Vector-borne (insect borne) infectious diseases.

Christopher Whitty Gresham College 2021 Route of transmission is key to understanding and combatting infectious diseases.

- Vector-borne (insects etc).
- Food, water.
- Sexual (& bloodborne).
- Respiratory.
- Touch.
- Usually one route dominant. Sometimes secondary routes.
- Infections very seldom change their route of transmission even if they jump species.

Many major diseases are entirely or largely vector-borne.

- Plague (also respiratory). Flea
- Malaria. Anopheles mosquito
- Dengue, Zika, Yellow fever. Aedes mosquito
- Sleeping sickness. Tsetse fly
- River blindness. Blackfly
- Trachoma (also touch). Fly
- Chagas. Reduviid (assassin) bug
- Lyme, tick typhus, tick-borne encephalitis. Tick
- Also mites, sandflies, body lice.

Vector-borne diseases need different control measures from other transmission methods.

- Making it harder.
- Often very efficient at infection.
- You do not need to meet the person or animal who infects you.
- Can be over large distances, or extended time.

Chigger (mite) of scrub typhus in pinhead

- Making it easier.
- They often have a specific geographical range.
- If you can kill the insect vector you can prevent transmission.

TseTse Fly. Patrick Manson

Vector-borne epidemics gone (for now) in UK but remain a major global risk.

- Vector-borne epidemics were a serious threat in England when Gresham College was founded.
- Plague (flea + respiratory)
- Epidemic typhus (body lice)
- Malaria (mosquito)
- UK currently has few vectors with epidemic potential- ticks, midges.
- Global warming could change that, but not for a long time.

Plague an example of the power of vector-borne infectious disease to shape human history- and human capacity to respond.

- Plague reduced the world population from an estimated 450 million down to 350–375 million in the 14th century.
- 30-60% of Europe's population died.
- Great Plague of London 1665-6. Official record 68,596 people died out of 460,000 estimated population.
- Risk of a plague pandemic now zero (WHO) although outbreaks occur.

Plague reservoir rats and other mammals. Fleas pass them on.

- Rats travel widely.
- Fleas bite the rat, get infected with plague bacteria.
- Flea bites humans, cause bubonic plague.
- Septicaemic spread in blood to lungs- secondary pneumonia.
- Spread human-to-human mainly via respiratory route- pneumonic plague.

Epidemic typhus and trench fever. Body lice.

- Passed human-to-human via insect vector.
- Crowded, limited hygiene environments.
- Common in wars, gaols, refugee camps, concentration camps.
- Epidemic typhus (gaol fever) fatality over 10%. Major epidemics in history.
- Trench fever (bartonella) less severe but can be prolonged.
- Killing lice, eg via hot water washing of clothes or DDT (R) key intervention.

Janice Carr CDC,

Malaria by the mid 19th Century.

- Marsh fever / ague was well known from ancient times.
- Malaria was a major problem globally, including much of Europe (inc. UK), USA, Australia.
- Land use changes had reduced it especially in parts of Europe but still a major threat.

The discovery of the lifecycle of malaria- one of the great breakthroughs in medicine.

- The female Anopheles mosquito sucks up malaria parasites when it feeds.
- These mature in the mosquito gut over around 9-11 days.
- Then injected into any person it bites.
- Sir Ronald Ross rightly received the second Nobel Prize in Medicine (1902) for discovering this although many involved.

Malaria transmission is very variable. Three sites in Tanzania.

Also varies over time due to rainfall. Nigeria.

Kenneth Whitty

Niger Chad Sokoto Katsina Daura Nguru • Gashua Monguno Gumel \star Garki • Anka • Gusau Kano Kamba Maiduguri • Damaturu Potiskum • Funtúa • Dabai • Zaria Birnin Gwari Bin Yauri. Benin Biu • Kaduna Babana ♦Kontagorá • Bauchi • Gombe Tegina (Jos Minna 📀 Kaiama Jebba Suleja • Langtang Bida Wamba Jalingo Number of months ●llorin 📀 Lafia of suitable climate ●Isantu Ogbomosho No transmission ● Iseyin Wukari • Beli Lokoja 1 month • Makurd Ilesha • Okene 2 months • Ibadan Akure Oturkpo 3 months Abeokuta 0 4 months ♦ ljebu-Øde ♦ Ore Enugu 5 months •-LAGOS Benin City Abakalik 6 months Onitsha Cameroon 7 months Afikpo OIKOM 8 months • Warri MARA • Owérri 9 months Country boundaries • Aba 10 months 🔿 Calal Administrative boundaries • Port Harcourt 11 months Kilometers Perennial water bodies All year transmission ARMA

Nigeria: Duration of the Malaria Transmission Season

Vectorial capacity- R for vector-borne diseases.

VC≈ m a² pⁿ

m= mosquito density

- a= human biting habit (anthrophilia)
- p= probability of mosquito surviving a full day
 after being infected

n=how many days before mosquito infectious

Ways to attack the mosquito stage.

- Remove their breeding sites
- Kill them as larvae
- Kill them before they bite a human
- Kill them after they bite a human*

Speculative

- Sterile males
- Genetically engineer mosquitoes

Malaria distribution 1948 (L) and 1977 (R)

Malaria's reach has gradually shrunk. (Gething et al, Nature 2010)

Malaria current approximate range.

Treating malaria early essential. Saves lives, reduces transmission. Based on two plants with long medical histories.

Malaria deaths are steadily dropping.

- Mortality rate over halved since 2000.
- Deaths, mainly in children reduced from 736 000 in 2000 to 409 000 in 2019.
- 7.6 million malaria deaths have been averted in the period 2000– 2019 (WHO). Most are children.

Imported and travellers malaria in UK: 2000-2019.

- Malaria remains a major risk to travellers to endemic areas.
- More common than 'flu in many areas.
- Largely preventable-
- Sleeping under a treated bednet.
- Prophylactic antimalarial drugs.

PHE Malaria Reference Laboratory

The recent announcement by WHO in favour of a malaria vaccine.

- The RTS,S malaria vaccine has been long in development.
- Provides around 30% reduction against severe malaria (WHO).
- A moderate reduction in a large risk is still a significant advance.
- Will be third pillar of control, with anti-mosquito measures and drugs.

Lymphatic filariasis (elephantiasis).

- Worm species transmitted by mosquitos in Africa and Asia.
- Cause inflammation of the lymphatic system.
- Result can be substantial swelling of appendages- limb, breast, scrotal swelling.
- Control of mosquitoes.
- Mass drug administration to kill baby worms (microfilaria) in humans.

Control of lymphatic filariasis. Steady reduction over time.

Local Burden of Disease Neglected Tropical Diseases Collaborators. Lancet GH 2020

A group of serious viral infections transmitted by one mosquito genus, Aedes are currently spreading.

- Dengue
- Zika
- Chikungunya
- Yellow Fever (we have a vaccine)
- Aedes is well adapted to peri-urban living.
- Day-time feeder.

Global dengue cases (WHO). Reported cases risen from 0.4M 1996 to 5.2M by 2021

Aedes adapted to peri-urban living. Dengue spread in the Americas. Globally 70% of the dengue burden in Asia.

San Martin JL et el 2010 JASTMH. Incidence/100,000

Dengue can be a severe disease.

- Dengue haemorrhagic disease.
- Dengue shock syndrome.
- Symptoms can be prolonged.
- Producing a vaccine has proved difficult- some progress for those with prior infection.

WHO/TDR/STI/Hatz

Zika. Notified cases of microcephaly in Brazil, November 2015.

Baby with Severe Microcephaly

Typical Head Size

Zika gradually travelled round the world until first epidemic.

Sources: LANCASTER UNIVERSITY, WHO, CENTRES FOR DISEASE CONTROL AND PREVENTION ST GRAPHICS

Potential for spread limited to vector distribution (CDC). Aedes albopictus spreading to and in Europe, often via tyres.

M

Aedes aegypti mosquito

Aedes albopictus mosquito

Control of Aedes-transmitted diseases.

• Vector control of Aedes not easy.

Conventional, moderately effective include

- Covering water sources.
- Screens on windows, doors.
- 'Fogging' with insecticide during outbreaksseveral disadvantages.

Experimental

- Sterile male mosquitoes.
- Genetically modified mosquitoes.
- Wolbachia-infected Aedes less able to transmit.

Mosquito-borne viruses from birds and animals.

Examples

- Japanese encephalitis, most common encephalitis in Asia. Pigs and water birds to humans via Culex mosquito. Vaccines available.
- West Nile virus most common mosquito-borne infection in North America. Usually Culex mosquito from birds.

Culex mosquito CDC.

Fly-borne diseases. Sleeping sickness (African trypanosomiasis).

- Main form (gambiense) human-tohuman.
- Tsetse fly- bites humans, transmits the parasite.
- Untreated almost always fatal, chronic neurological disease.
- Several large epidemics.
- Control: find and treat patients (vector control). Several new drugs.
- Less than 1000 cases reported 2019 (WHO). Around 500,000 cases in 1990s.

Zoonotic (animal) form human African trypanosomiasis.

- *T. rhodesiense-* from animals.
- Therefore eliminating human reservoir does not work.
- Tsetse control more important.

Onchocerciasis- river blindness in Africa and Latin America.

- Due to a worm transmitted by the blackfly *Similium damnosum*.
- Causes vision loss (over 1M-GBD) and skin inflammation.
- Some vector control by spraying larvicide in breeding sites of blackfly.
- Mass drug administration of ivermectin, an antiparasitic drug.

Other fly-transmitted infections affecting eye.

Loa loa (eyeworm) via chrysops fly.

Trachoma via touch and fly.

1.9M people blind or visually impaired (WHO).

Lichtinger A, Caraza M, Halpert M Am.J.Trop.Med.Hy P. Emerson R. Bailey. Bazaar fly and follicular trachoma

Ticks and mites (arachnids). Tick-borne typhus and other spotted fever diseases.

- African tick typhus, Rocky Mountain Spotted Fever, Queensland tick typhus and other varieties.
- Form of bacteria- Rickettsia.
- Fever and rash.
- Treated antibiotics.
- Mite-borne typhus SE Asia.

Alan Walker/JMK/Peterwchen /Bjørn Christian Tørrissen

Lyme disease. Tick-borne, geographically concentrated.

1 dot placed randomly within county of residence for each confirmed case

Tulloch et al / PHE. Lab proven Lyme. 2018

Lyme disease reported cases USA 2019. CDC.

Neuroborreliosis (neurological Lyme).

- Lyme disease can cause neurological inflammation in a minority.
- Can be difficult to diagnose. In most cases antibiotic treatment very effective.
- Controlled studies suggest outlook usually good. For example recent study of 2,067 people proven neuro Lyme and 20,670 general Danish population.
- Almost identical hospitalisations, employment, income, disability, children.

Obel et al, BMJ 2018

Tick-borne viral encephalitis.

- Tick-borne encephalitis across much of Europe and Asia.
- Inflammation of the brain. In some cases can cause lifelong neurological complications.
- An effective vaccine available.
- Remove ticks if you find them.

NaTHNaC/NHS.

Control of vector-borne diseases.

- Vector-borne diseases are common, varied, and can be very dangerous.
- Depend on the local vectors- highly geographically varied.
- Three approaches to control:
- -Kill the vectors, or stop them biting humans.
- -Early treatment, to cure and prevent transmission.

-Vaccines.

Relative importance of these depends on the disease and the vector.

