Error control coding

Richard Harvey

GRESHAM coutot

Error control coding

Telegram word count: a checksum

Parity

1011101

Five ones
An odd number
Let's make it even

Send again please!
That's not even!
An odd number
Five ones

Binary XOR

A	B	XOR (A+B)	Even parity
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

RAID 5

Shannon Weaver Channel

Fig. 1-Schematic diagram oi a general communication system.

Shannon Weaver Channel

Binary symmetric channel

Probability of error: p_{e}

Shannon Weaver Channel

$$
p_{e}=0.05
$$

noise

Repetition code

Characterising a repetition code

State of the art technology in 1947 - error detection with parity bits

"Tape relay system for radiotelegraph operation," Sidney Sparks and Robert G Kreer, RCA Review, Volume VIII, September 1947, (3), pp 393 —426, Online at https://
worldradiohistory.com/ARCHIVE-RCA/RCA-Review/RCA-Review-1947-Sep.pdf

Hamming codes

7 digits in total 3 are parity
4 are data
$(7,4)$ code

$s 1$	$s 2$	$s 3$	Location of error (syndrome)
0	0	0	No error
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

$(7,4)$ Hamming code

Set
b1+b3+b5+b7=0
b2+b3+b6+b7=0
b4+b5+b6+b7=0

$(7,4)$ Hamming code

Check

0	1	1	1	0	0	0

$$
\begin{aligned}
& b 1+b 3+b 5+b 7=0 \\
& b 2+b 3+b 6+b 7=0 \\
& b 4+b 5+b 6+b 7=0
\end{aligned}
$$

1	0	1	1	0	0	0

101 is binary address of the error (5 in decimal)

Characterising $(7,4)$ Hamming code

Shannon's coding theorem

Shannon' coding theorem

$C \leq 1-H_{2}(p)$

where $H_{2}(p)$ is the entropy of a binary symmetric channel with probability of error p

The Claude Eustace Shannon Agony Aunt
Q. My channel has an error rate of 0.1 and a data rate of $6 \mathrm{Mbits}^{-1}$. How many repeats would I require to get the error rate down to 10^{-15} and what's the cost?
A. Well, consulting your diagram I see that 60 repeats should do the job but that reduces our bandwidth to a measly $6 / 60 \mathrm{Mbits} \mathrm{s}^{-1}=100 \mathrm{kbits} \mathrm{s}^{-1}$.
Q. Can't I do better than that?
A. Yes! My bound is at 0.54 , so I predict you could get zero error with a bandwidth of $3.24 \mathrm{Mbits} \mathrm{s}^{-1}$
Q. Amazeballs! How do I design such a code?
A. Errr.

Information theory

Walsh-Hadamard codes
Hamming codes
Golay codes

Reed-Soloman codes

Gallager codes

BCH codes
Goppa codes

Fire codes
AN codes

[^0]LDPC codes

Tornado codes

Luby Transform (LT) codes

Notes on Digital Coding*

The consideration of message coding as a means for approaching the theoretical capacity of a communication channel, while reducing the probability of errors, has suggested the interesting number theoretical problem of devising lossless binary (or other) coding schemes serving to insure the reception of a correct, but reduced, message when an upper limit to the number of transmission erors is postulated.
An example of lossless binary coding is treated by Shannon ${ }^{1}$ who considers the case of blocks of seven symbols, one or none of which can be in error. The solution of this case can be extended to blocks of $2^{n}-1$-binary symbols, and, more generally, when coding schemes based on the prime number p are employed, to blocks of $p^{n}-1 / p-1$ symbols which are transmitted, and received with complete equivocation of one or no symbol ach block comprising n redundant symbols lesigned to remove the equivocation. When encoding the message, the n redundant symSols x_{m} are determined in terms of the message symbols Y_{k} from the congruent relasage s
tions
$E_{m}=X_{m}+\sum_{k=1}^{\left.k=\left(p^{n}-1\right) / p-1\right)-n} a_{m k} Y_{k} \equiv 0(\bmod p)$.
In the decoding process, the E 's are recalculated with the received symbols, and their ensemble forms a number on the base p which determines univocally the mistransmitted symbol and its correction.
In passing from n to $n+1$, the matrix with n rows and $p^{n}-1 / p-1$ columns formed
*Received by the Institute. February 23.1949 .
iC. E. Shannon ${ }_{A}$. mathe matical the ory of com 1. C. E. Shannon, "A mathematical theory of com-
munication," Bell Sys. Tech. Jour... vol. 27. D. 418 ;
July, 1948.
with the coefficients of the X 's and Y 's in the expression above is repeated p times horizontally, while an $(n+1)$ st row added, consisting of $p^{n}-1 / p-1$ zeroes, followed by as many one's etc. up to $p-1$; an added column of n zeroes with a one for the lowest term completes the new matrix for $n+1$.

If we except the trivial case of blocks of $2 S+1$ binary symbols, of which any group comprising up to S symbols can be received in error which equal probability, it does not appear that a search for lossless coding schemes, in which the number of errors is limited but larger than one, can be systematized so as to yield a family of solutions. A necessary but not sufficient condition for the existence of such a lossless coding scheme in the binary system is the existence of three or more first numbers of a line of Pascal's triangle which add up to an exact power of 2 . A limited search has revealed two such cases; namely, that of the first three numbers of the 90th line, which add up to 2^{12} and that of the first four numbers of the 23 rd line, which add up to 2^{11}. The first case does not correspond to a lossless coding scheme, for, were such a scheme to exist, we could designate by r the number of E_{m} ensembles corresponding to one error and having an odd number of 1's and by $90-r$ the remaining (even) ensembles. The odd ensembles corresponding to
two transmission errors could be formed by re-entering term by term all the conbinations of one even and one odd ensemble corresponding each to one error, and would number $r(90-r)$. We should have $r+$ $r(90-r)=2^{11}$, which is impossible for integral values of r.

On the other side, the second case can be coded so as to yield 12 sure symbols, and the $a_{m k}$ matrix of this case is given in Table I. A second matrix is also given, which is that A second matrix is also given, which is that
of the only other lossless coding scheme enof the only other lossless coding scheme en-
countered (in addition to the general class countered (in addition to the general class
mentioned above) in which blocks of eleven ternary symbols are transmitted with no more than 2 errors, and out of which six sure symbols can be obtained.

It must be mentioned that the use of the ternary coding scheme just mentioned will always result in a power loss, whereas the coding scheme for 23 binary symbols and a maximum of three transmission errors yields a power saving of $1 \frac{1}{2} \mathrm{db}$ for vanishing probabilities of errors. The saving realized with the coding scheme for blocks of $2^{n}-1$ binary symbols approaches 3 db for increasing n 's and decreasing probabilities of error, but a loss is always encountered when $n=3$.

Marcel J. E. Golay
Signal Corps Engineering Laboratories
Fort Monmouth, N. J
table I
[

	$Y_{\text {t }}$	$Y=$	Y,	Y_{1}	Ys	Yo	Y,	Ys	Y,		Y_{11}	Y_{17}		Y,	Y_{2}	Y_{3}	Y	Y	Y,
X,	1	0	0	1	1	1	0	0	0	1	1	1	X_{1}	1	1	1	2	2	0
X :	1	0	1	0	1	1	0	1	1	0	0	1	X :	1	1	2	1	0	2
$X{ }_{2}$	1	0	1	1	0	1	1	0	1	0	1	0	X_{1}	1	2	1	0	1	2
X,	1	0	1	1	1	0	1	1	0	1	0	0	X.	1	2	0	1	2	1
X 。	1	1	0	0	1	1	1	0	1	1	0	0	X,	1	0	2	2	1	1
X 。	1	1	0	1	0	1	1	1	0	o	0	1							
X_{7}	1	1	0	1	1	0	0	1	1	0	1	0							
X s	1	1	1	0	0	1	0	1	0	1	1	0							
X.	1	1	1	0	1	0	1	0	0	0	1	1							
X_{10}	1	1	1	1	0	0	0	0	1	1	0	1							
X_{11}	0	1	1	1	1	1	1	1	1	1	1	1							

Hamming distance

0	0	0	0	0	0	0	0
0	0	0	1		0	0	0
0	0	1	0	0	0	1	0
0	0	1	1		0	0	1
0	1	0	0	0	1	0	0
0	1	0	1		0	1	0
0	1	1	0		0	1	1
0	1	1	1		0	1	1
1	0	0	0	1	0	0	0
1	0	0	1		1	0	0
1	0	1	0	1	0	1	0
1	0	1	1		1	0	1
1	1	0	0	1	1	0	0
1	1	0	1		1	1	0
1	1	1	0	1	1	1	0
1	1	1		1	1	1	1

$X \times X$

Hamming distance
between code words 2 and 9:

$$
d\left(x_{2}, x_{9}\right),=4
$$

Hamming distance

Hamming distance visualised

Codes that "perfectly" fill the space are called perfect codes

Approaching the Shannon limit

State of the art

A few codes, Gallager and Polar, approach the Shannon limit in some circumstances
Not always easy to specify or find such codes
Simple codes still used

ECC started in 1948 - no prehistory
Absolutely vital for today's systems

Next

Cellular phones
8th March 6pm (UK time) 2022
Integral transforms
12th April 6pm (UK time) 2022
Operating systems
31st May 6pm (UK time) 2022

Thanks and kudos to the Worshipful Company of Information Technologists who sponsor these lectures.

[^0]: Turbo codes

