Cellular phones

Richard Harvey

Mobile phones

Richard Harvey

IT Livery Company Professor of Information Technology, Gresham College

GRESHAM COLLEGE

www.prof-richard.org

What is an invention?

06

Wallace and Gromit's world of inventions, Aardman animation

20

-

Berlin Drahtlose Telephonie

"Sier Ruschte zur Beit Ede Friedrich-Behrenftraße . . . gut - bon - gemacht - tomme fofort !"

Simplicissimus magazine, 20 December 1926

Frequency reuse = 7

Analogue voice No data 1980s Digital voice 100 kbits 1990s

111

NOKIA

2*** 3** 5 ** 6**

8 tor 9 may

2G

3G

Mobile data 1Mbps 2000s

Mobile broadband 10s of Mbps 2010s 5G

Low latency Mobile broadband 100s of Mbps 2020s

Which is the most powerful?

The Cray 1 Supercomputer 1975 160 Mflops

IBM Deep Blue 1997 12 Gflops

Apple iPhone 13 2021 1500 Gflops

Buzzword bingo

Marketing Name	ITU Name	3GPP Name	RAN Name	Core Name	System Name
3G	IMT-2000	UMTS	UTRAN	UMTS Core	UMTS System
4 G	IMT-Advanced	LTE-Advanced	E-UTRAN	Evolved Packet Core (EPC)	Evolved Packet System (EPS)
5G	IMT-2020	5G	New Radio (NR)	5G Core (5GC)	5G System (5GS)

From 5G for Absolute Beginners: Part 4 Why is 5G called 5G, Zahid Ghadialy, April 2020 <u>bit.ly/udemy5G</u>

Enhancement of key capabilities from IMT-Advanced to IMT-2020

Radio altimeters

	<1GHz 30	GHz 4GHz	z 5GHz	2	24-28GHz	37-40GHz	64-71GHz	>95GHz
	600MHz (2x35MHz) 2.5/2.6GHz (B41/n41)	3.45- 3.55- 3.7- 3.55GHz 3.7GHz 4.2GH	- -Iz	5.9-7.1GHz	24.25-24.45GHz 24.75-25.25GHz 27.5-28.35GHz	37-37.6GHz 37.6-40GHz 47.2-48.2GHz	64-71GHz	>95GHz
(*)	600MHz (2x35MHz)	3.55-3.7 GHz			26.5-27.5GHz 27.5-28.35GHz	37-37.6GHz 37.6-40GHz	64-71GHz	
****	700MHz (2x30 MHz)	3.4-3.8GHz		5.9-6.4GHz	24.5-27.5GHz			
	700MHz (2x30 MHz)	3.4-3.8GHz			26GHz			
	700MHz (2x30 MHz)	3.4-3.8GHz			26GHz			
	700MHz (2x30 MHz)	3.46-3.8GHz			26GHz			
	700MHz (2x30 MHz)	3.6-3.8GHz			26.5-27.5GHz			
**	700MHz 2.5/2.6GHz (B41/n41)	3.3-3.6GHz	4.8-5GHz		24.75-27.5GHz	37-42.5GHz		
•	700/800MHz 2.3-2.39GHz	3.4- 3.42- 3.7- 3.42GHz 3.7GHz 4.0GHz		5.9-7.1GHz	25.7- 26.5- 28.9- 26.5GHz 28.9GHz 29.5GHz	37.5-38.7GHz		
		3.6-4.1GHz	4.5-4.9GHz		26.6-27GHz 27-29.5GHz	39-43.5GHz		
	700MHz	3.3-3.6GHz			24.25-27.5GHz 27.5-29.5GHz	37-43.5GHz		
		3.4-3.7GHz			24.25-27.5GHz	39GHz		

From "Making 5G a commercial reality," Qualcomm Feb 2020 https://www.qualcomm.com/media/documents/files/making-5g-nr-a-commercial-reality.pdf

Key innovations in 5G (according to Qualcomm)

Flexible slot-based framework

Scalable OFDM-based air interface

Scalable OFDM numerology

Low latency, URLLC, forward compatibility

Self-contained slot structure

Address diverse services. spectrum, deployments

Advanced channel coding

Multi-Edge LDPC and **CRC-Aided Polar**

> Support large data blocks, reliable control channel

Massive MIMO

Mobile mmWave

Reciprocity-based MU-MÍMO

Large # of antennas to increase coverage/capacity

Beamforming and beam-tracking

> For extreme capacity and throughput

From "Making 5G a commercial reality," Qualcomm Feb 2020 https://www.qualcomm.com/media/documents/files/making-5g-nr-a-commercial-reality.pdf

5G features - OFDM

OFDM ideal transmitter and receiver diagram from https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiplexing

5G features - MIMO

3G UMTS architecture - latency

Mobile telephony

Not telephony! **Massive important innovator** A tangle of standards and alphabet spaghetti Huge private investments Funded on a commercial model Another invention... but really a bundle of innovation wrapped in a protocol

Integral transforms 12th April 6pm (UK time) 2022

Operating systems 31st May 6pm (UK time) 2022

Thanks and kudos to the Worshipful Company of Information Technologists who sponsor these lectures.