German psychologist who described it in 1900 [19]. In 
his version, visual elements were arranged in such a way that the viewer perceived shapes or 
contours that were not explicitly drawn, an early demonstration of what are now called illusory 
contours. 
 

 
Before we start with actual mathematics, let’s play a last and delicious game, the Kanizsa 
game. For this game, you will need a kiwi fruit. Slice it to obtain three rings more or less 
the same size. Now, make a pac-man of each slice by taking a sector of about 60◦ and 
place each piece on a white plate so that their centres are more or less at the vertices of a 
equilateral triangle. Rotate each pac-man until you see your own Kanizsa triangle appear. You 
can move them around until the triangle disappear, or change the angles to bend the sides of 
the triangles. Make sure to eat your kiwi when you are done. No wasting food and it’s full of 
vitamin C. 
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Figure 6.11: See the triangle? It’s not really there. The Kanizsa illusion shows that your brain 
fills in the gaps, creating edges and shapes that do not exist. 
 
 
 
 
 

 
 
 
 
Figure 6.12: The Kanizsa game is self-explanatory. This time you are allowed to play with your 
food by slicing kiwi fruits and placing the slices on your plate until a triangle appears, even if it 
is not really there. The best experiments are the ones that you can eat! 
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6.2 A general framework 
Our goal now is to build a mathematical theory for such illusions. What do I mean by that? Take 
for instance, the Hering illusion, the original object is a straight line that is bent when we add 
modifiers, smaller lines on top of it. Hence, the line is transformed into a curve. Can I predict 
the shape of the curve that I see? I want to do this in a manner that is sufficiently general 
that it can be applied not only to Hering’s illusion, but any variations on the theme where a 
well recognisable curve is modified by other features. For instance, if in the Hering illusion, I 
change the orientation of the modifiers, I obtain the Wundt illusion of Figure 6.13[23]. If I can 
predict the shape I see with the Hering illusion, can I predict the one I see in the Wundt illusion, 
or any such variations for that matter? 
 

Figure 6.13: The Wundt illusion is a variation of the Hering illusion where the modifiers are 
inverted creating the perception of inward bowing red lines. 

 
To build such a theory, we will follow the footsteps of Wassily Kandinsky [6] in his attempt to 
build a ‘science of art’ in Point and Line to Plane, in which he states “The ideal of all research 
is: (i) the precise investigation of each individual phenomenon—in isolation, (ii) the reciprocal 
effect of phenomena upon each other—in combinations." 

We will start with the basic Gestalt assumption that the brain perceives some objects rather 
than pixels. We will start with points, lines, and curves, and see how they are modified by the 
presence of extra features. In trying to understand such perceptual effect Kandinsky follow 
the general Gestalt philosophy that there is some kind of “forces" acting on these objects. As 
Kandinsky expresses: “The original source or every line remains the same: the force" [6]. The 
same view is echoed by his friend Paul Klee at the Bauhaus school: “The universal cause is 
reciprocal tension, a pull in two directions at once" [10]. Or, in the words of Kurt Kofka, one 
of the founding figures of Gestalt psychology: ““Force” has a definite meaning in the physical 
world, but what can it mean in a behavioural environment?" [11]. Therefore, for modelling 
purpose, we can use our understanding of mechanical forces and build models that integrate 
particular local effects that alter the shape of objects. It is important to stress that this is an 
analogy. There is no actual physical forces acting in your brain or in the image that you see. 
But for mathematical purpose, we can use mechanical theories to built a theory of deformation 
triggered by the interaction between an object and the modifiers, just like a real object would be 
modified by some forces. But, as we will soon discover, forces are not quite enough to explain 
illusions. 
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6.3 Illusory contours 
We start with illusory contours. If I look at the drawing at the top of Figure 6.14, what I see is 
the continuous curve at the bottom that is interrupted by white spaces, In fact, the top drawing 
is just a set of 11 curves. In Gestalt-speak, this is the law of good continuation, where we 
naturally perceive visual elements as connected or flowing together in a smooth path, even if 
they are not physically linked. How is it actually accomplished? According to David Mumford, 
a simple model for that response is that the brain connect smoothly such pieces in such a 
way as to minimise the total integrated curvature of the curve [14]. If the curvature of a curve 
connecting two pieces is too high, the brain does not register it as a connection. This model can 
be justified by the special type of neural networks that is used by our visual system. Indeed, 
simple cells in the primary visual cortex (V1) respond best to edges or bars of light at specific 
orientations within a particular part of the visual field. These cells act like tiny line detectors, 
becoming activated when a stimulus matches their preferred angle and position. This discovery 
was made by David Hubel and Torsten Wiesel in the 1960s, earning them a Nobel Prize for 
revealing how the brain begins to process visual information at the cortical level [5]. In the 
brain, neurons that encode proximity and close by directions tend to fire together, reinforcing 
the signal and giving us the perception of a connection. 

 

 

 
Figure 6.14: In the top drawing, 11 individual curves are shown but registered by the brain as 
the continuous curve below interrupted by white space. 

 
Mathematically, a smooth curve in the plane can be characterized by the angle θ(s) between 
the tangent and a given direction (choose the horizontal) as a function of the arclength s as 
shown in Figure 6.15. The curvature (literally, a measure of how curved the curve is) is then 
simply the first derivative θt(s). One can show that the curve that minimises the curvature is a 
solution of the following second-order ordinary differential equation: 

d2θ 

ds2 + a sin θ = 0. (6.1) 

 
The parameter a in this equation plays the role of a tension (obtained by pulling both sides of 
the curve). It is necessary to explain the Zöllner illusion but not needed for the simpler illusions 
that we will study. So, for the purpose of this discussion, it will be ignored. This leaves us with 
the much simpler equation 

d2θ 

ds2 = 0. (6.2) 
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Figure 6.15: A smooth curve in the plane can be described by a function θ(s) where θ is the 
angle between the curve’s tangent t(s) and the horizontal direction ex, and where s is the 
arclength (the length from the origin to a point following the curve). 

 
In particular, note that if θ is constant, it is a solution which corresponds to a straight segment. 
This is exactly the case of the regular Kanizsa triangle. Given the two tangents at the end 
of any two pac-men, an edge of a simple triangle is the curve that minimises (piecewise) the 
curvature. 

What if we close the mouth of the pac-men a bit as shown in Fig 6.16? In that case, θ constant 
does not match both tangent conditions at the end of the pac-men. However, the general 
solution is θ = C1s + C0 (with arbitrary constants C1 and C0 set by the tangent angles at 
the boundaries), which creates bent curves (in mathematics these curves are called Hermite 
splines). 
 

Figure 6.16: For a smaller opening of the pac-men, the triangle appears to have bent edges. In 
this case a triangle is not compatible with the constant solution of the elastica equation with the 
two tangents given by the red arrows. However, the general solution can easily accommodate 
this condition, in which case the angle is linear in the arc length and the predicted illusory 
contour is a triangle-like shape with bent edges. 
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6.4 Bending illusions 
Now that we understand how smooth or straight curves are perceived as minimisers of the 
total curvature, we can model the interaction between such simple objects and small modifiers 
crossing the curves as in the Hering and Wundt illusions. Notice that when we reverse the 
orientation of these modifiers, the effect is reserved (and nullified when we had both of them 
as shown in Figure 6.17 ). Hence, we are led to conclude that it is the angle between modifiers 
and object that is important. 
 

 

Figure 6.17: The addition of the Hering and Wundt illusions nullify the illusion, suggesting that 
the effect of the modifiers is linear and depends directly on the angle of intersection. 

 
It turns out that we are good at spotting both vertical or horizontal lines, as when we try to 
orient a painting on the wall. However, we make systematic mistakes for any other angle. This 
misjudgement of angles is called Brentano’s Law, the visual tendency to overestimate acute 
angles (as larger than they actually are), and underestimate obtuse angles (as smaller than 
they are in reality), as shown in Figure 6.18. 

In terms of effective forces, the net effect of this error can be thought as a local effective torque, 
the Brentano torque, acting on a line. But we know from our study of illusory contours that our 
perception of the line is that it tends to minimise its curvature. Therefore, we have two opposite 
effects, the minimisation of the curvature that makes us perceived a line as straight and the 
Brentano torque that tends to bend it locally. The resolution between these two effects is a 
slightly bent line. 

To test this explanation, we need to go one step further and see if we can actually create such 
a deformation. This is where we go from a description of a mechanism to an actual predictive 
model. Mathematically, the balance between the two effects is simply expressed by 

θtt(s) + .e(s) = 0, (6.3) 

where .e = .e(s) is Brentano’s torque. It is a function of the arc length since at different position 
on the curve, the angle α(s) between the modifiers and the object changes in the Hering and 
Wundt illusion. 
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Figure 6.18: Brentano’s law and its effect on vision. When we see an acute angle, we tend to 
overestimate it as shown above. The local effect of such an interaction can be seen as a local 
torque acting on a line element (top right). The effect of multiple such local torques is to bend 
the line. 

 
How do we choose .e(s)? The simplest way is to do experiments where observers are asked 
to place virtually a stick at an angle that matches a given angle seen in a different part of the 
screen as shown in Figure. 6.19. By varying the angle, one can obtain the systematic errors 
made by the observers. This is exactly what the team of Dale Purves from Duke University did 
starting in the late 90’s [15, 4]. We can now use their experimental data and fit it with a simple 
trigonometric function as shown in the same figure. The details of the curves are not important 
apart from the fact that it must go through zero at 0◦ and 90◦ (horizontal and vertical) and has 
a maximum at 30◦ where the error is maximal. Since we do not know the magnitude of such 
an effect, we multiply this function by an arbitrary constant b that will need to be adjusted for 
each person. The net result is the Brentano torque: 

.e(s) = b (6 sin 2α + sin 4α) . (6.4) 

We can now test our idea on the Hering illusion for which the angles between the object and 
any modifier positioned at distance s from the middle of the line is α = arctan(h/s). Hence the 
equation to solve is 

θtt(s) + b (6 sin 2α + sin 4α) = 0, α = arctan(h/s). (6.5) 

It is easy to solve this equation numerically and by varying the parameter b, I obtain bent curves 
that look at first sight very much like the ones I see in the Hering illusion. But, how can I be 
sure, and how do we choose the last remaining parameter b? Clearly it will depend on the 
observer, but we cannot measure it directly since the deformation only occurs in our brain. A 
neat trick borrowed from Rubens and Munch is to look at curves with different values of b but 
with the modifiers, and vary b until the object looks straight. We will have then corrected the 
illusion will be looking at a bent curve that looks straight. Lacking a pool of subject and the 
expertise to conduct accurate psychological experiments, I resorted to test it on myself and 
found that a value of b ≈ 0.1 works well for me in the conditions I was using (note that the value 
does not only depend on the subject but also the multiple details of the experiment, such as 
line colour, number of line, line thickness, brightness, and so on). 

Now that I have the parameter b, I can repeat the same procedure for different illusions of the 
same type (leading to different functions α(s)) or by generalising the same process for other 
curves such as a circle. I show in Figure 6.21 the result of these corrections. Even knowing 
that these curves are not straight or circular, I cannot see them bent. 
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Figure 6.19: Simple experiments show that we make errors in our estimation of angles and 
systematically overestimate acute angles. Purves and his team tested systematically such 
errors by asking subjects to place a stick at a given angle. The net result is the graph shown 
on the top right with a max at around 30◦ showing an error of about 3◦. I use the data fit from 
this experiment (red dots) to obtain a simple fitting of the normalised torque g(s) in terms of 
trigonometric function (shown in blue). 
 
 
 
 

 

Figure 6.20: The corrected Hering illusion. The red line is bent downward but appears straight 
to me. The blue dotted line is the original straight line. 
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Figure 6.21: The corrected Wundt and Orbinson illusion. Here, I have corrected the lines, 
square, and circle (the last two are the so-called Orbinson illusions [17]) so that they look 
again straight, squarish, and circular, by using the same value of b ≈ 0.1. 
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6.5 Size illusions 
We are now interested in understanding how additional features like the wings of the Müller- 
Lyer illusion, seen in Figure 6.8, change our perception of relative size. To simplify the problem, 
we start with a simpler configuration of one line and two dots shown in Figure 6.22 and ask the 
simple question: how is the object in red affected by the presence of the two dots? The main 
idea is that the effect of the dots on our perception is to pull the object towards the centre of 
mass (indicated by an x). Indeed, we know from psychology experiments that when subjects 
 

Figure 6.22: The way we perceived the interaction of the two dots with the red object is that 
it is pulled towards the centre of mass of the two dots, but resists this motion due to its own 
extension. 
 
are asked to align a red dot in the middle of a cloud of dots, they tend to make an error towards 
the centre of mass. 
 

Figure 6.23: When people are asked to move horizontally a red dot (below) so that it aligns 
with the red dot in a cloud of points, they have a tendency to move it closer to the centre of 
mass of the cloud as if the black points were pulling the red ones. 

 
Let me briefly remind you what the centre of mass is: Imagine you have several objects (say, 
balls) placed on a weightless plank. Assume each ball has a mass m1, m2, . . . , mn, and each 
is sitting at a certain position along the line, x1, x2, . . . xn measured from any origin point of 
your choosing on the same splank. The centre of mass, x∗, measured from the same origin, is 
the point on the line where you would place a fulcrum the plank so that the system is perfectly 
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balanced. With two objects, it is exactly a see-saw with unequal length to balance the mass: 
heavier objects pull more strongly, so the centre of mass will be closer to the heavier ones. A 
simple formula for the centre of mass is: 

x∗ = m1x1 + m2x2 + · · · + mnxn = M1 , (6.6) 
m1 + m2 + · · · + mn M0 

where M1 is the first moment of area (the sum of masses times distances) and M0 is the total 
mass of the system. 

This idea can be made much more precise by looking at how cells interact with each other in 
our visual system. In particular the signal from the retina goes through the lateral geniculate 
nucleus and it is relayed by surround-centre cells that have the property of lateral inhibition, 
enhancing the signal at a particular location but inhibiting signals just in their surroundings. 
This property combined with the fact that the effect of a point away from our focal attention 
decreases with the distance is enough to explain the effective force pulling away at the red dot. 
I then wrote a model for the effective force pulling it. To a good approximation, one can show 
that the error is 

Md modifier 
error ≈ 1  , (6.7) Md(object) + Md(modifier) 

0 0 

where the mass and first moment are weighted with the distance (that is, the effective mass 
decreases away from the focal point–hence, masses that are very far away have no effect). 
This model has a few hidden parameters that can be adjusted from one subject to the next. 
For instance, consider the data from actual experiments by Bulatov and his group [1] where 
subject reported the size of a Müller-Lyer illusion with dots where the dots are moved away at 
a distance w at a given angle as shown in Figure 6.24. We observe that the error increases 
at first as the centre of mass moves away from the ends of the line, hence pulling it more. 
However, since the amplitude of this effect depends on the distance to the centre of mass, 
it starts decreasing until the dots are sufficiently far away that they don’t disturb the object. 
Data for two different subjects show the subjective aspect of the effect but also that it can be 
accommodated by finding the relevant parameters for each subject. 
 
 

Figure 6.24: The error observed (dots) and fitted by the error formula (solid curve) in an exper- 
iment about the size of the red line where the dots are gradually moved apart. 
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Going back to the original illusion, we can compute the effect of an increasing wing size. We 
see in Figure 6.25, that in this case the error reaches a plateau due to the fact that increasing 
wings away from the focal point have diminishing effect on the object, as expected. 
 

Figure 6.25: The error observed (dots) and fitted by the error formula (solid curve) in an exper- 
iment about the size of the red line where the wing size is gradually increased. 
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6.6 Conclusions 
The geometric illusions that we studied are the simplest known illusions. They only involve 
one type of distortion and can be connected directly to particular processing modality of the 
visual system. This is what allowed me to develop simple models that capture the important 
features of the illusion at a local level. Once this mechanism is understood, these models 
can be applied to a multitude of similar illusions. Indeed I have shown that dozens of named 
illusions can be captured by the models we discussed. 

Yet, it is important to remember that we have only scratched the surface. The world of illusions 
is huge [20] and we have not discussed illusions of contrast, colours, or motion, among many 
others. I believe that the same framework can be applied to these illusions but it would require 
more work to pin down the principal mechanisms responsible for such illusions and fully de- 
velop mathematical models to test these mechanisms. It is also important to realise that there 
are illusions that have not been properly explained, even at a qualitative level. For instance, 
the sun/moon illusion, where the sun or the moon at the horizon appears much bigger than 
when they are high in the sky, does not have a satisfactory explanation. 

Illusions are delightful tricks of the mind. They compel us to face an important truth: our visual 
perception is deeply subjective. The world we see is not the same as the physical world that 
can be measured, it is a reconstruction, shaped by our brain from limited and often ambiguous 
information. 

And yet, the visual system performs astonishingly well. It processes vast amounts of data 
quickly and efficiently, allowing us to navigate the world with ease. But it is at the limits of 
this process, where information is sparse or ambiguous, that illusions emerge. In this sense, 
illusions are not failures; they are by-products of the brain’s best guess about what is out there, 
taking the statistics of the world into account. 

In fact, a world perceived with perfect accuracy would be rather dull. If our perception were 
strictly veridical, we might lose our capacity to enjoy much of what makes art, imagination, and 
storytelling so powerful. A simple line drawing, for example, would be nothing more than ink 
on paper—flat, meaningless. After all, lines do not truly exist in the real world; what we think 
of as lines are merely contours where light intensities shift. Without illusions, the world would 
be as described by Jean-Paul Sartre in La Nausée: "“Les choses sont uniquement ce qu’elles 
paraissent être ; derrière elles. . . il n’y a rien."2 and we would suffer from endless existentialist 
crises. 

It is precisely our susceptibility to being fooled that makes art possible. Illusions do not trick us, 
they invite us to dream. 

 
6.7 Further Reading 
There are many books on illusions, from the simple show-and-tell that are often rather dull and 
repetitive, from the sophisticated neuroscience and art analyses. 

• In Trick Eyes: Magical Illusions That Will Activate the Brain (2005), Akiyoshi Kitaoka, 
the grand master of illusions, presents over 100 of his own optical illusions, including 
his renowned “Rotating Snakes" and other motion illusions. It serves both as a visual 
spectacle and a scientific exploration into how our brains interpret visual information [9]. 

• In Mind Sights: Original Visual Illusions, Ambiguities, and Other Anomalies(1990), Roger 
Shepard explores the nature of mental imagery, perception, and meaning through a blend 

 

2"Things are entirely what they appear to be and behind them...there is nothing." 
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of visual illusions, scientific reflection, and philosophical insight. The book is richly illus- 
trated and presents Shepard’s personal and professional thoughts and drawings on how 
the mind creates and transforms visual experience [21]. 

• Perceiving Geometry: Geometrical Illusions Explained by Natural Scene Statistics (2005), 
by Catherine Q. Howe and Dale Purves. This book explores how the human visual sys- 
tem interprets geometric illusions by analyzing the statistical relationships between retinal 
images and their real-world sources. It provides an empirical framework for understand- 
ing why our perceptions often deviate from physical measurements. [4] 

• Vision and Art: The Biology of Seeing (2002), by Harvard neurobiologist Margaret Liv- 
ingstone is a beautifully illustrated book that explores how our visual system interprets 
art, revealing how artists have historically manipulated colour, light, and form to evoke 
emotional responses and convey meaning [12]. 

• Splendors and Miseries of the Brain: Love, Creativity, and the Quest for Human Happi- 
ness(2008) by the famous neurobiologist Semir Zeki explores how the brain’s architecture 
shapes our experiences of love, creativity, and the pursuit of happiness. By examining 
art, literature, and neuroscience, Zeki offers a personal view into how our neural struc- 
tures influence our perceptions and emotional lives [24]. 
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